
This basic scienc

*Reprint req

Mount Sinai, 42

J Shoulder Elbow Surg (2021) 30, e50–e59

1058-2746/$ - s

https://doi.org/1
www.elsevier.com/locate/ymse
Comparison of machine learning techniques to
predict unplanned readmission following total
shoulder arthroplasty
Varun Arvind, BS, Daniel A. London, MD, MS, Carl Cirino, MD, Aakash Keswani, MD,
Paul J. Cagle, MD*
Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Background: Machine learning (ML) techniques have been shown to successfully predict postoperative complications for high-volume
orthopedic procedures such as hip and knee arthroplasty and to stratify patients for risk-adjusted bundled payments. The latter has not
been done for more heterogeneous, lower-volume procedures such as total shoulder arthroplasty (TSA) with equally limited discussion
around strategies to optimize the predictive ability of ML algorithms. The purpose of this study was to (1) assess which of 5 ML al-
gorithms best predicts 30-day readmission, (2) test select ML strategies to optimize the algorithms, and (3) report on which patient vari-
ables contribute most to risk prediction in TSA across algorithms.
Methods: We identified 9043 patients in the American College of Surgeons National Surgical Quality Improvement Database who un-
derwent primary TSA between 2011 and 2015. Predictors included demographics, comorbidities, laboratory data, and intraoperative
variables. The outcome of interest was 30-day unplanned readmission. Five ML algorithmsdsupport-vector machine (SVM), logistic
regression, random forest (RF), an adaptive boosting algorithm, and neural networkdwere trained on the derivation cohort (2011-2014
TSA patients) to predict 30-day unplanned readmission rates. After training, weights for each respective model were fixed and the clas-
sifiers were evaluated on the 2015 TSA cohort to simulate a prospective evaluation. C-statistic and f1 scores were used to assess the
performance of each classifier. After evaluation, features were removed independently to assess which features most affected classifier
performance.
Results: The derivation and validation cohorts comprised 5857 and 3186 primary TSA patients, respectively, with similar demo-
graphics, comorbidities, and 30-day unplanned readmission rates (2.9% vs. 2.7%). Of the ML algorithms, SVM performed the worst
with a c-statistic of 0.54 and an f1-score of 0.07, whereas the random-forest classifier performed the best with the highest c-statistic
of 0.74 and an f1-score of 0.18. In addition, SVM was most sensitive to loss of single features, whereas the performance of RF did
not dramatically decrease after loss of single features. Within the trained RF classifier, 5 variables achieved weights >0.5 in descending
order: high bilirubin (>1.9 mg/dL), age >65, race, chronic obstructive pulmonary disease, and American Society of Anesthesiologists’
scores �3. In our validation cohort, we observed a 2.7% readmission rate. From this cohort, using the RF classifier we were then able to
identify 436 high-risk patients with a predicted risk score >0.6, of whom 36 were readmitted (readmission rate of 8.2%).
Conclusion: Predictive analytics algorithms can achieve acceptable prediction of unplanned readmission for TSAwith the RF classifier
outperforming other common algorithms.
Level of evidence: Basic Science Study; Computer Modeling
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Total shoulder arthroplasty (TSA) is a commonly per- underlying predictive schemes used by different classifiers

formed surgery for the treatment of end-stage glenohumeral
arthritis. The current procedural terminology for TSA also
includes reverse TSA, which is indicated for rotator cuff
arthropathy, massive irreparable rotator cuff tears, and
complex 3- and 4-part proximal humerus fractures among
others. Since FDA approval of reverse TSA in 2004, the
prevalence of TSA has increased nearly 3-fold over the past
decade in the United States.15 Because of increasing scru-
tiny over health care costs in the setting of limited re-
sources, payors have pushed toward bundled-payment
programs, with a focus on reducing unplanned readmission
as one avenue to improve patient care and clinical out-
comes while reducing utilization costs. Thirty-day read-
mission rates for TSA were reported at 5.9%, on par with
readmission rates associated with total hip arthroplasty
(2.4%-7.5%).3,17 Preoperative prediction of future risk of
readmission is one possible solution that can facilitate pa-
tient counseling, preoperative planning, and risk-adjusted
payment. However, the prediction of patients at risk for
readmission after TSA remains an unmet challenge due to
the variety of factors that contribute to risk stratification.21

There exists a need for predictive classifiers that can
identify patients at risk for readmission to better inform
preoperative management, shared decision making, and
risk-adjusted reimbursement.

Regression based scoring such as the American College
of Surgeons National Surgical Quality Improvement Pro-
gram (ACS-NSQIP) and American Joint Replacement
Registry risk calculator have shown poor predictive per-
formance in joint replacement surgery for readmission.6,8,22

Such linear classifiers are unable to parse complex patterns
that drive complication risk in patients. Machine learning
(ML) is a method of using patient data from large national
medical databases to identify patterns within the data that
can be used to predict outcomes or events. Briefly, classi-
fiers are trained by iterating through patient data with
known labels that indicate the presence of an outcome of
interest. As the classifiers continue to iterate through pa-
tient data, the algorithm coefficients are optimized to pro-
duce an algorithm that can help identify a given outcome of
interest. Within orthopedics, ML classifiers are an attractive
solution that have been used for prediction of complications
and mortality after spinal fusion, total hip arthroplasty, total
knee arthroplasty, and TSA. However, no current studies
have investigated the ability of ML to predict unplanned
readmission after TSA.7,9,14,23 Moreover, although several
different ML classifiers have emerged, few studies have
investigated which classifiers are ideal for training on na-
tional orthopedic registries.

