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Utility of a 3-dimensionally printed color-coded
bone model to visualize impinging osteophytes
for arthroscopic d�ebridement arthroplasty in
elbow osteoarthritis
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Background: The identification and precise removal of bony impingement lesions during arthroscopic d�ebridement arthroplasty for
elbow osteoarthritis require a high level of experience and surgical skill. We have developed a new technique to identify impinging
osteophytes on a computer display by simulating elbow motion using the multiple positions of 3-dimensional (3D) elbow models created
from computed tomography data. Moreover, an actual color-coded 3D model indicating the impinging osteophytes was created with a
3D printer and was used as an intraoperative reference tool. This study aimed to verify the efficacy of these new technologies in arthro-
scopic d�ebridement for elbow osteoarthritis.
Methods: We retrospectively studied 16 patients treated with arthroscopic d�ebridement for elbow osteoarthritis after a preoperative
computer simulation. Patients who underwent surgery with only the preoperative simulation were assigned to group 1 (n ¼ 8), whereas
those on whom we operated using a color-coded 3D bone model created from the preoperative simulation were assigned to group 2 (n ¼
8). Elbow extension and flexion range of motion (ROM), the Mayo Elbow Performance Score (MEPS), and the severity of osteoarthritis
were compared between the groups.
Results: Although preoperative elbow flexion and MEPS values were not significantly different between the groups, preoperative exten-
sion was significantly more restricted in group 2 than in group 1 (P ¼ .0131). Group 2 tended to include more severe cases according to
the Hastings-Rettig classification (P ¼ .0693). ROM and MEPS values were improved in all cases. No significant differences in post-
operative ROM or MEPS values were observed between the groups. There were no significant differences in the improvement in ROM
or MEPS values between the 2 groups.
Conclusions: The use of preoperative simulation and a color-coded bone model could help to achieve as good postoperative ROM and
MEPS values for advanced elbow osteoarthritis as those for early and intermediate stages.
Level of evidence: Level III; Retrospective Cohort Comparison; Treatment Study
� 2021 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.
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For symptomatic osteoarthritis of the elbow joint with
restricted range of motion (ROM) and pain, d�ebridement
arthroplasty, which includes excision of impinging osteo-
phytes, synovectomy, and capsular release, has been
performed.3,18,28,32,33 Recently, the arthroscopic technique
has become popular owing to its lower invasiveness
compared with conventional open arthroplasty.1,2,5,10-12,20,31

However, the limited arthroscopic field of view coupled with
the complex elbow anatomy and the narrow intracapsular
space due to capsular contracture and synovial fibrosismakes
the operation difficult, such that it requires a high level of
experience and surgical skill. The arthroscopic technique
depends mostly on the surgeon’s ability to recognize the
impinging osteophytes that cause restricted joint motion.
Furthermore, an unnecessary amount of resection could lead
to additional invasiveness and, even more important, insta-
bility of the elbow.9

For these reasons, we have developed a new technique to
identify and visualize the impinging osteophytes on a
computer display by simulating the flexion-extension mo-
tion of the elbow joint with the use of 3-dimensional (3D)
virtual bone models created from computed tomography
(CT) data16 and an in vivo 3D kinematic technique enabled
by the recent image analysis.6,7,15 Using this technique, a
surgeon can resect the osteophytes during the arthroscopic
procedure while referring to the images on the display
generated by the preoperative simulation but still relying on
his or her subjective estimation intraoperatively. Thus, a
reference guide to reflect the preoperative simulation in the
actual surgical procedure would be of great help for sur-
geons to perform the operation as accurately as it was
planned. We have also used a 3D printer, which is a tech-
nology that has recently been applied in some areas of
surgery. A recently developed 3D printer can create a real-
sized model of a human organ that is color coded for each
anatomic part, using several types of material of various
colors. With this function of the 3D printer, in combination
with a preoperative simulation, we can produce a bone
model showing the impinging osteophytes to be removed in
a different color from the other osteophytes. During the
actual surgical procedure, the surgeon should be able to
remove the impinging osteophytes more easily, more effi-
ciently, and less invasively by using the color-coded 3D
model as a reference. In this study, we investigated the
feasibility and efficacy of the color-coded 3D resin bone
model as an intraoperative reference tool for arthroscopic
arthroplasty for osteoarthritis of the elbow joint.
Materials and methods

