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Artificial intelligence
 for detection of periapical lesions on
intraoral radiographs: Comparison between

convolutional neural networks and human observers

Ruben Pauwels, MS, PhD,a,b Danieli Moura Brasil, DDS, MS, PhD,c

Mayra Cristina Yamasaki, DDS, MS, PhD,c Reinhilde Jacobs, DDS, MS, PhD,b,d
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Objective. The aim of this study was to compare the diagnostic performance of convolutional neural networks (CNNs) with the

performance of human observers for the detection of simulated periapical lesions on periapical radiographs.

Study Design. Ten sockets were prepared in bovine ribs. Periapical defects of 3 sizes were sequentially created. Periapical radio-

graphs were acquired of each socket with no lesion and with each lesion size with a photostimulable storage phosphor system.

Radiographs were evaluated with no filter and with 6 image filter settings. A CNN architecture was set up using Keras-TensorFlow.

Separate CNNs were evaluated for randomly sampled training/validation data and for data split up by socket (5-fold cross-valida-

tion) and filter (7-fold cross-validation). CNN performance on validation data was compared with that of 3 oral radiologists for

sensitivity, specificity, and area under the receiver operating characteristic curve (ROC-AUC).

Results. Using random sampling, the CNN showed perfect accuracy for the validation data. When data were split up by socket,

the mean sensitivity, specificity, and ROC-AUC values were 0.79, 0.88, and 0.86, respectively; when split up by filter, they were

0.87, 0.98, and 0.93, respectively. For radiologists, the values were 0.58, 0.83, and 0.75, respectively.

Conclusions. CNNs show promise in periapical lesion detection. The pretrained CNN model yielded in this study can be used for

further training on larger samples and/or clinical radiographs. (Oral Surg Oral Med Oral Pathol Oral Radiol 2021;131:610�616)
Radiographic examination is essential in the diagno-

sis of periapical lesions. Though intraoral radiography

(IOR) is commonly used for this purpose, it has shown

limited diagnostic efficacy for small, periapical bony

lesions because of anatomic overlap.1-4 Cone beam

computed tomography (CBCT) allows for an accurate,

3-dimensional assessment of periapical lesions,1-4 but

because of its higher radiation dose it is not justified

for routine diagnosis and follow-up.5 Furthermore, the

added dimension of CBCT may not improve the diag-

nosis of inflammation,6 and the diagnostic value of

CBCT can be severely affected by metal artefacts (e.g.,

from root canal fillings or adjacent implants).7 Thus,

IOR is expected to remain a frequently used imaging

modality for routine periapical evaluation before, dur-

ing, and after treatment.5

Because of the limited diagnostic efficacy of IOR for

periapical lesions, several previous studies have evalu-

ated techniques to optimize lesion detection, including
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through image postprocessing.8,9 Image filtering is

commonly applied to optimize the diagnostic efficacy

of a radiograph for a given diagnostic task. The most

commonly used filters either (1) increase sharpness by

enhancing edges (e.g., unsharp masking) or (2) reduce

noise, often at the cost of blurring the image (e.g., a

Gaussian filter). Furthermore, filters may increase con-

trast for certain tissues and lesions by stretching part of

the histogram.

Recently, the potential use of artificial intelligence

(AI) as a diagnostic tool has gained attention in radiol-

ogy.10 Owing to innovations in deep learning, particu-

larly convolutional neural networks (CNNs),11 it is

now feasible to train and evaluate AI systems for spe-

cific diagnostic tasks. Recent improvements in comput-

ing hardware, especially in the graphics processing unit

(GPU), allow CNN models to be trained on very large

and/or augmented data sets. The main potential benefits

of AI in radiology are improved diagnostic efficacy and
Statement of Clinical Relevance