The purpose of this study was to evaluate ML classifiers
in predicting unplanned readmission after TSA and to
assess for classifiers where performance is minimally
impacted by loss of data, as it occurs in real-world practice.
The secondary purpose of this study was to compare the
to discern why some classifiers are superior or inferior for
use with orthopedic national registry data.
Materials and methods

Data collection

The ACS-NSQIP is a national surgical database that prospectively
collects patient data from over 700 participating institutions.16 All
data are validated with strict adherence guidelines including
routine audits to ensure high-quality data. Data from medical re-
cords, operative reports, and patient interviews are collected up to
30 days postoperatively by trained clinical reviewers. For each
patient record, the NSQIP captures patient demographic/clinical
characteristics, preoperative and intraoperative variables, and
clinical outcomes.

Patient population and feature selection

Demographic predictor variables selected for inclusion for anal-
ysis included age >65, sex, race, body mass index >40, smoking
status, functional status, preoperative weight loss >10%, and
patient medical comorbidities including diabetes, congestive heart
failure, chronic obstructive pulmonary disease, renal disease
(acute renal failure or on dialysis), hypertension requiring medi-
cation, cancer, chronic steroid use within 30 days of surgery,
coagulopathies, and American Society of Anesthesiologists’
(ASA) scores � 3. Wound infections or open wounds before
surgery, as well as systemic inflammatory response syndrome
(SIRS) or sepsis within 48 hours of surgery, were also included.
Preoperative and intraoperative variables including lab values and
type of anesthesia were used. Labs were defined as follows:
leukocytosis (>10,000/mcL), low hematocrit (<30%), thrombo-
cytopenia (<150,000/mcL), high international normalized ratio
(>1.1), high creatinine (>1.3 mg/dL), high blood urea nitrogen
(>30 mg/dL), and high bilirubin (>1.9 mg/dL). The clinical
outcome of interest was unplanned readmission occurring within
30 days of the index operation. More information regarding each
variable can be found in the ACS-NSQIP Participant Use Data
File. Statistical analysis was conducted using SAS (version 9.3,
Cary, NC, USA) with a 2-tailed a of 0.05. Bivariate analysis was
performed to compare demographics, comorbidities, and pro-
cedure characteristics. Analysis of categorical features was per-
formed using c2 tests, and continuous variables were analyzed
using the Mann-Whitney U test.

Predictive classifier design

ML algorithms were developed using the Scikit-Learn (v3.7.2)
package in Python. Five different classifiers were trained: support-
vector machine (SVM), logistic regression (LR), random forest
classifier (RF), adaptive boosting classifier (AB), and neural network
(NN). These 5 classifiers were selected as they are commonly used in
medical literature and have distinct pattern recognition
methods.13,16,26 Thirty-two selected features (based on data avail-
ability and orthopedic surgeon input regarding clinical relevance)



Figure 1 Classification maps of the 5 different ML classifiers. Each circle represents a patient whose position is based on demographic
and clinical variables plotted using principal component analysis along axes principal component 1 (PC1) and 2 (PC2). Blue circles indicate
patients with unplanned readmission, and red circles indicate patients not readmitted. Decision boundaries are displayed in the background
with blue and red colors representing predictions for unplanned readmissions and for those not readmitted, respectively. Darker shades
indicate stronger predictions, with white indicating an indeterminate prediction. Patients located within a given decision boundary for a
classifier are predicted to have an unplanned readmission (blue), to not be readmitted (red), or it is indeterminate (white). With a perfect
classifier, the color of each circle would match the color of the decision boundary.
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from prior to surgery were used to predict unplanned readmission
after TSA.

Before training, classifier weights (SVM, LR, RF, AB, NN)
were initialized to random numbers. After training, the classifiers
were then trained on derivation data emanating from TSA patients
from 2011-2014 NSQIP cohorts, iterating through patients in
order to optimize weights toward values that yield maximal
classifier accuracy. Each of the five classifiers used diverse
methods of pattern recognition and classification. To test which
classifiers were best suited to capture patterns amongst readmitted
and non-readmitted patients, classification maps were developed
where each dot represents a patient (Fig. 1). Patients with un-
planned readmissions clustered together supporting our hypothesis
that features used for ML captured underlying differences among
readmitted and non-readmitted patients. Classification maps
display schemes for classifying patients from red to blue, with
patients in red regions predicted to avoid readmission and patients
in blue regions predicted to be readmitted. Within each group, the
shade of the color indicates the strength of the prediction, with
darker colors indicating stronger predictions. LR used a sequential
linear pattern recognition. SVM and NN used nonlinear prediction
maps. Lastly, the RF and AB classifiers used block classification
maps, typical of decision-based methods.