This was a retrospective case-control study on arthroscopic
d�ebridement using a color-coded 3D resin bone model for marking
impinging osteophytes for elbow osteoarthritis. Sixteen patients
who underwent arthroscopic d�ebridement for elbow osteoarthritis
after a preoperative computer simulation between February 2010
and October 2018 participated in the investigation. We categorized
the 16 patients into 2 groups. Patients who underwent surgery with
only the preoperative simulation were assigned to group 1 (n ¼ 8),
whereas those on whom we operated using a color-coded 3D bone
model created from the preoperative simulation were assigned to
group 2 (n ¼ 8). Our institution used only the preoperative
simulation until July 2014; the additional color-coded 3D bone
model has been used since August 2014.

CT data on the elbow joint were obtained in 3 different posi-
tions (maximum flexion, 90�, and maximum extension) using a
low–radiation dose protocol (slice thickness, 1.25 mm; scan time,
0.5 seconds; scan pitch, 0.562:1; tube current, 10-30 mA; tube
voltage, 120 kV) (LightSpeed Ultra 16; General Electric, Wau-
kesha, WI, USA) while the forearm was maintained in neutral
rotation.15 Digital data (Digital Imaging and Communications in
Medicine format) were sent to a computer (Precision T5500; Dell,
Round Rock, TX, USA), and 3D models of the humerus, ulna, and
radius were created using a dedicated computer program (Bone
Viewer; Orthree, Osaka, Japan) (Fig. 1, A). The 3D models of the
humerus at various elbow flexion angles were semiautomatically
superimposed on the simulation software using a 3D surface
registration technique (Bone Simulator; Orthree), and the relative
positions of the ulnae were determined. A previous study evalu-
ated the accuracy of the 3D registration technique: The rotation
error was 0.38� � 0.62�, and the translation error was 0.56 � 0.06
mm.21 According to the previously reported methods, we calcu-
lated 2 rotational axes of the elbow using the screw-displacement
axis technique.6,7,15,16 The axis from 90� to maximum flexion was
defined as the flexion axis, whereas that from 90� to maximum
extension was defined as the extension axis. We rotated the
forearm bones around the flexion axis until the elbow flexed 140�

and rotated them around the extension axis until the elbow
extended 0�. The overlapping regions between the humerus and
the forearm bones at 140� of flexion and at 0� of extension were
considered impinging osteophytes (Fig. 1, B). The impinging
osteophytes were then quantified and visualized 3-dimensionally
on the computer (Fig. 2).16 It took about 90 minutes to create
3D models and identify the impinging lesions on the computer
simulation. The operator transferred the 3D data to a 3D printer
(Connex 3 Objet 350; Stratasys, Eden Prairie, MN, USA) and
prepared modeling (within 10 minutes). The color-coded 3D bone
model was shaped automatically (Fig. 3). The bony structures that
did not influence elbow ROM were composed of translucent
yellow acrylic resin (Objet FullCure 720; Stratasys) whereas the
impinging osteophytes were composed of solid white acrylic
compounds (Objet VeroWhitePlus RGD 835; Stratasys) so that
one could easily recognize the bony parts to remove during sur-
gery. The lamination thickness of the 3D printer was 0.03 mm.
The cost of a color-coded bone model was about $500.

