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Abstract
T helper (TH) cells have evolved into distinct subsets that me-
diate specific immune responses to protect the host against 
a myriad of infectious and noninfectious challenges. How-
ever, if dysregulated, TH-cell subsets can cause inflammatory 
disease. Emerging evidence now suggests that human aller-
gic disease is caused by a distinct subpopulation of patho-
genic TH2 cells. Pathogenic TH2 cells from different type-
2-driven diseases share a core phenotype and show overlap-
ping functional attributes. The unique differentiation 
requirements, activating signals, and metabolic characteris-
tics of pathogenic TH2 cells are just being discovered. A bet-
ter knowledge of this particular TH2 cell population will en-
able the specific targeting of disease-driving pathways in al-
lergy. In this review, we introduce a rational for classifying TH 
cells into distinct subsets, discuss the current knowledge on 
pathogenic TH2 cells, and summarize their involvement in 
allergic diseases. © 2021 S. Karger AG, Basel

Introduction

In the body of adult humans, memory T cells are the 
most abundant lymphocyte population [1]. Among them, 
CD4+ memory T helper (TH) cells make up the largest 
fraction, acting as crucial mediators of the immune sys-
tem. Once activated by a cognate antigen, they migrate to 
follicles to provide help B cells and peripheral organs to 
fight infections by initiating the appropriate type of effec-
tor cell functions [2]. Confronted with a myriad of differ-
ent infectious challenges, TH cells have evolved into spe-
cialized subsets, characterized by distinct migratory 
properties, proliferative capacities, cytokine profiles, and 
transcription factors. These specialized TH cell subsets ex-
ert distinct and crucial functions in health and disease. 
Our ever-growing understanding of human TH cell biol-
ogy has significantly contributed to the development of 
effective therapies for inflammatory and neoplastic dis-
eases [3, 4].
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Heterogeneity of TH Cells

The Universe of TH-Cell Subsets
Because of the vast diversity of TH cells, different para-

digms have been formulated to classify TH cells into sub-
sets. Accordingly, TH cells have been classified based on 
their (i) differentiation status, (ii) migratory properties or 
tissue location, and (iii) functional properties [5]. There 
is considerable overlap between these classification sys-
tems since differentiation, migration, and function of TH 
cell subsets are linked. Still, the investigation of TH cell 
biology has strongly profited from the conceptual organi-
zation of TH cells into distinct subsets. In particular in the 
human system, they help understand the quality of mem-
ory T cell responses and help dissect the mechanisms of 
immunity and immunopathology [6]. In the following 
text, an introduction to these classification systems is pre-
sented in greater detail.

Classification of TH Cells Based on Differentiation
Phenotypic, functional, and transcriptional profiling 

of TH cells suggests that human memory T cell differen-
tiation follows a linear progression along a continuum of 
defined cellular entities (shown in Fig. 1) [7, 8]. The over-
arching concept is that less differentiated cells give rise to 
more differentiated progeny in response to antigenic 

stimulation or – potentially – homeostatic signaling [5]. 
On the undifferentiated end of the spectrum, naive T cells 
(TN) represent antigen-unexperienced cells with maxi-
mal potential for proliferation, self-renewal, differentia-
tion, and lymphoid homing. On the other end of the spec-
trum, terminally differentiated terminal effector T cells 
(TTE) are highly antigen-dependent T cells with maximal 
potential for tissue homing and effector functions. In be-
tween, stem cell memory T cells [9], central memory T 
cells (TCM), transitional memory T cells, and effector 
memory T cells (TEM) represent memory cells with in-
creasing levels of differentiation and progressive acquisi-
tion or loss of specific functions. This concept has a num-
ber of interesting implications for therapeutic manipula-
tion of T cells. Targeting stem cell memory T cells, for 
instance, could enhance the efficacy of vaccines and 
adoptive T cell therapies for cancer and infectious dis-
eases because of their stem cell-like properties [9]. Con-
versely, TEM with strong but potentially destructive effec-
tor functions could be specifically disrupted to treat T 
cell-driven autoimmunity [10].