After training on derivation data, classifiers were provided
blinded data from TSA patients from the NSQIP 2015 validation
cohort and asked to predict which patients would be readmitted
based on input features. This step was performed to simulate real-
world use.
Predictive classifier performance assessment

The clinical outcome of interest was unplanned readmission
occurring within 30 days of the index operation. Primary out-
comes used to evaluate classifier performance were c-statistic and
f1-score, 2 commonly used metrics used to evaluate classifiers.29

A c-statistic of 0.5 indicates a classifier functions as good as
random chance whereas a c-statistic of 1 is perfect in its predictive
function. In binary classifiers, the f1-score is a composite score
that considers both precision and sensitivity to measure a classi-
fier’s accuracy, with a value of 1 being perfect and 0 the worst.29

Using the most predictive classifier tested on the 2015 TSA
cohort, we stratified patients by predicted readmission risk prob-
abilities (binned into 7 levels from 0.2 to 0.8 predicted risk,
increased in increments of 0.1). For patients at each level, we
assessed the proportion of patients actually readmitted vs. not
readmitted. Based on the latter, a calibration plot (Fig. 2) was
created demonstrating predicted readmission frequencies corre-
lated with observed readmission.



Figure 2 Calibration analysis of the random forest classifier. (A) Histogram of patients with unplanned readmissions and those not
readmitted binned by risk of readmission predicted by the random forest classifier. (B) Calibration plot of mean predicted risk generated
from the random forest classifier vs. observed readmission frequencies, demonstrating a correlation between predicted and observed
readmission rates. RF, random forest.
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Results

Patient characteristics, intraoperative variables,
and 30-day unplanned readmission

The derivation (2011-2014) and validation (2015) TSA
cohorts consisted of 5857 and 3186 patients, respec-
tively, and were generally similar in terms of de-
mographics, characteristics, clinical comorbidities,
preoperative laboratory data, and intraoperative variables
(Table I). Rates of coagulopathies (3.2% vs. 2.4%) and
TSA performed for osteoarthritis etiology (69% vs.
45%) were higher in the derivation cohort, whereas
rates of perioperative leukocytosis (7.5% vs. 8.7%) were
lower (P < .05 for all). There was no statistically sig-
nificant difference in 30-day unplanned readmission or
mortality.
Machine learning classifier performance
assessment

The RF classifier performed the best with the highest c-
statistic of 0.74, positive likelihood ratio (þLR) of 1.18,
negative likelihood ratio (�LR) of 0.42, and f1-score of
0.18, whereas SVM performed the worst with a c-statistic
of 0.54, þLR of 1.17, �LR of 0.48, and f1-score of 0.07
(Fig. 3). In addition, the performance of SVM classifier 1
was the most sensitive to removal of a single variable,
whereas the performance of RF did not dramatically
decrease after the loss of a single variable (Fig. 3). Across
all classifiers, the removal of the variable ‘‘elevated BUN’’
(blood urea nitrogen) resulted in decreased classifier
performance suggesting its importance in predicting risk
for 30-day unplanned readmission.

Feature importance and performance calibration
plot for random forest classifier

After training of the RF classifier on the derivation cohort,
weights were frozen and extracted from the RF model for
analysis. Five variables achieved weights > 0.5 in
descending order: high bilirubin (>1.9 mg/dL), age >65,
race, chronic obstructive pulmonary disease, and ASA �3
(Fig. 4). Variables with the lowest contribution weights
(<0.2) for RF classifier prediction included preoperative
weight loss>10%, body mass index >40, diabetes, smok-
ing, and congestive heart failure.

Risk stratification with the RF classifier identified 436
patients (13.7% of the validation cohort) with a predicted
risk for readmission >0.6, which we have defined as the
high-risk group. An optimal threshold of 0.6 was selected
by maximizing Youden’s function to identify a threshold
providing optimal sensitivity and specificity.30 Of this
group, 36 (8.2%) patients were readmitted (Fig. 2). This
analysis revealed that non-readmitted patients were skewed
to lower predicted readmission risk, whereas readmitted
patients were skewed to higher predicted readmission risk.
To determine if predicted risk matched observed read-
mission rate, calibration analysis was performed on the RF
classifier. After testing of the RF classifier on the validation
cohort, predicted risk was plotted against observed read-
mission rate in a calibration plot. The calibration plot had a
slope of 0.1 and a Pearson correlation coefficient of 0.70,
supporting the predictions made by the RF classifier of
match observed readmission rates after TSA (Fig. 2).



Table I Comparison of patient demographic and procedure characteristics among TSA patients in derivation and validation cohorts

Derivation (2011-2014), n ¼ 5857 Validation (2015), n ¼ 3186 P value

Age (mean) 69.6 (SD, 9.8) 69.1 (SD, 9.8) .02
Male gender 2553 (43.6%) 1388 (43.6%) .98
Dependent functional status 163 (2.8%) 87 (2.7%) .92
BMI >40 568 (9.7%) 357 (11.2%) .07
History of smoking 579 (9.9%) 354 (11.1%) .83
History of diabetes 983 (16.8%) 575 (18.1%) .13
History of pulmonary disease 382 (6.5%) 201 (6.3%) .69
History of chronic heart failure 26 (0.44%) 15 (0.47%) .86
Hypertension 3942 (67.3%) 2126 (66.7%) .58
History of renal disease 31 (0.53%) 14 (0.44%) .56
Steroids for chronic conditions 294 (5.0%) 140 (4.4%) .18
Bleeding-causing disorders 188 (3.2%) 77 (2.4%) .03
ASA class >2 3079 (52.6%) 1732 (54.4%) .10
Regional anesthesia 234 (4.0%) 108 (2.4%) .15
Operative time (mean) 115.3 (SD, 2.4) 108.9 (SD, 43.4) <.001
Hospital LOS (mean) 2.1 (SD, 2.4) 2.0 (SD, 1.9) <.01
Procedure etiology
Osteoarthritis 4054 (69.2%) 1439 (45.2%) <.0001
Traumatic arthropathy 342 (5.8%) 182 (5.7%) .81
Inflammatory arthritis 45 (0.77%) 10 (0.31%) .01
Other/unknown 1416 (24.2%) 1555 (48.4%) <.0001

