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A B S T R A C T   

In this study, we aimed to detect promising prognostic factors of breast cancer and interpreted the relevant 
mechanisms using an integrated bioinformatics analysis. RNA sequencing profile of breast cancer was down-
loaded from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases, which 
were combined as a group (TCGA_GTEx). GSE70947 dataset was from Gene Expression Omnibus. Blue and 
turquoise modules, respectively identified in TCGA_GTEx database and GSE70947 dataset using weighted co- 
expression network analysis (WGCNA), were both notably associated with breast cancer. By comparing genes 
in the two significant modules with differentially expressed genes (DEGs), we obtained a set of 40 shared genes, 
which were mainly enriched in chromosome segregation and mismatch repair pathway. After protein-protein 
interaction (PPI) network and overall survival analysis, two hub genes EXO1 and KIF4A were extracted from 
the set of 40 shared genes, which were up-regulated and associated with the dismal outcome of breast cancer 
patients. There was a notable negative correlation between EXO1 and KIF4A expression and age of breast cancer 
patients, whereas a positive relationship with two another clinical traits stage and tumor category was detected. 
Univariate and multivariate Cox regression analysis revealed that the two hub genes could be independent 
prognostic factors of breast cancer. Mechanistically, gene correlation analysis suggested that EXO1 and KIF4A 
exerted their oncogenic role via promoting breast cancer cell proliferation. Overall, our findings identify two 
promising individual prognostic predictors of breast cancer and pave the new way for diagnosis and therapy 
strategy of breast cancer.   

1. Introduction 

Breast cancer has led to more than two million new cases (11.6% of 
total cancer cases) and 626,000 deaths (6.6% of total cancer deaths) 
globally in 2018, becoming the second most common cancer repre-
senting the fourth largest cancer deaths [1]. About 70% patients with 
breast cancer at early stage are completely curable, whereas advanced 
breast cancer is commonly fatal [2]. With high risks of drug resistance, 
relapse and metastasis, the median overall survival of advanced breast 
cancer is extremely short at only 31.1 months after treatments [3]. 
Recently, more and more research focus on the identification of novel 
molecules crucial to breast cancer to improve the diagnosis, prognosis 
and therapy strategies of the cancer. 

Comprehensive bioinformatics analysis has emerged as a powerful 
technique for identification of cancer-related biomarkers, pathways and 

drug targets. The Cancer Genome Atlas (TCGA), Genotype-Tissue 
Expression (GTEx) and Gene Expression Omnibus (GEO) databases are 
three commonly used publicly accessible repositories, in which 
genomic, epigenomic, transcriptomic and proteomic data provide 
foundation for integrated bioinformatics analysis [4-6]. Weighted gene 
co-expression network analysis (WGCNA) is a systematical bioinfor-
matics tool to identify the modules of highly relevant genes, which has 
been widely applied in the detection of disease-related biomarkers, such 
as cancers, neurodegenerative diseases, and immune disease [7,8]. In 
this study, we performed an integrated analysis using transcriptomic 
profiles of breast cancer patients from TCGA, GTEx and GEO databases. 
WGCNA, protein-protein interaction (PPI) network and univariate and 
multivariate Cox regression analyses were conducted to identify prog-
nostic molecules in breast cancer. Moreover, gene functional annotation 
and correlation analysis were performed to explore the biological roles 
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of potential hub genes and relevant mechanisms in breast cancer. 

2. Materials and methods 

2.1. Data collection 

RNA sequencing (RNA-seq) data of breast cancer from The Cancer 
Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) da-
tabases were downloaded from UCSC Xena (http://xena.ucsc.edu/), an 
online exploration tool. We combined 1104 breast cancer samples and 
113 normal samples from TCGA with 179 normal breast samples from 
GTEx to obtain 1396 samples including 1104 breast cancer samples and 
292 normal samples, referred as a new group TCGA_GTEx database. 
Besides, GSE70947 dataset containing 148 breast cancer samples and 
148 normal samples were downloaded from Gene Expression Omnibus 
(GEO) database. Clinical data including overall survival, stage, grade, 
age, tumor node metastasis (TNM) categories and gender were down-
loaded from TCGA. 