Classification of TH Cells Based on Migration and 
Tissue Location
With respect to the migratory potential of memory T 

cells, 3 major subsets are recognized (shown in Fig. 2): 

CD45RO CD45ROCCR7

CD28

Lymphoid homing
Proliferation potential
Self-renewal
Multipotency

Peripheral homing
Effector function

Antigen dependence

CD95 CD28 CD95 CD28 CD95 CD28 CD95 CD28 CD95 CD28 CD95

CCR7 CD45RO CD45RO CD45RO CD45ROCCR7 CCR7 CCR7 CCR7

TN TSCM TCM TTM TEM TTE

Fig. 1. Classification of T cells based on differentiation. A progres-
sive loss of T cell stemness occurs during differentiation. The dif-
ferentiation process starts from TN, with maximal potential for 
proliferation, self-renewal, differentiation, and lymphoid homing, 
and culminates in TTE, with maximal potential for tissue homing 
and effector functions. Each subset represents memory T cells with 
increasing levels of differentiation and is classified according to the 

differential expression of CD45RO, CCR7, CD28, and CD95. 
Black text highlights the expression of the specific markers on the 
respective cell subset, whereas gray text represents the markers that 
are not expressed. TN, naive T cells; TSCM, stem cell memory T cells; 
TCM, central memory T cells; TTM, transitional memory T cells; 
TEM, effector memory T cells; TTE, terminal effector T cells. (Adapt-
ed from Mahnke et al. [5].)
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TCM and TEM, both of which are found in the circulation, 
and tissue-resident T cells (TRM), which reside in periph-
eral organs [11]. As described previously, TCM and TEM 
represent different stages of memory T-cell differentia-
tion. However, they also differ with regard to their migra-
tory potential [12]. TCM express the chemokine receptor 
CCR7 and the vascular addressin CD62L (L-selectin), en-
abling them to access and enter lymph nodes from blood. 
On the other hand, TEM lack CCR7 and CD62L expres-
sion but express receptors that enable them to enter pe-
ripheral tissues [13]. For example, TEM expressing cuta-
neous lymphocyte antigen (CLA), the ligand for E-selec-
tin present on cutaneous endothelial cells are capable of 
efficient homing to the skin [14]. Conversely, α4β7+ TEM 
get access to the intestinal tract since they bind to Mad-
CAM-1 expressed on gut endothelia [15, 16]. In contrast 
to TCM and TEM that migrate between the blood, second-

ary lymphoid organs, and peripheral tissues, TRM perma-
nently reside in epithelial barrier tissues. Thus, TRM are 
strategically positioned at the interface between the host 
and the environment, such as the gastrointestinal tract, 
the respiratory tract, and the skin [17–19]. There, TRM 
provide frontline immune protection against pathogen 
challenge [17, 20–22]. Importantly, TRM differ not only in 
their location from other memory T-cell subsets but also 
in the expression of a distinct transcriptional program 
and have a unique cellular metabolism adjusted to the lo-
cal microenvironment [23].

Classification of TH Cells Based on Functional 
Properties
Finally, the heterogeneity of TH cells can be organized 

according to functional modules (shown in Fig.  3) [2]. 
This classification positions each TH cell subset at the cen-

CD103+/CD69+

CCR7+/CLA+

CCR7+/CD62L+ CCR7+/CD62L+

CCR7–/CD62L–

CCR4+/CLA+

Body surface tissue
(e.g., skin)

Tissue-resident T cells
(TRM)

Effector memory T cells
(TEM)

Central memory T cells
(TCM)

TCM

TCM

TRM

TCM

TEM

TEM

Lymph node

Circulation

Fig. 2. Classification of T cells based on migration and tissue loca-
tion. Memory T cells can be classified in terms of its migratory 
properties into 3 basic subsets: (1) TCM have the ability to migrate 
between secondary lymphoid organs (lymph nodes), the blood cir-
culation, and peripheral tissues. This migratory capacity is depen-
dent on their expression of lymphoid homing receptors (CCR7/
CD62L) as well as peripheral homing receptors (e.g., cutaneous 
lymphocyte antigen (CLA) for skin-homing). (2) TEM lack the abil-