Three hand surgeons with sufficient surgical experience con-
ducted arthroscopic d�ebridement in all cases. Under general
anesthesia, the patient was placed in the prone position and the
upper arm was kept on a holder with the shoulder abducted 90�,
the elbow flexed 90�, and the forearm dropped downward. After
the elbow had been instilled with 20 to 30 mL of saline solution,
we created the anteromedial portal and then the anterolateral
portal. We performed d�ebridement arthroplasty on the anterior
side of the elbow joint prior to d�ebriding the posterior side. We
then created the posterior, posterolateral, and direct lateral portals
for the posterior side of the elbow joint. After removing the



Figure 1 Preoperative simulation to identify impinging lesion. (A) Three-dimensional bone model of humerus, ulna, and radius in
maximum flexion, 90� of flexion, and maximum extension. (B) Sagittal cross-sectional view of elbow simulating 140� of flexion around the
flexion axis and 0� of extension around the extension axis. The overlapping region (red) was visualized as the impinging lesion.

Figure 2 Three-dimensional computer model of elbow, including impinging osteophyte (red). (A) Posterior view of elbow. (B) Anterior,
posterior, and medial views of humerus. (C) Anterior, posterior, and medial views of ulna and radius.
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Figure 3 Color-coded bone model of elbow, including impinging osteophyte (white). (A) Posterior view of elbow. (B) Anterior, posterior,
and lateral views of humerus. (C) Anterior, posterior, and medial views of ulna and radius.
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proliferated synovium, synovial fibrosis, and loose bodies, we
resected the impinging osteophytes while referring to the simu-
lation results displayed on the computer monitor (group 1) or
using the color-coded 3D bone model that was sterilized and
brought into the surgical field (group 2). In patients who had ulnar
nerve symptoms or severe preoperative ROM restriction (exten-
sion < �60� and flexion < 100�), ulnar nerve transposition and
release of the posterior oblique ligament of the medial collateral
ligament were added to the arthroscopic procedure (5 cases in
group 1 and 4 cases in group 2).3 Mild ROM exercises began on 1
day postoperatively under the supervision of a physiotherapist.
Rehabilitation continued until the ROM of the elbow reached a
plateau.

We obtained clinical data from the medical records,
including operation time; extension and flexion ROM before the
operation, at the operation, and at the 1-year follow-up evalu-
ation; and the Mayo Elbow Performance Score (MEPS) preop-
eratively and at the 1-year follow-up evaluation. The surgeons’
opinion toward the usefulness of the color-coded model was
rated using 5 grades: 1, very useful; 2, useful; 3, neutral; 4, less
useful; and 5, not useful. The preoperative severity of osteoar-
thritis was assessed by the Hastings-Rettig classification using a
plain radiograph.27 The measurements and scores were
compared between the groups.
Statistical analysis

Normality was tested using the Shapiro-Wilk test for continuous
variables. We used the Fisher exact test for the analysis of cate-
gorical variables. For data with a normal distribution, we used a
paired t test to compare preoperative with postoperative data or an
unpaired t test to compare group 1 with group 2, and the data are
presented as average � standard deviation. When the data were
not normally distributed, the Wilcoxon signed rank test or Mann-
Whitney U test was used, and data are shown as median (inter-
quartile range [IQR]). P < .05 was considered statistically
significant.
Results

The details of the preoperative and postoperative patient
data are shown in Tables I and II, respectively. The age at
surgery was significantly higher in group 2 than in group 1
(P ¼ .0208). Although preoperative elbow flexion and
MEPS values were not significantly different between the
groups, preoperative extension was significantly more



Table I Preoperative data in group 1 (computer simulation
only) vs. group 2 (computer simulation plus color-coded
model)

Preoperative data Group 1 Group 2 P value

Sex .4667*

Male 8 6
Female 0 2

Affected side >.9999*

Dominant 7 7
Nondominant 1 1

Age, median
(IQR), yr

47 (31-64) 71 (64-73) .0208y

Hastings-Rettig
classification

.0693y

I 4 0
II 3 2
III 1 3

ROM, mean � SD, �

Flexion 114 � 14 118 � 13 .6486z

Extension �19 � 6 �29 � 7 .0131z

MEPS, median
(IQR)

67.5
(60.0-71.3)

65.0
(58.8-70.0)

.5943y

IQR, interquartile range; ROM, range of motion; SD, standard devia-

tion; MEPS, Mayo Elbow Performance Score.
* Fisher exact test.
y Mann-Whitney U test.
z Unpaired t test.
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restricted in group 2 than in group 1 (P ¼ .0131). Group 2
tended to include more severe cases according to the
Hastings-Rettig classification (P ¼ .0693). There was no
significant difference in the other preoperative background
data.