Convolutional neural networks are used to develop

artificial intelligence systems for diagnostic tasks in

oral and maxillofacial radiology. This study indi-

cates that convolutional neural networks can yield

diagnostic performance comparable to or better than

that of human observers for detection of periapical

lesions.
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reduced image interpretation time.10 In dentistry, sev-

eral pilot studies have investigated the use of CNNs for

various diagnostic tasks,11 such as periodontal bone

loss,12-15 dental caries,14,15 periapical/endodontic

evaluation,14,16 root fractures,17 maxillary sinusitis,18

and osteoporosis.19 A previous study that involved

CNN-based periapical lesion detection on IOR showed

high performance on test images using transfer learn-

ing.14 However, the data were labeled by clinicians

(dentists and radiologists), making them prone to error,

which may lead to suboptimal CNN training. To over-

come this issue, simulated lesions can be used, allow-

ing for perfect annotation of training and validation

data. Furthermore, the aforementioned study14 did not

compare the performance of the trained CNN with that

of human observers, which limits the conclusions that

can be drawn in terms of CNN performance.

The aim of this study was to explore the use of

CNNs for the detection of simulated periapical lesions

on intraoral radiographs and to compare the perfor-

mance of trained CNNs with that of human observers.

The null hypothesis stated that there would be no dif-

ferences in diagnostic performance in the detection of
Fig. 1. Lesion grou
simulated lesions between the CNNs and human

observers.

MATERIALS ANDMETHODS
Sample preparation
Sample preparation and human observation conditions

have been described in Brasil et al.9 In summary, 10

sockets were prepared in bovine ribs, and bone defects

of incremental size (1.6 mm, 1.8 mm, and 2.1 mm)

were created with a round carbide bur (KG Sorensen,

Cotia, SP, Brazil) to simulate periapical lesions

(Figure 1). A bovine tooth with a single, fully formed,

straight root was used for all subsequent radiographs.

Periapical radiographs were acquired using size 2

VistaScan photostimulable storage phosphor plates

(D€urr Dental AG, Bietigheim-Bissingen, Germany)

and a FOCUS radiography unit (Instrumentarium Den-

tal, Tuusula, Finland) at 70 kV, 7 mA, 0.08 second

exposure time, and 40 cm source-to-object distance.

For each socket, a radiograph was acquired before

inducing the bone defect. Next, a radiograph was taken

after each progressive enlargement of the defect. The

aforementioned bovine tooth was placed in the socket
ps and filters.



Table I. Mean gray value and noise measured in dentin and description of the filter according to the DBSWIN

instruction manual

Filter Mean gray

value

Noise (SD) Description

No filter 92 5.9

Fine 86 6.0 General sharpening filter that enhances structures of 2 line pairs per millimeter

Caries 1 98 11.8 Enhances structures of 2 line pairs per millimeter with strong attenuation of low frequencies

Caries 2 94 7.8 Enhances structures of 2 line pairs per millimeter with strong attenuation of low and high frequencies

Endo 93 11.4 Enhances structures of 3 line pairs per millimeter with strong attenuation of low frequencies

Perio 103 16.9 Enhances structures of 2.5 line pairs per millimeter with strong attenuation of low frequencies

Noise reduction 138 6.4 Matches outlier pixels to their neighboring pixels

SD, standard deviation.
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for each radiograph. An acrylic resin device was used

to fix the exposure geometry, allowing for reproducible

radiographs. To simulate soft tissue, a 2.5-cm�thick

acrylic resin block was placed between the x-ray tube

and the bovine rib.9

For each radiograph, along with an unfiltered image,

6 image filters (DBSWIN, D€urr Dental AG) were

applied (Figure 1). Table I provides an indication of

the differences between filters based on the mean gray

value and noise (calculated as standard deviation) mea-

sured using a small region of interest inside the dentin.

The total sample of 280 radiographs (10 sockets £ 4

lesion conditions £ 7 filter settings) was exported in 8-

bit TIF (tagged image file) format.