ity to home to lymphoid organs but are poised to home to periph-
eral tissues efficiently. Accordingly, TEM lack CCR7/CD62L ex-
pression but express high levels of tissue homing receptors (e.g., 
CCR4/CLA for skin). (3) TRM reside in peripheral tissues long 
term. They express the integrin CD103, which mediates tissue ad-
hesion (via its binding to E-cadherin), and retain markers of per-
sistent activation (CD69).TEM, terminal effector T cells; TCM, cen-
tral memory T cells; TRM, tissue-resident T cells.
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ter of a module which mediates a specific class of immune 
response. Each module can either exert regulatory func-
tion to prevent autoimmunity or promote effector func-
tions against different types of pathogens. The modules 
encompass, first, the cytokines required to polarize TH 
cells into distinct subsets. Second, each module features a 
TH cell subset at its center which, in turn, is defined by the 
cytokines and effector molecules it produces, the tran-
scription factors that orchestrate its phenotype, and the 
chemokine receptor profiles it expresses. Third, the mod-
ules finally define what the main target cells of each TH 
cell subset are, for example, what the cellular targets and 
functional consequences of the cytokines they produce 
are. Thus, these functional modules integrate aspects of 
differentiation, migration, and function of TH cells into a 
theoretical framework that helps explain how different 
types of immune responses are regulated by TH cells. TH1 
cells, for instance, are differentiated under the influence 
of interleukin (IL)-12, are controlled by the “master” 
transcription factor T-bet, express the chemokine recep-
tor CXCR3, and – by their secretion of the cytokine inter-

feron γ (IFN-γ) – activate macrophages to kill intracel-
lular microbes. On the other hand, TH2 cells are polarized 
by IL-4 and express GATA3, CCR4, and cytokines such 
as IL-4, IL-5, and IL-13, which mediate immune respons-
es against extracellular parasites through the activation of 
epithelia and eosinophils. Additional TH cell modules 
that have been described include – among others –TH17 
cells [24–26], follicular TH cells [27–29], and regulatory T 
cells (TREG) [30–32].

Based on the close relation between the phenotype and 
function of TH cell subsets, it is possible to assign antigen 
specificities to each module. For example, TH1 cells are 
enriched for TH cells that recognized the intracellular mi-
crobe Mycobacterium tuberculosis, whereas TH17 cells are 
enriched for T cells that recognize the extracellular patho-
gens Staphylococcus aureus and Candida albicans [33, 
34].

This concept of functional modules has proven useful 
for the study of human T cell responses because it pro-
vides a theoretical framework to understand the huge 
complexity of human adaptive immune responses in both 
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Fig. 3. Classification of TH cell subsets based on functional proper-
ties. A TH-cell subset is defined by 4 primary properties: (1) the 
cytokine environment under which it is polarized, (2) the cyto-
kines it secretes itself, (3) the chemokine receptor repertoire it ex-
presses, and (4) the transcription factors that orchestrate its phe-
notype at the genetic level and act as “master gene regulators”. For 
instance, TN stimulated by cognate antigen in the presence of IL-4 
polarize into TH2 cells that express IL-4 and IL-13, reside in the 
CXCR3−/CCR4+/CCR6− population of memory TH cells, and are 

phenotypically stabilized by the master transcription factor 
GATA3. In addition, each TH cell subset communicates with dis-
tinct target cells through which it exerts its functions in immunity 
and disease. For instance, TH2 cells induce IgE class switching in B 
cells via their secretion of IL-4 and induce an antiparasitic state in 
epithelial cells via secretion of IL-13. When dysregulated, the TH2 
cell subset can induce pathology via the overexpression of these 
effector molecules and cause allergic disease. (Adapted from Sal-
lusto and Lanzavecchia [2].) TH, T helper; TN, naive T cells.
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health and disease [35]. Mechanistic insights into how 
these TH modules orchestrate the inflammatory response 
at the tissue level and how TH cells interact with resident 
cells led to the discovery of potent therapeutics for in-
flammatory diseases [36]. A typical example is the TH17 
module, which – when not properly controlled – leads to 
destructive tissue inflammation and autoimmunity [37]. 
Accordingly, inhibition of the TH17 module is an excel-
lent therapeutic strategy in the treatment of autoimmune 
and autoinflammatory diseases such as psoriasis and ar-
thritis [3].