Compilations within 30 days
Unplanned readmission 158 (2.7%) 91 (2.9%) .66
Mortality 12 (0.20%) 7 (0.22%) .88

Laboratory results within 90 d preoperatively
Low WBC count (<4500/mcL) 301 (5.1%) 154 (4.8%) .53
High WBC count (>10,000/mcL) 438 (7.5%) 277 (8.7%) .04
Low hematocrit (<30%) 85 (1.5%) 52 (1.6%) .5
Low platelets (<150,000/mcL) 298 (5.1%) 166 (5.2%) .8
High INR (>1.1) 256 (4.4%) 146 (4.6%) .64
Low sodium (<135 mEq/L) 355 (6.1%) 228 (7.2%) .04
High sodium (>145 mEq/L) 58 (0.99%) 22 (0.69%) .15
High creatinine (>1.3 mg/dL) 424 (7.2%) 221 (6.9%) .59
High blood urea nitrogen (>30 mg/dL) 274 (4.7%) 145 (4.6%) .78
High bilirubin (>1.9 mg/dL) 11 (0.19%) 9 (0.28%) .36
Low albumin (<3.4 g/dL) 124 (2.1%) 85 (2.7%) .10

TSA, total shoulder arthroplasty; BMI, body mass index; ASA class, American Society of Anesthesiologists Classification System; LOS, length of stay; WBC,

white blood cell; INR, international normalized ratio; SD, standard deviation.

Data are presented as n (%) unless otherwise indicated.
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Discussion

In our analysis, training ofML classifiers on 2011-2014 TSA

cohorts for risk of readmission with validation against blin-

ded data from 2015 yielded a c-statistic of 0.74 with an f1-

score of 0.18, indicating acceptable risk prediction. Similar

to prior studies, we found that the RF classifier outperformed

other commonly used ML classifiers to predict unplanned

readmission after TSA.2,7,10,25 Furthermore, ourRF classifier

had good performance with a c-statistic of 0.74, which is

comparablewith or superior to the best performing classifiers

trained to predict short-term postoperative complications

after TSA developed by Gowd et al.7
The present study identified high bilirubin (>1.9 mg/
dL), age >65, race, pulmonary disease, and ASA score�3
as variables that contributed the greatest to RF classifier
risk prediction.11 These findings are consistent with the
prior literature that shows increasing age, pulmonary dis-
ease, and ASA are predictive for the largest proportion of
patients being readmitted for infection, dislocations,
pneumonia, and deep vein thrombosis/pulmonary embo-
lism.19,28 To our knowledge, only 1 propensity
score–matched study by Yin et al32 (12,663 patients)
analyzed the role of race in TSA and observed similar rates
of 30-day complications and readmissions but higher
mortality rates in black vs. white patients. This may be
driven by psychosocial determinants of health affecting



Figure 3 Random forest classifier outperforms other ML classifiers. (A) Receiver operating characteristic curves for ML classifiers
evaluated on the 2015 test set with c-statistic, f1-scores, sensitivity, specificity, positive likelihood ratio (þLR), and negative likelihood ratio
(�LR) displayed below. Gray bands indicate the 95% confidence interval for the RF classifier. (B) Percent change in c-statistic as a result of
removal of each respective variable for each of the 5 ML classifiers. Red represents a negative percent change and blue represents a positive
percent change after removal. AB, adaptive boosting algorithm; ASA, American Society of Anesthesiologists; BUN, blood urea nitrogen;
CHF, congestive heart failure; CI, confidence interval; COPD, chronic obstructive pulmonary disease; HCT, hematocrit; INR, international
normalized ratio; ML, machine learning; NN, neural network; RF, random forest; SIRS, systemic inflammatory response syndrome; SVM,
support-vector machine.
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patients’ health literacy, access to necessary resources, and
ability to comply with recommended postoperative care
and follow-up. Elevated preoperative bilirubin is reflective
of underlying hemolysis or hepatobiliary dysfunction, with
the latter increasing potential for hemodynamic complica-
tions (eg, hypotension, hemorrhage, or hepatic ischemia).1

Although not demonstrated in TSA, Liao et al18 analyzed
patients with compromised liver function in lumbar and hip
fracture surgery and observed markedly higher rates
of complications including reoperation and 30-day
readmission.