2.2. Construction of weighted gene co-expression network 

A scale-free weighted gene co-expression network was constructed 
using “WGCNA” package in R to mine co-expressed genes and modules 
[9]. First, the data were clustered to detect the outliers. Second, the 
thresholding power β was set to 3. In this way, the network was closely 
scale-free. And the hierarchical clustering tree was constructed to detect 
gene modules. Third, gene modules were detected by average-linkage 
hierarchical clustering according to a topological overlap matrix 
(TOM)-based dissimilarity measure. MEDissThres was set to 0.25 to 
automatically merge the similar modules. Finally, Pearson’s correlation 
coefficient was calculated to evaluate the correlation between the 
modules and clinical features. 

2.3. Screening of differentially expressed genes (DEGs) in breast cancer 

The edgeR (Empirical Analysis of Digital Gene Expression Data in R) 
package in R was utilized to screen DEGs in response to breast cancer. 

DEGs must meet the criterion: the FDR value < 0.05 and |logFC| > 1. 

2.4. Gene functional annotation analysis 

To explore the underlying mechanisms of interested genes, the 
“clusterProfiler” package in R was downloaded to perform gene 
ontology (GO) including gene molecular function (MF), biological pro-
cess (BP), cellular component (CC) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis. 

2.5. Analysis of protein-protein interaction (PPI) 

The Search Tool for the Retrieval of Interacting Genes (STRING) 
database (https://string-db.org/) was utilized to analyze the interaction 
between proteins with the confidence score > 0.7. Cytoscape plugin 
cytoHubba (version 0.1) was used to construct PPI network. Top 10 
genes were selected as the candidates of hub genes according to Maximal 
Clique Centrality (MCC) algorithm. 

2.6. Overall survival (OS) analysis 

The samples with survival information were divided into two groups 
based on the median expression of hub gene. Then “survival” package in 
R was downloaded to evaluate the correlation between the hub genes 
and OS. Besides, prognostic value of hub genes was analyzed by uni-
variate and multivariate Cox regression analysis. P < 0.05 was seen as 
significant. 

2.7. Analysis of correlation between clinical features and the expression 
of hub genes 

The “cor” package in R was downloaded to analyze the correlation 
between clinical features and the expression of hub genes. In the present 
study, clinical features including age, stage, TNM categories and gender 
were downloaded from TCGA database. P < 0.05 was seen as significant. 

Fig. 1. Workflow of research path used in the present study.  
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2.8. Gene correlation analysis 

To explore the possible mechanism of how hub genes regulated the 
progression of breast cancer, we evaluated the correlation between the 
expression of hub genes and proliferation markers including CCNA2, 
MKI67 and PCNA using Gene Expression Profiling Interactive Analysis 

(GEPIA, http://gepia.cancer-pku.cn/index.html) with TCGA database. 
P < 0.05 was seen as significant. 

Fig. 2. Identification of significant gene modules. (A) 
When β was set at 3, scale-free network was con-
structed in TCGA_GTEx database. (B) Clustering 
dendrograms of genes based on dissimilarity topo-
logical overlap and module colors in TCGA_GTEx 
database. (C) Heatmap showing the correlation of 
gene modules with breast cancer samples or normal 
samples in TCGA_GTEx database. (D) Scatter plots of 
gene significance relative to module membership in 
TCGA_GTEx database (D). (E) When β was set at 3, 
scale-free network was constructed in GSE70947 
dataset. (F) Clustering dendrograms of genes in 
GSE70947 dataset. (G) Heatmap in GSE70947 data-
set. (H) Scatter plots in GSE70947 dataset. P < 0.05. 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.)   
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3. Results 

3.1. Identification of significant gene modules 

Fig. 1 displayed the research path in the present study. We first 
constructed a WGCNA network with breast samples data from the 
TCGA_GTEx database, and pickSoftThreshold function in WGCNA was 
used to calculate soft thresholding power β [10]. β was set at 3 with scale 
independence at 0.9 and relative high mean connectivity (Fig. 2A). 
Seven co-expressed gene modules were clustered, among which the blue 
module (620 genes) was the one most relevant to breast cancer (R =
0.83, P ≪ 0.05, Fig. 2B and C). Importantly, there was a significant 
correlation between the blue module and module-relevant genes (R =
0.94, Fig. 2D, P ≪ 0.05). 