Data preparation and sampling for CNN
The radiographs were cropped to regions of interest of

256 £ 256 pixels, centered on the root apex, by a

researcher who was not involved in the human observa-

tion study. Data augmentation was performed through

smoothening, adding noise, and affine transformations,

resulting in 5600 unique images (1400 per each of the

4 lesion groups). Three different sampling methods

were used to split up the data into training and valida-

tion subsets (Figure 2):

� Random sampling: The entire data set was random-

ized and subsequently split into training (60%) and

validation (40%) data. This approach assessed the

overall ability of the CNN to extract the expected

output information from the input data; it primarily

served as a validation of the CNN architecture and

hyperparameters rather than an assessment of CNN

performance vs human observers.
� Sampling by socket (5-fold cross-validation): The

data were split up by socket. Because there were 10

sockets in the sample, the training data consisted of

80% of the data set (i.e., images from 8 sockets) and

the validation data comprised images from the 2

remaining sockets. It was ensured that all 10 sockets

were included in the validation data once; that is,

sockets 1 and 2 for the first fold, sockets 3 and 4 for
the second fold, and so on for a total of 5-fold cross-

validation. CNNs were trained to detect a lesion but

not for classification of lesion size. This approach

evaluated the robustness of a CNN model to identify

lesions in anatomic locations it has not encountered

before (such as new teeth or new patients).
� Sampling by image filter (7-fold cross-validation): The

data were split up by image filter. In a first evaluation,

the training data consisted of 85.7% of the data set (i.e.,

6 of the 7 filters). This approach evaluated the robust-

ness of the CNN model to variations in image quality

(brightness, contrast, sharpness, and noise).
CNN setup, training, and evaluation
A CNN architecture was set up using the Keras (v2.1.6,

François Chollet and contributors) and TensorFlow

(v1.12.0, Google Brain Team) application program-

ming interface (Figure 3). The CNNs were trained

using the binary cross-entropy loss function, a batch

size of 16, and the AMSGrad optimizer.20 Rectified

Linear Unit (ReLU) activation was used for each layer,

and sigmoid activation was used for the final classifica-

tion. For the first sampling method, separate CNNs

were trained for a binary evaluation of the presence of

a lesion (yes/no) as well as a categorical evaluation of

lesion size (none/small/medium/large). For the sam-

pling methods involving cross-validation, because of

the increased computational workload, CNNs were

trained for lesion detection but not for classification of

lesion size. Training was performed on a GeForce

1070 GTX GPU using CUDA v9.0 and cuDNN v7.4.1

(Nvidia, Santa Clara, CA, USA) for 100 epochs (lesion

detection) and 500 epochs (lesion size classification);

additional epochs did not improve performance for

training or validation data. For the lesion detection

task, the data were stratified to ensure an equal distribu-

tion of images with and without a lesion.

Human observation
As previously reported by Brasil et al.,9 human obser-

vation was performed on the abovementioned sample



Fig. 2. Three complementary approaches for data sampling used in this study. (A) Random sampling. (B) Sampling by socket

using 5-fold cross-validation. (C) Sampling by image filter using 7-fold cross-validation. T, training; V, validation.
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of 280 radiographs by 3 oral radiologists, each with

3 years of experience in radiographic examination. A

5-point confidence scale regarding the presence of a

periapical lesion was used: (1) definitely absent; (2)

probably absent; (3) unsure; (4) probably present; (5)

definitely present. All observations were performed in

a quiet, darkened room, using a 24.1-in LCD monitor
Fig. 3. Architecture of the convolutional neural network used in th

number of trainable parameters was 5,546,200. For the second con

lesion size, the last dense layer was altered to have 4 output categori
(MDRC-2124, Barco, Kortrijk, Belgium) with a screen

resolution of 1920 £ 1200 pixels. The observers were

allowed to use a zoom tool but could not adjust bright-

ness or contrast. Observers were instructed to assess a

maximum of 20 images on a given day and to have an

interval of at least 2 days between sessions to avoid

visual fatigue and memorization. After 1 month, 30%
is study for binary evaluation of the presence of a lesion. The

volutional neural network, used for categorical evaluation of

es; the other network components were identical.
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of the periapical radiographs from each group were

reassessed under the same conditions to determine

intraobserver agreement. Interobserver agreement

between the 3 radiologists was also calculated.