We did not find significant differences in the operation
time and ROM at operation between groups 1 and 2. The
Table II Postoperative results in group 1 (computer simulation onl

Preoperative data Group 1

Operation time, median (IQR), min 138 (127-155)
ROM at operation, mean � SD, �

Flexion 131 � 9
Extension �5 � 7

ROM at 1 yr, mean � SD, �

Flexion 127 � 8
Extension �13 � 13

MEPS, median (IQR) 100.0 (85.0-100.
D ROM, mean � SD, �

Flexion 13 � 10
Extension 6 � 12

D MEPS, median (IQR) 27.5 (23.8-30.0)

IQR, interquartile range; ROM, range of motion; SD, standard deviation; ME

postoperatively.
* Mann-Whitney U test.
y Unpaired t test.
follow-up term in group 1 and group 2 was 360 � 60 days
and 335 � 90 days, respectively (P ¼ .5978). ROM and
MEPS values at 1 year showed improvement in all cases. In
group 1, mean extension improved from �19� � 6� preop-
eratively to �13� � 13� postoperatively (P ¼ .1803) and
mean flexion significantly improved from 114� � 14� pre-
operatively to 127� � 8� postoperatively (P ¼ .0095). In
group 2, mean extension and mean flexion significantly
improved from �29� � 7� preoperatively to �13� � 10�

postoperatively (P ¼ .0001) and from 118� � 13� preoper-
atively to 129� � 9� postoperatively (P ¼ .014), respectively.
No significant difference in postoperative ROM was
observed between the groups. The improvement in extension
in group 2 (16� � 6�) tended to be greater than that in group
1 (6� � 12�, P ¼ .0633). The MEPS significantly improved
from 67.5 (IQR, 60.0-71.3) preoperatively to 100 (IQR, 85.0-
100.0) postoperatively in group 1 (P ¼ .0009) and from 65.0
(IQR, 58.8-70.0) preoperatively to 97.5 (IQR, 85.0-100.0)
postoperatively in group 2 (P ¼ .0008). There were no sig-
nificant differences in ROM or MEPS improvement between
the 2 groups. The usefulness of the color-coded model was
rated 1 in 4 cases and 2 in 4 cases. No cases were rated 3-5.
Cases with poor preoperative ROM (extension-flexion arc <
90�) were rated as 1 by the surgeons.
Discussion

Osteoarthritis of the elbow often develops in middle-aged
physical laborers and athletes.30 Typical symptoms are pain
at the endpoints of movement, restricted elbow ROM, and a
catching and locking sensation.3,18 Radiographically,
osteophyte formation and loose bodies are typically
observed at the coronoid and olecranon fossae whereas the
ulnohumeral joint is relatively preserved.4,27 Therefore,
y) vs. group 2 (computer simulation plus color-coded model)

Group 2 P value

141 (133-169) .5640)

128 � 4 .3820y

�8 � 11 .5120y

129 � 9 .5848y

�13 � 10 >.9999y

0) 97.5 (85.0-100.0) .9530)

12 � 10 .9039y

16 � 6 .0633y

30.0 (27.5-35.0) .2775)

PS, Mayo Elbow Performance Score; D, change from preoperatively to
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d�ebridement arthroplasty that involves synovectomy,
capsular release, loose body removal, and resection of
impinging osteophytes has been performed for mild and
moderate elbow osteoarthritis with favorable clinical out-
comes in terms of pain relief and ROM
improvement.3,18,28,32,33 D�ebridement arthroplasty, which
used to be performed by a conventional open method, has
increasingly been performed less invasively using
arthroscopy.1,2,5,24