Moreover, the same analysis was performed with GSE70947 dataset. 
When β = 3, the scale-free network was constructed (Fig. 2E). Six 
modules with co-expressed genes were clustered (Fig. 2F and G). The 
strongest correlation was found between the turquoise module (2284 
genes) and breast cancer (R = 0.83, P ≪ 0.05, Fig. 2G). Besides, Fig. 2H 
revealed that genes involved in turquoise module was strongly associ-
ated with this module (R = 0.91, P ≪ 0.05). 

3.2. The analysis of DEGs 

Next, we screened the DEGs in combined databases and GSE70947 
dataset with the “edgeR” package. In TCGA_GTEx database, the volcano 
plot displayed that 3308 DEGs including 1523 up-regulated and 1785 
down-regulated genes were obtained by applying the FDR value < 0.05 
and |logFC| > 1 criterion (Fig. 3A). Meanwhile, in GSE70947 dataset, 
1680 DEGs including 832 up-regulated and 848 down-regulated genes 
were obtained with the same criterion (Fig. 3B). Following, we 
compared the co-expressed genes in blue and turquoise modules with 
the DEGs, then a set of 40 shared genes were obtained (Fig. 3C, Sup-
plementary Table 1). 

3.3. Gene ontology (GO) and pathway enrichment analysis 

To interpret the possible biological roles of the 40 shared genes, we 
subjected them to GO and KEGG analysis (Fig. 4A and B). The 40 
common genes were enriched in 375 GO terms totally. As for biological 
process (BP), the genes were mainly enriched in chromosome segrega-
tion and mitotic cytokinesis (Fig. 4A). In regard to cellular component 
(CC), condensed chromosome and midbody were mainly enriched 
(Fig. 4A). Regarding molecular function (MF), the genes were mainly 

Fig. 3. Analysis of differentially expressed genes (DEGs). (A) Volcano plot of gene expression in TCGA_GTEx database. (B) Volcano plot of gene expression in 
GSE70947 dataset. (C) Venn diagram displaying the number of genes in different groups. GEO_diff, DEGs in GSE70947 dataset; TCGA_blue, genes of blue module in 
TCGA_GTEx database; TCGA_diff, DEGs in TCGA_GTEx database; GEO_turquoise, genes of turquoise module in GSE70947 dataset. 

Fig. 4. Gene functional annotation of the set of 40 shared genes. (A) GO analysis of the 40 shared genes including biological process (BP), cellular component (CC) 
and molecular function (MF). (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the 40 shared genes. P < 0.05. 
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enriched in microtubule binding and ATPase activity (Fig. 4A). In 
addition, the 40 common genes were enriched in 3 KEGG pathways, 
including platinum drug resistance, IL-17 signaling pathway and 
mismatch repair (Fig. 4B, P < 0.05). As most of the major enriched GO 
terms and KEGG pathways were involved in cell proliferation [11-13], 
we hypothesized that the set of 40 shared genes impacted the progres-
sion of breast cancer via regulating this biological behavior of cancer 
cell. 

3.4. Identification of hub genes 

To extract hub genes from the set of 40 common genes tightly 
associated with the progression of breast cancer, we performed the 
following integrated bioinformatics analysis. First, the 40-gene set were 
subjected to String analysis, and the PPI network was constructed with 
Cytoscape as shown in Fig. 5A. 23 nodes and 147 edges were obtained 
with confidence score ≥ 0.7. CytoHubba was used to evaluate the 
importance of nodes or subnetworks with Maximal Clique Centrality 
(MCC) algorithm [14]. Here, top ten genes were selected as candidates 

of hub genes based on MCC algorithm. Fig. 5A showed that the 10 
candidate hub genes were CENPA, TOP2A, NEK2, EXO1, BIRC5, 
KIF20A, KIF4A, KIF23, CEP55 and CENPF. 