Identifying patients at risk of readmission is increasingly
important as health care moves toward a value-based
care framework, and ML is one strategy that can be used
to integrate data toward producing individualized, action-
able risk-prediction scores. Recent studies have demon-
strated the utility of ML to predict complications and
readmission rates in high-volume spinal and joint recon-
structive surgery, yet the literature is sparse with regard to
TSA.9,14,23 As the prevalence of TSA continues to grow
exponentially, so does the significance of an accurate
assessment of risk burden if value-based care is to be
achieved. One way in which additional value can be derived
is by identifying select patients as candidates for TSA at an
ambulatory surgical center. Although a recent survey of 484
active American Shoulder and Elbow Surgeons members
identified the greatest barrier to performing TSA in the
outpatient setting was a concern for potential medical
complications that may decrease procedure reimbursement,
a reliable means of risk stratification via ML could help
mitigate that trepidation.4

Furthermore, unplanned readmissions are among the
costliest burdens to the health care industry, accounting for
$17.4 billion among Medicare patients in 2004, and have
been widely studied within the orthopedic literature as a
means to curb increasing cost.3,12,21,31 Prediction of un-
planned readmission remains a complex problem, with a
wide variety of factors contributing to increased risk.21

Independent risk factors for 30-day readmission after
TSA include old age (�65), anemia, and dependent func-
tional status; however, these risk factors likely only predict
a small percentage of patients with risk of readmission.31



Figure 4 Random forest classifier feature weights. Feature weights assigned to variables after training of the random forest classifier on
patients in the derivation cohort from 2011 to 2014. Please see the Supplementary Appendix for breakdown of the abbreviations used.
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Although value-based reimbursement classifiers seek to
maximize the outcomes-to-cost ratio on the population
scale, this only occurs by successfully addressing individ-
ual patient needsda reality that necessitates providers
having the appropriate tools/information as well as reim-
bursement classifiers that adjust for individualized patient
risk that cannot be modified.

Within the orthopedic literature, increasing use of ML
methods to improve risk stratification of patients has
highlighted a need to parse out classifiers that are best
suited for orthopedic data. To investigate this, we per-
formed a decision map analysis to characterize pattern
recognition schemes of 6 commonly used classifiers in
predicting unplanned readmission after TSA. The decision
map analysis demonstrated that RF was best able to spe-
cifically identify patients at both an increased and
decreased risk for unplanned readmission (c-statistic ¼
0.74). The NN and SVM classifiers created nonlinear
decision maps that identified patients who had unplanned
readmissions; however, both classifiers also included many
patients who were not readmitted. This may be because the
SVM and NN classifiers require large amounts of data to
train and perform poorly when training on populations with
low readmission or complication rates.23 Logistic regres-
sion is a linear classifier, which displayed a linear decision
map, with gradations in risk prediction linearly distributed
from low to high, resulting in a decision map that was
largely nonspecific. These analyses support the finding that
RF classifiers are best suited for orthopedic datasets that
comprise small training data with relatively rare adverse
events or outcomes (eg, a low number of patients who
experience unplanned readmissions, complications, or
mortality). Indeed, within the orthopedic literature, RF
classifiers routinely outperform other classifiers.5,7,13

In comparison to other studies, the RF classifier per-
formed with similar performance to ML classifiers trained
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to predict complications or unplanned readmissions in other
high-volume orthopedic surgical procedures. Recently, ML
classifiers have been used to predict length of stay in pa-
tients undergoing total hip and knee arthroplasty. Bayesian
classifiers trained on 122,334 and 141,446 patients under-
going total hip and total knee arthroplasty achieved a c-
statistic of 0.87 and 0.78, respectively.23,27 In a similar
study by Gowd et al,7 ML classifiers were trained on 13,695
patients undergoing TSA to predict postoperative compli-
cations or extended length of stay with c-statistics of best-
performing classifiers ranging from 0.60 to 0.77. In this
study, the RF classifier achieved a c-statistic of 0.74 after
training on 5857 patients within the derivation cohort
demonstrating the ability to achieve good performance
comparable with other studies with a smaller dataset.

The performance of ML classifiers to predict outcomes
is highly dependent on class balancing (ie, the percentage
of unplanned readmission).14 When outcome frequencies
are low (<10%), classifiers regrettably train to maximize
accuracy and as a result fail to capture low-frequency
outcomes of interest.14 For example, in a cohort with un-
planned readmissions of 5%, a classifier that classified all
patients as not having an unplanned readmission would be
95% accurate. To validate if our RF was affected by such
biases, we performed calibration analyses to test if classi-
fier predictions match observed frequencies of unplanned
readmissions. In examining the distribution of risk pre-
dictions for patients with and without unplanned read-
missions, we observed that patients who were not
readmitted had lower predicted scores, whereas patients
with unplanned readmissions had higher predicted scores.
Calibration plot analysis demonstrated that mean predicted
risk matches observed frequency (Pearson correlation co-
efficient, r ¼ 0.70). In other words, in a group with a mean
predicted risk of unplanned readmission of 0.80, 80%
would have unplanned readmissions. Although the c-sta-
tistic of the RF model was 0.74, indicating good classifi-
cation performance, f1-scores were poor across all
classifiers tested. f1-score is the harmonic mean of preci-
sion and recall. In a 2-class classification problem such as
in this study, precision is defined as true-positives/(true-
positives þ false-positives), or positive predictive value
(PPV), and recall is defined as true-positives/(true-positives
þ false-negatives), or sensitivity. Therefore, f1-score is the
mean of the sensitivity and PPV, providing a metric of how
well a classifier identifies all true-positives, taking into
account the predictive value of each prediction. In this
study, readmission rate was low, with roughly 3% of pa-
tients experiencing unplanned readmission after TSA.
Because PPV is directly dependent on prevalence, if the RF
classifier was tested in a cohort with increased rates of
unplanned readmission, we would expect an increase in f1-
score. In a study with a similar unplanned readmission rate
of 3.5%, Pauly et al24 trained an ML algorithm to predict
all-cause readmission in a French medical system and
observed a c-statistic of 0.74 with an f1-score of 0.13. The
present study demonstrates that ML, in particular RF
classifiers, can be used to reliably predict unplanned read-
mission from individual patient data. By implementing
such classifiers, surgeons can perform individualized risk
adjustment during preoperative evaluation for improved
individualized care planning, risk-adjusted reimbursement,
and shared decision making.