Limitations of Classifying TH Cells into Subsets
Despite its usefulness, classifying TH cells into rigid 

subsets has its limitations. Sophisticated single-cell analy-
sis and cell fate tracking revealed the capacity of polarized 
TH cells to change their phenotype, repolarize into differ-
ent subsets, or take on mixed phenotypes [38–40]. This 
has led to the appreciation that memory TH cells are 
adaptable in the face of repolarizing environments, a phe-
nomenon described as TH cell plasticity. Plasticity is de-
fined as a single TH cell’s ability to adopt characteristics 
of multiple TH cell subsets at the same time or at different 
times during its life cycle [38], as exemplified by the di-
chotomous nature of TH17 and peripherally induced 
TREG [24, 41]. While plasticity is an integral part of TH cell 
biology, its conceptual meaning is challenging to em-
brace. Certainly, generating many functionality associ-
ated with different subsets from an individual TH cell in-
creases flexibility of host immunity. Conversely, it may 
also render previously protective memory TH cells, gener-
ated during infection, to pathogenic cells with detrimen-
tal properties to the host. For instance, it was shown that 
a TH17 cell can adopt not only regulatory but also en-
hanced pathogenic phenotypes depending on the local 
microenvironment [42, 43]. Thus, when studying TH cell 
subsets, it has to be considered that they are more flexible 
than initially thought. Nevertheless, the concept of func-
tional TH cell modules provides a useful organizational 
principle to understand adaptive immune responses in 
health and disease [38].

Heterogeneity of TH2 Cells

Functional Heterogeneity of TH2 Cells
Of the pro-inflammatory TH cell subsets, TH2 cells are 

established as the main TH cell subset that drives allergic 
tissue inflammation [44]. Recently, the TH2 cells that pro-
mote allergic inflammation have been further dissected, 

thanks to single-cell analysis of T cells isolated from in-
flammatory tissues [45, 46]. These studies have identified 
a specific subset of TH2 cells that is intricately linked to 
allergic pathology. This subset has therefore been termed 
“pathogenic” (“Tpath2,” “peTH2”) [47, 48], “inflamma-
tory” [49], or “proallergic” (“TH2A”) [50] TH2 cells. 
Pathogenic TH2 cells can be distinguished from their 
“conventional” TH2 cell (cTH2) counterparts based on 
phenotypic and functional attributes, just as their “par-
ent” TH-cell subsets. Pathogenic TH2 cells are defined by 
the expression of distinct chemokine receptors, cell sur-
face molecules, transcription factors, metabolic pro-
grams, and cytokine profiles [39, 46–49, 51]. For instance, 
TH2 cells expressing the chemokine receptor CCR8 were 
found to secrete large amounts of IL-5 and cause chronic 
allergic skin inflammation, suggesting that CCR8 may 
serve as a surface marker of pathogenic TH2 cells [49]. At 
the transcriptional level, pathogenic TH2 cells were found 
to express the ligand-activated transcription factor per-
oxisome proliferator-activated receptor gamma (PPARγ), 
which appears crucial for their potential to mediate type 
2 immunopathology, albeit through yet unknown mech-
anisms [50, 52]. Metabolically, pathogenic TH2 cells also 
use specific pathways as they are capable of synthesizing 
prostaglandin (PG) D2 owing to the specific expression 
of the hematopoietic PG D synthase (HPGDS) [48]. Fi-
nally, pathogenic TH2 cells feature a unique functional 
repertoire by expressing higher levels and a broader range 
of TH2 cytokines than their cTH2 counterparts [50, 52, 
53]. Taken together, there is mounting evidence that T 
cell-mediated type 2 inflammation in both mice and hu-
mans is mediated by a specific subpopulation of patho-
genic TH2 cells that can be defined at multiple cellular 
levels. These specific characteristics and their functional 
properties are discussed in more detail in the next chap-
ter.

The Core Phenotype of Pathogenic TH2 Cells
Pathogenic TH2 cells have been identified in multiple 

studies of type 2-driven diseases such as allergic asthma 
or eosinophilic esophagitis (EoE). From these studies, a 
core phenotype of pathogenic TH2 cells emerges (Ta-
ble 1). Although there are minor differences depending 
on the disease or species that was analyzed, pathogenic 
TH2 cells express a core set of defining markers. These 
markers include chemokine and cytokine receptors, en-
zymes of PG synthesis and fatty acid metabolism, and cy-
tokines. How these markers contribute to the pathogenic-
ity of TH2 cells is not known in all instances. However, 
certain markers such as IL-13 are well-known mediators 
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of type 2 immunopathology and are expressed at higher 
levels in pathogenic than in cTH2s. Since the majority of 
these markers have been identified by transcriptomic 
analyses, their expression at the protein level has not been 
validated in all instances. With these limitations in mind, 
we summarize in the following text the current under-
standing of the pathogenic TH2 cell markers.