Statistical analysis
The performance of the CNN in terms of lesion detec-

tion on validation data was compared with the perfor-

mance of the human observers reported in the study by

Brasil et al.9 Sensitivity (Sn), specificity (Sp), and

receiver operating characteristic (ROC) area under the

curve (AUC) values were determined for each CNN

and each observer. For Sn and Sp assessment, confi-

dence level scores for the presence of a lesion were

dichotomized. Scores of 1, 2, and 3 were equated to

’no lesion present’ and scores of 4 and 5 to ’lesion pres-

ent’. Intra- and interobserver agreement was deter-

mined by using the quadratic weighted kappa (k). The

statistical analyses were performed using Excel

(Microsoft, Redmond, WA, USA) and SPSS Statistics

22.0 (IBM, Armonk, NY, USA).

RESULTS
The computational time for CNN training was approxi-

mately 3 minutes and 1 minute 45 seconds per epoch

for lesion detection and size classification, respec-

tively.

Random sampling
The diagnostic performance in lesion detection as well

as size classification of the CNN was 100% for both

the training and validation data, implying 1.00 Sn and

Sp and an ROC-AUC of 1.00. In comparison, human

observers showed an Sn of 0.58 (ranging among the

observers from a minimum of 0.26 to a maximum of

0.86), an Sp of 0.83 (minimum 0.30, maximum 1.00),

and an AUC of 0.75 (minimum 0.63, maximum 0.88)

for lesion detection (Table II).9

Sampling by socket
The mean values of Sn, Sp, and ROC-AUC per fold

were higher than the corresponding mean values of the

radiologists (Table II). However, variable performance

was seen between the 5 folds. This is particularly
Table II. CNN performance for lesion detection vs human o

Sensitivity (min-max)

CNN-Random sampling 1.00

CNN-Sampling by socket 0.79 (0.50-1.00)

CNN-Sampling by image filter

Human observers9
0.87 (0.12-1.00)

0.58 (0.26-0.86)

For the human observers, “min-max” refers to values from the worst and bes

during cross-validation.

CNN, convolutional neural network; ROC, receiver operating characteristic;
apparent for Sn, for which one of the folds resulted in a

value of 0.50, which would be equivalent to random

guessing.

Sampling by image filter
The mean values of Sn, Sp, and ROC-AUC per fold

were also greater than the corresponding values calcu-

lated from the radiologists’ interpretations. Whereas 6

folds showed perfect performance on the validation

data (Sn and Sp of 1.00), 1 of the folds showed very

poor performance for Sn (0.12) in which almost every

validation image was classified as ’no lesion’, resulting

in a somewhat low overall Sn but a high Sp (Table II).

It was found that the fold with poor Sn comprised vali-

dation data with the noise reduction filter. As seen in

Figure 1 and Table I, this filter resulted in a consider-

ably brighter image (indicated by the high mean gray

value of the pixels) compared with all other filters.

For the trained CNNs, because of their inherent

deterministic nature, agreement between repeated pre-

dictions on validation data (i.e., equivalent to intraob-

server agreement) was k=1.00. As previously reported

by Brasil et al.,9 intra- and interobserver agreement for

the 3 radiologists ranged from k=0.69 to 0.80 and

k=0.61 to 0.67, respectively. These values represent

substantial agreement.21

DISCUSSION
The present study explored the potential of a CNN-

based assessment of periapical lesions. Although over-

all performance of trained CNN models surpassed that

of oral radiologists, the performance was shown to be

sensitive to the manner in which training and validation

data were split up.

An interesting finding was the poor performance of

the CNN on images using 1 out of 7 filters (noise

reduction). Though CNNs are believed to be highly

robust to variations in image quality, brightness, and

contrast, the variation between this filter and the other

6 greatly affected CNN performance when the filter

was not included in the training data. This is likely due

to the overall difference in brightness between the

noise reduction filter and all other filters (Table I).

Whereas adjustments of brightness and contrast are
bservers.