Some limitations of this study should be noted.
Although we selected routinely measured variables and
performed analyses of how our classifiers were affected by
the loss of 1 variable, loss of 2 or more variables could
significantly affect the performance of our classifier.
Moreover, although the ACS-NSQIP database is a large
national database covering surgical centers and hospitals
throughout the United States, differences in data collection
standards and rigor may affect classifier performance and
generalizability to other datasets. Furthermore, as the ACS-
NSQIP dataset is a broad surgical dataset, it does not
contain granular information relevant to orthopedic surgery.
For example, current procedural terminology codes were
used to identify patients undergoing TSA; however, this
does not discriminate between TSA and rTSA. In addition,
continuous variables were dichotomized according to
abnormal cutoffs as training on continuous data led to
decreased model performance across all classifiers. Loss in
performance when using continuous variables may be a
result of inability of the classifiers to learn meaningful
cutoffs for each feature based on the relatively small
dataset. Future studies using larger datasets with continuous
data that also include more granular surgical information
may provide greater improvements in classifier perfor-
mance. In addition, although the main strength of the
classifiers discussed in this study is individualized patient
stratification, the classifiers discussed do not take into
consideration individualized surgeon experience. Several
studies have demonstrated that patients who undergo TSA
with surgeons or at hospitals with a high volume of TSA
cases have reduced complications, length of stay, and
readmissions. In a study by Lyman et al,20 60-day read-
mission rates were 9.5% at low-volume hospitals, whereas
only 4.6% at high-volume hospitals, emphasizing the
importance of institution on rates of readmission. Future
studies that also incorporate institution and surgeon data
may be better able to predict unplanned readmission by
taking into account the whole surgical team.
Conclusion
ML is able to predict unplanned readmission after TSA
in patients from a national database. Furthermore, when
tested in a blinded fashion, the RF classifier out-
performed other ML classifiers, with its predictions
correlating best with observed frequencies. With
growing datasets, ML-based classifiers may become
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common place in the hospital setting, thereby allowing
surgeons to better counsel patients preoperatively,
deliver better individualized outcomes perioperatively,
and provide greater value from TSA on a population-
based scale.
Disclaimer
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received any financial payments or other benefits from
any commercial entity related to the subject of this
article.
Supplementary Data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jse.2020.05.013.
References
1. Abbas N, Makker J, Abbas H, Balar B. Perioperative care of patients

with liver cirrhosis: a review. Health Serv Insights 2017;10:

1178632917691270. https://doi.org/10.1177/1178632917691270

2. Alickovic E, Subasi A. Medical decision support system for diagnosis

of heart arrhythmia using DWT and random forests classifier. J Med

Syst 2016;40:108. https://doi.org/10.1007/s10916-016-0467-8

3. Bosco JA, Karkenny AJ, Hutzler LH, Slover JD, Iorio R. Cost burden

of 30-day readmissions following medicare total hip and knee

arthroplasty. J Arthroplasty 2014;29:903-5. https://doi.org/10.1016/j.

arth.2013.11.006

4. Brolin TJ, Cox RM, Zmistowski BM, Namdari S, Williams GR,

Abboud JA. Surgeons’ experience and perceived barriers with outpa-

tient shoulder arthroplasty. J Shoulder Elbow Surg 2018;27(Suppl):

S82-7. https://doi.org/10.1016/j.jse.2018.01.018

5. Durand WM, DePasse JM, Daniels AH. Predictive modeling for blood

transfusion after adult spinal deformity surgery: a tree-based machine

learning approach. Spine 2018;43:1058. https://doi.org/10.1097/BRS.

0000000000002515

6. Edelstein AI, Kwasny MJ, Suleiman LI, Khakhkhar RH, Moore MA,

Beal MD, et al. Can the American College of Surgeons risk calculator

predict 30-day complications after knee and hip arthroplasty? J

Arthroplasty 2015;30(Suppl):5-10. https://doi.org/10.1016/j.arth.2015.

01.057

7. Gowd AK, Agarwalla A, Amin NH, Romeo AA, Nicholson GP,

Verma NN, et al. Construct validation of machine learning in the

prediction of short-term postoperative complications following total

shoulder arthroplasty. J Shoulder Elbow Surg 2019;28:e410-21.

https://doi.org/10.1016/j.jse.2019.05.017

8. Harris AHS, Kuo AC, Bozic KJ, Lau E, Bowe T, Gupta S, et al.

American Joint Replacement Registry risk calculator does not predict

90-day mortality in veterans undergoing total joint replacement. Clin

Orthop Relat Res 2018;476:1869. https://doi.org/10.1097/CORR.