Surface Receptors
IL-17 Receptor B. IL-17 receptor B (IL-17RB), in com-

plex with IL-17RA, forms the receptor for IL-25 (IL-17E). 
IL-25 is expressed by epithelial cells and by innate im-
mune cells, such as eosinophils, basophils, and mast cells 
[54]. Lung epithelia, for instance, secrete IL-25 after ex-
posure to allergens, whereas mast cells release IL-25 as a 
result of IgE cross-linking [55, 56]. Binding of IL-25 to its 
receptor on TH2 cells promotes T cell expansion, produc-
tion of TH2 cytokines, and polarization and maintenance 
of TH2 cells [56]. Thus, IL-17RB expression enables 
pathogenic TH2 cells to sense the epithelial type 2 alar-
min IL-25, which promotes and maintains allergic in-
flammation in epithelial barrier tissues.

IL-9 Receptor. The IL-9 receptor (IL-9R) consists of the 
cytokine-specific IL-9R α-chain and the common γ-chain 
[57]. Activation of IL-9R initiates the Janus kinase/signal 
transducer and activator of transcription (JAK/STAT) 
pathway, mainly through JAK1 and JAK3, followed by 
the phosphorylation of STAT1 and STAT5, respectively 
[58, 59]. While the effect and functional importance of 
IL-9R signaling on innate immune cells, particularly on 
intestinal mast cells, have recently been elucidated [60, 
61], its effects on human TH cells remain a contentious 
issue [57, 62]. IL-9R signaling has been shown to promote 
survival, proliferation, and cytokine production in hu-
man effector TH cells as well as suppressive functions in 
TREG. However, data on the in vivo importance of IL-9R 
signaling in human TH cells are still scarce [63–65]. The 
repeated identification of IL-9R as a marker of pathogen-
ic TH2 cells in humans will likely renew interest in this 
“old” cytokine receptor and trigger further studies to elu-
cidate its specific role in human TH2 cell biology [50, 66, 
67].

IL-1 Receptor-like 1. IL-1 receptor-like 1 (IL1RL1, ST2, 
IL-33R) encodes for the receptor of IL-33, a member of 
the IL-1 cytokine family with critical functions in allergic 
diseases. IL-33 is expressed by epithelial cells and other 
mesenchymal cells such as fibroblasts and endothelial 
cells. Stored in the nucleus, IL-33 is rapidly released upon 
cell injury and thus functions as a tissue alarmin. IL-33R 
is expressed by a wide range of innate immune cells (e.g., C
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mast cells, eosinophils and group 2 innate lymphocytes 
(ILC2)) as well as by adaptive immune cells, most prom-
inently TH2 cells [68]. In TH2 cells, IL-33R expression is 
driven by the transcription factors GATA-3 and STAT5 
and upregulated after TH2 cell activation. Binding of IL-
33 to its receptor enhances differentiation, expansion, 
and antigen-independent production of cytokines in TH2 
cells [69]. Therefore, IL-33R expression on pathogenic 
TH2 cells further expands their ability to sense type-2-as-
sociated tissue alarmins and amplifies their pro-inflam-
matory potential in allergic tissue inflammation.

T-Cell Immunoreceptor with Ig and ITIM Domains. T-
cell immunoreceptor with Ig and ITIM domains (TIGIT) 
is a member of the Poliovirus receptor (CD155) family of 
immunoglobin proteins. It is a co-inhibitory molecule ex-
pressed by T, natural killer (NK), and TREG cells. Its acti-
vation limits autoimmunity and impairs antiviral and an-
titumor immune responses [70, 71]. In contrast to this 
regulatory function in cytotoxic T cells, TIGIT has been 
shown to enhance TH2 cell function by promoting allergic 
inflammation and TH2 polarization [72]. The precise 
mechanisms and functional consequences of this dichot-
omous effect on different T cell subsets are still unclear. 
Hence, whether TIGIT expression on pathogenic TH2 
cells serves to enhance or to control their pro-inflamma-
tory function remains to be investigated.