Before performing an arthroscopic elbow d�ebridement,
the surgeon estimates which osteophytes to remove based on
observing them on plain radiographs and CT images. During
the actual operation, he or she removes the impinging
osteophytes while confirming intra-articular impingement
during elbow flexion and extension. However, it is not easy
to remove all the impinging osteophytes while minimizing
unnecessary resection, which can lead to longer surgical
times, swelling, invasiveness, and possible joint instability.
Thus, considerable surgical skill and experience are required
to identify and precisely remove the impinging osteophytes
intraoperatively. Hence, we developed a preoperative com-
puter simulation technique to identify impinging osteophytes
that require removal to achieve nearly normal elbow ROM.16

Our procedure simulates in vivo flexion-extension elbow
motion with the use of 3D bone models on a computer to
help surgeons identify impinging osteophytes and enable
their efficient d�ebridement. Furthermore, we introduced a
color-coded 3D bone model as a reference, which helps
surgeons to conduct surgery more easily by indicating the
part to remove with a specific color.

A color-coded 3D model could assist 3D surgical
manipulation by intraoperatively presenting the part to
remove. In the field of orthopedic surgery, a single-colored
3-dimensionally printed model has been used as an opera-
tive planning and intraoperative reference
tool.14,17,19,22,23,25,35 In the field of abdominal surgery,
colored 3D printing technology has been used to confirm
the position of tumors and vascular anatomy during surgical
procedures such as liver resection and transplantation.8,26,34

Therefore, we focused on the color-coded 3D bone model,
which can express the region of interest using
multiple colors for arthroscopic d�ebridement arthroplasty
of the elbow joint. By observing and touching the
impinging lesion as shown in a specific color in a life-sized
3D model, it is much easier to identify the impinging
lesion.

In this study, there was no significant difference in
operation time between group 1 and group 2. We expected
a reduction in the operation time using the color-coded
bone model; however, there were other factors besides the
resection of osteophytes, such as the resection of fibrous
tissue and capsulotomy in cases with severe elbow con-
tractures, as well as additional surgery for ulnar nerve
disorders. Although the ROM and MEPS improved in all
cases, there was no significant difference between groups 1
and 2 in terms of postoperative results. However, group 2
included more severe cases of extension restriction and
more severe cases of osteoarthritis according to the
Hastings-Rettig classification than group 1 and included 2
cases with a preoperative elbow arc < 80�, which has been
reported to be a poor prognostic factor.13 A systematic re-
view of the clinical results of arthroscopic d�ebridement for
elbow osteoarthritis (9 articles; 209 patients; mean age,
45.7 � 7.1 years) showed improvement in elbow extension
(from �23.4� to �10.7�), flexion (from 115.9� to 128.7�),
and the MEPS (from 60.7 to 84.6).29 Our study showed
equivalent ROM and higher MEPS values compared with
the findings of this systematic review. Thus, a color-coded
bone model could help to achieve as good a postoperative
ROM and MEPS for advanced elbow osteoarthritis as those
for early and intermediate stages.

This study has some limitations. First, it was retro-
spective; thus, the patients’ backgrounds differed regarding
age, preoperative restricted extension, and severity of
osteoarthritis. Second, the sample size was small for the 3
surgeons, which might result in variability in clinical out-
comes. However, the results of this study suggest that even
if group 2 includes patients with a preoperative arc < 80�,
which indicates a poor predicted outcome, the results are
comparable to those of group 1. Precise resection of the
impinging lesion using a color-coded bone model might be
useful in achieving the range of extension, especially in
severe cases. Finally, it would be appropriate to evaluate
improvement in resection accuracy comparing preoperative
and postoperative 3D CT scans. However, to avoid addi-
tional radiation exposure for patients, we did not post-
operatively assess 3D CT scans in all cases; therefore, we
could not evaluate the resection accuracy of the impinging
lesion.
Conclusion
The color-coded 3D resin bone model made identifying
the impinging region easy during arthroscopic arthro-
plasty for osteoarthritis of the elbow joint. We expect
good results, especially in patients with severely
restricted extension.
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