0000000000000377

9. Harris AHS, Kuo AC, Weng Y, Trickey AW, Bowe T, Giori NJ. Can

machine learning methods produce accurate and easy-to-use predic-

tion models of 30-day complications and mortality after knee or hip
arthroplasty? Clin Orthop RelatRes 2019;477:452-60. https://doi.org/

10.1097/CORR.0000000000000601

10. Hsieh CH, Lu RH, Lee NH, Chiu WT, Hsu MH, Li YC. Novel so-

lutions for an old disease: diagnosis of acute appendicitis with random

forest, support vector machines, and artificial neural networks. Surgery

2011;149:87-93. https://doi.org/10.1016/j.surg.2010.03.023

11. Ingraham AM, Richards KE, Hall BL, Ko CY. Quality improvement in

surgery: the American College of Surgeons National Surgical Quality

Improvement Program approach. Adv Surg 2010;44:251-67. https://

doi.org/10.1016/j.yasu.2010.05.003

12. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among

patients in the Medicare fee-for-service program. N Engl J Med 2009;

360:1418-28. https://doi.org/10.1056/NEJMsa0803563

13. Karhade AV, Ogink P, Thio Q, Broekman M, Cha T, Gormley WB,

et al. Development of machine learning algorithms for prediction of

discharge disposition after elective inpatient surgery for lumbar

degenerative disc disorders. Neurosurg Focus 2018;45:E6. https://doi.

org/10.3171/2018.8.FOCUS18340

14. Kim JS, Merrill RK, Arvind V, Kaji D, Pasik SD, Nwachukwu CC,

et al. Examining the ability of artificial neural networks machine

learning models to accurately predict complications following poste-

rior lumbar spine fusion. Spine 2018;43:853-60. https://doi.org/10.

1097/BRS.0000000000002442

15. Kim SH, Wise BL, Zhang Y, Szabo RM. Increasing incidence of

shoulder arthroplasty in the United States. J Bone Joint Surg Am 2011;

93:2249-54. https://doi.org/10.2106/JBJS.J.01994

16. Kuo C-Y, Yu L-C, Chen H-C, Chan C-L. Comparison of models for

the prediction of medical costs of spinal fusion in Taiwan diagnosis-

related groups by machine learning algorithms. Healthc Inform Res

2018;24:29-37. https://doi.org/10.4258/hir.2018.24.1.29

17. Kurtz SM, Lau EC, Ong KL, Adler EM, Kolisek FR, Manley MT.

Hospital, patient, and clinical factors influence 30- and 90-day read-

mission after primary total hip arthroplasty. J Arthroplasty 2016;31:

2130-8. https://doi.org/10.1016/j.arth.2016.03.041

18. Liao J-C, Chen W-J, Chen L-H, Niu C-C, Fu T-S, Lai P-L, et al.

Complications associated with instrumented lumbar surgery in pa-

tients with liver cirrhosis: a matched cohort analysis. Spine J 2013;13:

908-13. https://doi.org/10.1016/j.spinee.2013.02.028

19. Lovy AJ, Keswani A, Beck C, Dowdell JE, Parsons BO. Risk factors

for and timing of adverse events after total shoulder arthroplasty. J

Shoulder Elbow Surg 2017;26:1003-10. https://doi.org/10.1016/j.jse.

2016.10.019

20. Lyman S, Jones EC, Bach PB, Peterson MGE, Marx RG. The asso-

ciation between hospital volume and total shoulder arthroplasty out-

comes. Clin Orthop Relat Res 2005;432:132-7. https://doi.org/10.

1097/01.blo.0000150571.51381.9a

21. Mahoney A, Bosco JA, Zuckerman JD. Readmission after shoulder

arthroplasty. J Shoulder Elbow Surg 2014;23:377-81. https://doi.org/

10.1016/j.jse.2013.08.007

22. Manning DW, Edelstein AI, Alvi HM. Risk prediction tools for hip

and knee arthroplasty. J Am Acad Orthop Surg 2016;24:19-27. https://

doi.org/10.5435/JAAOS-D-15-00072

23. Navarro SM, Wang EY, Haeberle HS, Mont MA, Krebs VE,

Patterson BM, et al. Machine learning and primary total knee

arthroplasty: patient forecasting for a patient-specific payment model.

J Arthroplasty 2018;33:3617-23. https://doi.org/10.1016/j.arth.2018.