Second, to confirm the reliability of the 10 aforementioned genes, we 
investigated the expression of them in breast cancer samples. As for 
TCGA_GTEx database, the 10 potential hub genes were all highly 
expressed in breast cancer tissues (n = 1104) compared to the normal 
tissues (n = 292, Fig. 5B, P < 0.05). And the same results were obtained 
in GSE70947 (Fig. 5C, P < 0.05). 

Finally, Kaplan Meier (KM) curves were plotted to evaluate the 
relationship of the expression of 10 potential hub genes with the OS of 
breast cancer patients. Fig. 5D–F revealed that there was a significant 
correlation between the expression of three genes including EXO1, 
KIF4A and CENPA with the OS of breast cancer patients (P < 0.05). 
Patients with high expression of EXO1 or KIF4A displayed notably 
shorter survival time than those with low expression of EXO1 or KIF4A 
(Fig. 5D and E). However, KM curves for CENPA high- and low- 
expression groups overlapped and interacted with each other in the 
last potion of KM curves (Fig. 5F). In addition, no notable relationship of 

Fig. 5. Identification of hub genes. (A) PPI network analysis. 23 nodes and 147 edges were obtained with confidence score ≥0.7 (left). Top ten genes were selected as 
candidate hub genes based on MCC algorithm (right). (B) Expression of the 10 potential hub genes in breast cancer tissues and normal samples in TCGA_GTEx 
database. (C) Expression of the 10 potential hub genes in breast cancer tissues and normal samples in GSE70947 dataset. (D) Overall survival plot in response to EXO1 
expression. (E) Overall survival plot in response to KIF4A expression. (E) Overall survival plot in response to CENPA expression. P < 0.05. 
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the other potential hub genes with the outcome of breast cancer patients 
was observed (Supplementary Fig. 1A–G, P > 0.05). Therefore, EXO1 
and KIF4A were selected as hub genes for further analysis. 

3.5. Analysis of prognostic value of hub genes 

In order to investigate the roles of two hub genes in the progression 
of breast cancer, we analyzed the correlation of clinical features 
including age, stage, TNM categories with the expression of EXO1 and 
KIF4A. As shown in Fig. 6A, the younger patients (age < 60 years old) 
displayed higher EXO1 expression level than older patients (age ≥60 
years old, P = 2.5E− 05); The expression of EXO1 was obviously elevated 
in stages II and III compared to stage I (Fig. 6B, P < 0.05); As for T 
category, patients in T2, T3 and T4 exhibited significant higher EXO1 
expression than those in T1 (Fig. 6C, P < 0.05). Whereas, no significant 
correlations were found between EXO1 expression and N and M cate-
gories (Supplementary Fig. 2A and B, P > 0.05). In addition, similar 

results were obtained for KIF4A. There was a notable elevation of KIF4A 
in younger patients (age < 60 years old) compared to older patients (age 
≥60 years old, Fig. 6D, P = 2.5E− 05); Patients in stages II, III and IV 
showed higher KIF4A expression than those in stage I (Fig. 6E, P < 0.05); 
KIF4A expression in T2, T3 and T4 was higher than that in T1 (Fig. 6F, P 
< 0.05). Similarly, there was no significant change of KIF4A expression 
in different N and M status (Supplementary Fig. 2C and D, P > 0.05). 
Therefore, the expression of EXO1 and KIF4A was negatively correlated 
with age but positively correlated with stages and T category of breast 
cancer. 