Killer Cell Lectin-like Receptor B1 (CD161). CD161 is a 
C-type lectin-like receptor known for its inhibitory role 
on NK cell cytotoxicity. Its role on T cells, and in particu-
lar on TH2 cells, has not been fully uncovered, although 
CD161 ligation has been shown to enhance T cell recep-
tor-induced proliferation in TH17 cells. It might thus pro-
mote TH2 cell function in a similar way [73]. The ligand 
of CD161 is the C-type lectin domain family 2 member D 
(CLEC2D). In macrophages, CLEC2D has been recently 
discovered as cell death sensor detecting histones released 
during necrosis, contributing to inflammation and im-
munopathology [74]. Moreover, CLEC2D is expressed by 
epithelial cells of the lung during inflammation, suggest-
ing that pathogenic TH2 cells might be activated via 
CD161 in the setting of allergic lung inflammation [75]. 
CLEC2D is also expressed in the skin, and CD161 is high-
ly expressed on skin-resident TH cells, suggesting that 
CD161 also contributes to type-2-driven diseases of other 
barrier tissues such as atopic dermatitis (AD) [76].

PG Synthesis Enzymes
Hematopoietic PG D Synthase (HPGDS). HPGDS cata-

lyzes the conversion of PGH2 to PGD2 and, thus, medi-
ates the production of inflammatory prostanoids in cells 

of the immune system. Consistently, pathogenic TH2 cells 
have been shown to produce large amounts of PGD2 
upon activation, thereby promoting activation of TH2 
cells, eosinophils, and basophils and expanding the pro-
inflammatory effector repertoire [77–79]. Importantly, 
pathogenic TH2 cells also express the PG D2 receptor 2 
(CRTH2; see below) and are, thus, capable of amplifying 
their own activation and effector function via the  
HPGDS-PGD2-CRTH2 axis [48, 80].

PG D2 Receptor 2 (CRTH2). CRTH2 is a G-protein-
coupled receptor that mediates activation, migration, and 
upregulation of IL-4, IL-5, and IL-13 in TH2 cells [81, 82]. 
Thus, CRTH2 endows pathogenic TH2 cells with the abil-
ity to sense and react to PGD2, a pleiotropic mediator in 
type 2 disease. Inhibitors of CRTH2 are currently being 
evaluated in clinical trials of various type-2-mediated dis-
eases, albeit with ambiguous results so far [83, 84].

Cytokines
IL-5. IL-5 is a homodimeric cytokine which induces 

differentiation, migration, survival, and activation of eo-
sinophils, basophils, and mast cells. IL-5 is among the 
most specifically expressed genes in pathogenic TH2 cells 
as compared to cTH2s [48, 50, 66, 67, 85]. Functionally, 
prominent IL-5 secretion broadens the effector repertoire 
of pathogenic TH2 cells, enabling them to promote eo-
sinophilic inflammation and to amplify and perpetuate 
type 2 inflammation in the tissue [86].

IL-9. IL-9 is a pleiotropic cytokine that signals through 
IL-9R (see above). IL-9 has been described to have a wide 
range of effects on both hematopoietic and nonhemato-
poietic cells [57]. Given that pathogenic TH2 cells also ex-
press IL-9R, it is likely that IL-9 has important autocrine 
functions, which are not yet fully understood. However, 
IL-9 is a key activator and survival factor of mast cells [60, 
87], and IL-9 secretion by TH2 cells is critical for tissue 
mast cell accumulation and activation [61, 88, 89]. Thus, 
by their expression of IL-9, pathogenic TH2 cells are able 
to induce secretion of pro-inflammatory mediators by 
mast cells, which is critical for full type 2 tissue inflamma-
tion [87]. On memory B cells, autocrine and/or paracrine 
IL-9 signaling plays a key role for the humoral recall re-
sponse. It is hence proposed that IL-9 signals the prolif-
eration and subsequent plasma cell differentiation of 
memory B cells after their cognate interaction with mem-
ory T cells [90].