08.028

24. Pauly V, Mendizabal H, Gentile S, Auquier P, Boyer L. Predictive risk

score for unplanned 30-day rehospitalizations in the French universal

health care system based on a medico-administrative database. PLoS

One 2019;14:e0210714. https://doi.org/10.1371/journal.pone.0210714

25. Peng S-Y, Chuang Y-C, Kang T-W, Tseng K-H. Random forest can

predict 30-day mortality of spontaneous intracerebral hemorrhage with

remarkable discrimination. Eur J Neurol 2010;17:945-50. https://doi.

org/10.1111/j.1468-1331.2010.02955.x

26. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl

J Med 2019;380:1347-58. https://doi.org/10.1056/NEJMra1814259

https://doi.org/10.1016/j.jse.2020.05.013
https://doi.org/10.1177/1178632917691270
https://doi.org/10.1007/s10916-016-0467-8
https://doi.org/10.1016/j.arth.2013.11.006
https://doi.org/10.1016/j.arth.2013.11.006
https://doi.org/10.1016/j.jse.2018.01.018
https://doi.org/10.1097/BRS.0000000000002515
https://doi.org/10.1097/BRS.0000000000002515
https://doi.org/10.1016/j.arth.2015.01.057
https://doi.org/10.1016/j.arth.2015.01.057
https://doi.org/10.1016/j.jse.2019.05.017
https://doi.org/10.1097/CORR.0000000000000377
https://doi.org/10.1097/CORR.0000000000000377
https://doi.org/10.1097/CORR.0000000000000601
https://doi.org/10.1097/CORR.0000000000000601
https://doi.org/10.1016/j.surg.2010.03.023
https://doi.org/10.1016/j.yasu.2010.05.003
https://doi.org/10.1016/j.yasu.2010.05.003
https://doi.org/10.1056/NEJMsa0803563
https://doi.org/10.3171/2018.8.FOCUS18340
https://doi.org/10.3171/2018.8.FOCUS18340
https://doi.org/10.1097/BRS.0000000000002442
https://doi.org/10.1097/BRS.0000000000002442
https://doi.org/10.2106/JBJS.J.01994
https://doi.org/10.4258/hir.2018.24.1.29
https://doi.org/10.1016/j.arth.2016.03.041
https://doi.org/10.1016/j.spinee.2013.02.028
https://doi.org/10.1016/j.jse.2016.10.019
https://doi.org/10.1016/j.jse.2016.10.019
https://doi.org/10.1097/01.blo.0000150571.51381.9a
https://doi.org/10.1097/01.blo.0000150571.51381.9a
https://doi.org/10.1016/j.jse.2013.08.007
https://doi.org/10.1016/j.jse.2013.08.007
https://doi.org/10.5435/JAAOS-D-15-00072
https://doi.org/10.5435/JAAOS-D-15-00072
https://doi.org/10.1016/j.arth.2018.08.028
https://doi.org/10.1016/j.arth.2018.08.028
https://doi.org/10.1371/journal.pone.0210714
https://doi.org/10.1111/j.1468-1331.2010.02955.x
https://doi.org/10.1111/j.1468-1331.2010.02955.x
https://doi.org/10.1056/NEJMra1814259


Machine learning for prediction of readmission in TSA e59
27. Ramkumar PN, Navarro SM, Haeberle HS, Karnuta JM,

Mont MA, Iannotti JP, et al. Development and validation of a

machine learning algorithm after primary total hip arthroplasty:

applications to length of stay and payment models. J

Arthroplasty 2019;34:632-7. https://doi.org/10.1016/j.arth.2018.

12.030

28. Schairer WW, Zhang AL, Feeley BT. Hospital readmissions after

primary shoulder arthroplasty. J Shoulder Elbow Surg 2014;23:1349-

55. https://doi.org/10.1016/j.jse.2013.12.004

29. Sokolova M, Japkowicz N, Szpakowicz S. Beyond accuracy, f-score

and ROC: a family of discriminant measures for performance evalu-

ation. In: Sattar A, Kang B, editors. AI 2006: advances in artificial
intelligence. Berlin, Heidelberg: Springer; 2006. p. 1015-21. https://

doi.org/10.1007/11941439_114

30. Unal I. Defining an optimal cut-point value in ROC analysis: an

alternative approach. Comput Math Methods Med 2017;2017:

3762651. https://doi.org/10.1155/2017/3762651

31. Westermann RW, Anthony CA, Duchman KR, Pugely AJ, Gao Y,

Hettrich CM. Incidence, causes and predictors of 30-day readmission

after shoulder arthroplasty. Iowa Orthop J 2016;36:70-4.

32. Yin C, Sing DC, Curry EJ, Abdul-Rassoul H, Galvin JW, Eichinger JK,

et al. The effect of race on early perioperative outcomes after shoulder

arthroplasty: a propensity scorematched analysis. Orthopedics 2019;42:

95-102. https://doi.org/10.3928/01477447-20190221-01

https://doi.org/10.1016/j.arth.2018.12.030
https://doi.org/10.1016/j.arth.2018.12.030
https://doi.org/10.1016/j.jse.2013.12.004
https://doi.org/10.1007/11941439_114
https://doi.org/10.1007/11941439_114
https://doi.org/10.1155/2017/3762651
http://refhub.elsevier.com/S1058-2746(20)30446-8/sref31
http://refhub.elsevier.com/S1058-2746(20)30446-8/sref31
http://refhub.elsevier.com/S1058-2746(20)30446-8/sref31
https://doi.org/10.3928/01477447-20190221-01

	Comparison of machine learning techniques to predict unplanned readmission following total shoulder arthroplasty
	Materials and methods
	Data collection
	Patient population and feature selection
	Predictive classifier design
	Predictive classifier performance assessment

	Results
	Patient characteristics, intraoperative variables, and 30-day unplanned readmission
	Machine learning classifier performance assessment
	Feature importance and performance calibration plot for random forest classifier

	Discussion
	Conclusion
	Disclaimer
	Supplementary Data
	References