Furthermore, to confirm the prognostic independence of the two hub 
genes, clinical features including stages, TNM categories, age, gender 
and two hub genes were systematically analyzed (Fig. 6G–I). Univariate 
Cox regression analysis revealed that there was a significant correlation 
between the prognosis of breast cancer patients and the expression of 
EXO1 and KIF4A, age, stage, and TNM categories (Fig. 6G, P < 0.05). 
The corresponding multivariate Cox regression analysis revealed that 

Fig. 6. Analysis of prognostic value of hub genes. (A–C) The expression of EXO1 in response to age (A), stages (B) and T category (C) of breast cancer patients. (D–F) 
the expression of KIF4A in response to age (D), stages (E) and T category (F) of breast cancer patients. (G) Univariate Cox analysis of the correlation of clinical 
features including stages, TNM categories, age, gender and two hub genes with the survival of breast cancer patients. (H) Multivariate Cox analysis of the correlation 
of clinical features including stages, TNM categories, age, gender and EXO1 expression with the survival of breast cancer patients. (I) Multivariate Cox analysis of the 
correlation of clinical features including stages, TNM categories, age, gender and KIF4A expression with the survival of breast cancer patients. P < 0.05. 
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the expression of EXO1 and KIF4A, stage, M category and age were 
independently associated with the prognosis of breast cancer (Fig. 6H 
and I). Collectively, EXO1 and KIF4A were hub genes and associated 
with the prognosis of breast cancer patients independently. 

3.6. Correlation of hub genes with proliferation markers 

Next, according to the result of gene functional annotation, we 
further characterized the role of the two hub genes in breast cancer cell 
proliferation to explore the underlying mechanism of how EXO1 and 
KIF4A regulated the progression of breast cancer. In the present study, 
we selected three indexes of cell proliferation including CCNA2, MKI67 
and PCNA, which were commonly used as proliferation markers [15- 
17]. The correlation of EXO1 and KIF4A expression with CCNA2, MKI67 
and PCNA was analyzed using GEPIA. Fig. 7 A revealed that the 
expression of EXO1 was positively correlated with CCNA2 (R = 0.72, P 
< 0.001), MKI67 (R = 0.68, P < 0.001) and PCNA (R = 0.55, P < 0.001). 
And similar results were obtained for KIF4A (Fig. 7B, P < 0.001). 
Therefore, EXO1 and KIF4A play oncogenic role possibly via promoting 
cell proliferation in breast cancer. 

4. Discussion 

In our study, we detected 7 modules in TCGA_GTEx database and 6 
modules in GSE70947 dataset, of which blue and turquoise were the 
most highly correlated with breast cancer. By comparing the DEGs with 
co-expressed genes in blue and turquoise modules, we obtained a set of 
40 shared genes in the intersection of Venn diagram. GO analysis 
revealed that the 40 genes were mainly enriched in chromosome 
segregation, mitotic cytokinesis, condensed chromosome, midbody, 
microtubule binding and ATPase activity. Besides, the 40 genes were 

mainly enriched in platinum drug resistance, IL-17 signaling pathway 
and mismatch repair. There are various studies about the critical roles of 
these GO terms and pathways in breast cancer. For example, Huang et al. 
found that PICH, a DNA-dependent ATPase, could promote proliferation 
of triple-negative breast cancer cells (TNBC) via ensuring the segrega-
tion of chromosomes [18]. Verma et al. used spectrofluorometry and 
immunofluorescence imaging to show that 9-PAN, a noscapine 
analogue, exerted antiproliferative role in TNBC via binding to and then 
damaging microtubule network [19]. Drug resistance of cancers is re-
ported to be associated with the proliferation of cancer stem cells [20]. 
Kostrhunova et al. synthesized a platinum pro-drug that could figure out 
drug resistance and inhibit proliferation of HER2-positive breast cancer 
cells [21]. Combined with these studies, we hypothesized that the 40 
genes were involved in breast cancer cell proliferation. 

PPI network analysis of the set of 40 genes extracted 10 potential hub 
genes which were all up-regulated in breast cancer tissues. After OS 
analysis, we detected two hub genes EXO1 and KIF4A that negatively 
associated with OS of breast cancer patients. In addition, there was an 
elevation of EXO1 and KIF4A expression in patients under 60 years old 
compared to the patients over 60. The expression of EXO1 and KIF4A 
were both positively correlated with stage and T category in breast 
cancer. However, no significant relationship between EXO1 and KIF4A 
expression and N and M categories were detected. Univariate and 
multivariate Cox regression analysis revealed that EXO1 and KIF4A 
could be individual predictors of the prognosis of breast cancer. By gene 
correlation analysis using GEPIA, we found that the expression of EXO1 
and KIF4A was positively correlated with three indexes of cell prolif-
eration including CCNA2, MKI67 and PCNA. 