Specificity (min-max) ROC-AUC (min-max)

1.00 1.00

0.88 (0.77-1.00) 0.86 (0.64-1.00)

0.98 (0.88-1.00)

0.83 (0.30-1.00)

0.93 (0.48-1.00)

0.75 (0.63-0.88)

t observers. For the CNN, “min-max” refers to the worst and best fold

AUC, area under the curve
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often included during data augmentation, this was not

the case in this study due to the possibility of pixel

value saturation (i.e., gray values reaching the lower or

upper limit of the grayscale). On the other hand, the 3-

fold range in noise levels between filters shown in

Table I did not affect the CNN outcome. This can be

explained by the fact that data augmentation involved

both smoothening and addition of noise. Although the

robustness of CNNs to image filters warrants further

investigation, it can be recommended that training data

should always comprise different filters and/or repre-

sentative data augmentation. Furthermore, this study

involved 8-bit images; it remains to be seen whether

16-bit images are of benefit for CNN performance.

The design of the CNN in this study was relatively

straightforward, using a stepwise increase in layer

depth along with a commensurate decrease in resolu-

tion through max-pooling layers, ending with 3 fully

connected (dense) layers. Similar CNN architectures,

such as AlexNet22 and VGG, were used in previous

diagnostic AI studies.12,18,23,24 Other studies have used

more complex architectures, such as Inception net-

works.14,25 Though the inherent black box nature of a

CNN makes it difficult to judge the optimal CNN archi-

tecture, an overly complex or deep CNN may lead to

overfitting and, as a result, poor performance on test

data. Future research will focus on adjusting CNN

architectures and hyperparameters on the fly during

training. A post hoc analysis of CNN models with com-

plex architectures may also reveal connections or path-

ways that serve no meaningful purpose, allowing a

simplified model to be derived, but this is not yet com-

mon practice in radiologic AI research.

Previous diagnostic studies using CNNs on intraoral

radiographs focused on periapical evaluation,14,16 den-

tal caries,14,15 and periodontal assessment.12,13 Gener-

ally, high diagnostic accuracy after training was found.

A prior investigation involving CNN-based periapical

assessment showed an accuracy of 0.88 using transfer

learning, but no comparison was made with human

observers.14 Furthermore, data labeling was performed

by dentists and radiologists.14 The overall trend in

radiologic AI research is that, when an adequate

ground truth is available for data labeling, trained

CNNs can reach or surpass the diagnostic performance

of experienced clinicians. The performance of CNNs

for various tasks has already resulted in concern

regarding the potential replacement of radiologists by

AI systems.26,27 Though it is too early to predict the

eventual role of AI in diagnostic radiology, it is pivotal

to prepare for the clinical implementation of AI tools

through the development of dedicated guidelines and

ethical frameworks.10,28

This study was explorative because of the limited

sample size and the use of bovine ribs and simulated
lesions. On the other hand, the use of simulated lesions

allowed for perfect data labeling, avoiding the need for

human data annotation. Though a large sample of clini-

cal IORs could be collected and annotated by clini-

cians, this approach would imply that the CNN is only

able to reach the same diagnostic efficacy as the dentist

(s) or radiologist(s) who performed the annotation.

Because periapical lesions are often misdiagnosed on

IOR, the use of simulated lesions was preferred to

ensure that initial training did not include images with

erroneous labels. Although it is highly promising that

CNNs in our study tended to outperform human

observers after training on as few as 8 sockets, the

trained CNN model(s) yielded by this study require fur-

ther validation before considering implementation. Dif-

ferent approaches are possible, such as supervised

learning on clinical data with an accurate ground truth

or reinforcement learning.10 Furthermore, this study

involved considerable manual cropping of the radio-

graphs to pinpoint a region of interest around the apex.

It would be conceivable to automate this process by

training a separate CNN for root tip identification. The

feasibility of tooth identification and labeling has been

demonstrated in several previous studies.25,29

CONCLUSION
Taking into account the limited sample size and simu-

lated conditions, this preliminary research shows prom-

ising potential for using CNN in periapical lesion

detection. The pretrained CNN model yielded in this

study can be used for further training on larger samples

and/or clinical radiographs.
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