IL-13. IL-13 has crucial functions in parasite immu-
nity and type-2 inflammation. It promotes IgE class 
switching in B cells and alternative activation of macro-
phages. In the lung, IL-13 mediates airway hyperrespon-
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siveness, goblet cell mucus production, and eosinophilic 
inflammation. Finally, IL-13 is also a potent mediator of 
tissue fibrosis by regulating production of the extracellu-
lar matrix [91, 92]. In this context, it will be interesting to 
see whether pathogenic TH2 cells are also involved in the 
process of tissue fibrosis and excessive wound healing.

Leukemia Inhibitory Factor. Leukemia inhibitory factor 
(LIF) is a highly pleiotropic cytokine of the IL-6 family, sig-
naling through the LIF receptor β/gp130 receptor complex. 
LIF can have opposite effects in different cell types, either 
stimulating or inhibiting cell proliferation and differentia-
tion, respectively [93]. Of the many functions described for 
LIF, its action as a neurotropic factor is of particular interest 
in the context of TH2 cell function as it might be involved 
in the propagation of itch, a hallmark of type-2 inflamma-
tion of the skin [94, 95]. Further, LIF might be involved in 
the regulation of cellular metabolism during allergic in-
flammation, since cytokines of the IL-6 family are impor-
tant regulators of immunometabolism [96, 97].

Cell Metabolism
Free Fatty Acid Receptor 3. Free fatty acid receptor 3 

(FFAR3) encodes a G protein-coupled receptor for short-
chain fatty acids (SCFAs) with a chain length of C2–C5 
[98, 99]. Interestingly, in multiple studies on both human 
and murine TH2 cells, FFAR3 was identified to be spe-
cifically expressed on pathogenic TH2 cells and to corre-
late with IL-5 levels and tissue eosinophilia [46, 50, 66, 
67]. Correspondingly, activation of FFAR3 by SCFA can 
increase TH2 cytokine production and promote allergic 
inflammation in vivo in mice [66]. FFAR3 on TH2 cells 
thus enables them to sense SCFAs, a metabolic by-prod-
uct of commensal microbiota. SCFAs are increasingly im-
plicated in the modulation of the immune system at body 
surface tissues, where there is an active interface between 
the microbiome and immune cells [98].

Perilipin 2. Perilipin 2 (PLIN2) belongs to the perilipin 
family of proteins, which coat lipid droplets for intracel-
lular storage. PLIN2 has been implicated in the mediation 
of inflammation signals induced by triglycerides [100]. 
Experimental data on the function of PLIN2 in the im-
mune system are still rudimentary. However, intracellu-
lar lipolysis of lipid droplets has been shown to directly 
induce pro-inflammatory gene expression in macro-
phages [101]. In addition, lipid droplets in TH2 cells, pro-
moted by PLIN2, might serve as a reservoir for arachi-
donic acid which can be metabolized to signaling lipid 
mediators, such as PGs [102]. This is of particular interest 
since enhanced PG metabolism is a hallmark of patho-
genic TH2 cells (see above).

Transcription Factors
Peroxisome Proliferator-Activated Receptor Gamma. 

PPARγ is a ligand-activated nuclear receptor best known 
for regulating lipid and glucose metabolism in mesenchy-
mal cells such as adipocytes [103]. PPARG is one of the 
most reproducibly identified genes associated with the 
pathogenic TH2 phenotype [47, 50, 66, 67, 85]. PPARγ is 
activated by synthetic ligands such as thiazolidinediones 
or endogenously by fatty acids and their derivatives. 
However, specific endogenous PPARγ ligands have been 
difficult to identify, and thus, the role of endogenous 
PPARγ activation remains poorly defined [104–106]. 
When activated, PPARγ dimerizes with retinoid X recep-
tor, binds to PPAR-responsive regulatory elements, and 
controls the expression of a network of genes involved in 
adipogenesis, lipid metabolism, inflammation, and meta-
bolic homeostasis [107]. The specific functional role of 
PPARγ in TH2 cells is best described in murine cells, 
where PPARγ has been shown to promote IL-33R expres-
sion, thereby enhancing TH2 cell activation in allergic tis-
sue inflammation. In agreement with these findings, mice 
with a TH cell-specific knockout of Pparg are protected 
from allergic lung inflammation and have reduced im-
munity against parasite infection [52, 53]. In humans, the 
function of PPARγ in pathogenic TH2 cells and allergy 
remains to be defined. Yet, it is tempting to speculate that 
PPARγ mediates metabolic adaptation of pathogenic TH2 
cells to the harsh environment of inflamed tissue.