Exonuclease 1 (EXO1) was identified as 5′ to 3′ nuclease and plays 
important roles in DNA replication, mismatch repair and recombination 
[22]. Loss of EXO1 can cause instability of genome and even result in 

Fig. 7. Correlation of hub genes with proliferation markers. (A–C) The correlation between EXO1 expression and the three indexes of cell proliferation including 
CCNA2 (A), MKI67 (B) and PCNA (C) was analyzed using Gene Expression Profiling Interactive Analysis (GEPIA). (D–F) The correlation between KIF4A expression 
and the three indexes of cell proliferation including CCNA2 (D), MKI67 (E) and PCNA (F) was analyzed using GEPIA. P < 0.01. 
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defect mismatch repair and meiosis [23]. Consistent with our results, 
many studies have reported that up-regulation of EXO1 is involved in 
the progression and prognosis of various cancers, including breast can-
cer. Sousa et al. demonstrated that EXO1 was highly expressed and 
independently associated with the poor prognosis of glioma patients 
[24]. And the same role of EXO1 was detected in hepatocellular carci-
noma (HCC) [25]. Besides, Dai et al. revealed that loss of EXO1 inhibited 
HCC cell proliferation via impaired cell cycle [25]. It is worth noting that 
EXO1 is reported to be aberrantly highly expressed in breast cancer. For 
example, EXO1 was up-regulated in ductal and invasive breast carci-
noma tissues and mice models [26]. By integrated bioinformatics anal-
ysis, EXO1 was screened out to be up-regulated and hypomethylated and 
could be an independent prognostic factor of breast cancer [27]. 

Kinesin Family Member 4A (KIF4A), a member of kinesin super-
family, is a microtubule-dependent motor protein which participates in 
the condensation of chromosome and then plays a role in cell division 
[28]. Abnormal expression of KIF4A was reported in several cancers, 
such as gastric [29], lung [30], cervical [31] and breast cancers [32]. In 
a study of Matsumoto et al., KIF4A was highly expressed in colorectal 
cancer and loss of KIF4A inhibited cell proliferation [33]. Li et al. 
screened out 16 up-regulated Kinesin genes including KIF4A, which was 
experimentally validated in breast cancer tissues and KIF4A was asso-
ciated with the dismal survival of breast cancer patients [34]. Besides, 
Zou et al. demonstrated that KIF4A could be induced by estrogen and the 
high level of KIF4A was correlated with the shorter relapse-free survival 
of breast cancer patients [32]. Moreover, knockdown of KIF4A 
dramatically hindered cell proliferation and triggered cell apoptosis 
[32]. All the aforementioned studies suggest oncogenic roles of EXO1 
and KIF4A, which strongly supported our findings. Of note, our studies 
firstly explored the association of EXO1 and KIF4A expression with other 
clinical characteristics of breast cancer patients including stage, grade, 
age and TNM categories. Combining our results with these previous 
investigations, we infer that EXO1 and KIF4A promote the progression 
of breast cancer possibly via triggering cancer cell proliferation, which 
awaits experimentally confirmed in vitro and in vivo. 

5. Conclusion 

In summary, we utilized integrated bioinformatics analysis to iden-
tify novel predictors for progression and prognosis of breast cancer. Two 
hub genes EXO1 and KIF4A were up-regulated and associated with the 
poor prognosis of breast cancer patients. Besides, there was a correlation 
between EXO1 and KIF4A expression and clinical traits including age, 
stage and T category of breast cancer patients. Moreover, EXO1 and 
KIF4A could be individual prognostic factors for breast cancer. There-
fore, our findings interpreted biological function of EXO1 and KIF4A in 
breast cancer and provide new idea for diagnosis and therapy strategy of 
breast cancer patients. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.anndiagpath.2020.151675. 
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