Genes Specifically Downregulated in Pathogenic TH2 
Cells
A number of genes have been reported to be specifi-

cally downregulated in pathogenic TH2 cells as compared 
to cTH2s. Among them, the transcription factor eomeso-
dermin (EOMES) and the surface receptor CD27 are of 
particular interest.

Tumor Necrosis Factor Receptor Superfamily Member 
7 (CD27). CD27 is a member of the tumor necrosis factor 
receptor superfamily. CD27 is expressed on various T cell 
populations and upregulated upon T cell activation. 
When activated by its ligand, CD70, CD27 signaling pro-
motes clonal expansion, survival, differentiation, and ef-
fector function in T cells [108]. Given its ability to en-
hance T cell function, it is a target for immune checkpoint 
therapy in cancer [109]. However, highly differentiated 
memory effector T cells downregulate CD27 (shown in 
Fig.  1) [5]. Whether negative expression of CD27 in 
pathogenic TH2 cells simply reflects their highly differen-
tiated state or whether it is a sign of “exhaustion” and 
prevents further cell activation, has yet to be explored.
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Eomesodermin. The transcription factor EOMES is 
crucial for embryonic development of mesoderm and 
plays a central role in promoting cytotoxic effector func-
tions in CD8+ T cells. In TH2 cells, EOMES represses IL-5 
secretion by preventing GATA3 from binding to the IL-5 
promotor. Consequently, downregulation of EOMES in 
pathogenic TH2 cells, observed in both murine and hu-
man studies, allows binding of GATA3 to the IL5 pro-
moter and represents the transcriptional mechanism by 
which these cells express high levels of IL-5 [47].

In summary, the core phenotype of pathogenic TH2 
cells differentiates them from cTH2s on 4 levels: First, 
pathogenic TH2 express a wider range and higher levels 
of effector molecules, most notably cytokines. This broad-
ens the spectrum of innate immune cells and stromal cells 
they can activate during allergic inflammation. Second, 
they strongly express cytokine receptors for tissue alarm-
ins. This renders them highly sensitive to danger signals 
from the tissue and facilitating immediate effector re-
sponses even in the absence of strong antigen-dependent 
stimulation. Third, pathogenic TH2 cells express distinct 
receptors for chemokines and chemoattractants, granting 
them strategic access to niches in barrier tissues where 
they may mediate frontline immune defense or barrier 
tissue pathology. Fourth, they are endowed with a set of 
metabolic properties that may affect both their effector 
repertoire and their metabolic adaptation to the tissue 
and the inflammatory environment within which they 
have to function. Our understanding of this aspect of TH2 
cell biology is still nascent, making the study of TH2 cell 
immunometabolism an intriguing field for further re-
search.

“T Helper Type 9” Cells: Just Another Name for 
Pathogenic TH2 Cells?
In 2008, T helper type 9 (“TH9”) cells were proposed as 

a novel subset of T helper cells with the ability to secrete 
high amounts of IL-9 [110, 111]. However, many lineage-
defining properties of “TH9” cells remained unknown, 
calling the true identity of “TH9” cells as a bona fide sub-
set into question [112]. Indeed, comprehensive charac-
terization of human IL-9-producing TH cells revealed that 
“TH9” cells are at root TH2 cells with a set of distinct prop-
erties [89]: “TH9” cells express the chemokine receptor 
CCR8, secrete – in addition to IL-9 – high amounts of IL-
5, and depend on PPARγ for full effector functions. Strik-
ingly, “TH9” polarization, that is, priming of TN in the 
presence of IL-4 and TGF-β, induces higher levels of 
PPARγ than cTH2 polarization with IL-4 alone. In addi-
tion to IL-9 and PPARγ, “TH9” polarization induces high 

levels of CCR8 [113], IL-17RB [114], HPGDS [113], and 
IL-5 [89], all of which are hallmarks of pathogenic TH2 
cells (shown in Fig. 4). Furthermore, genes typically ex-
pressed at low levels in pathogenic TH2 cells, such as IL-4, 
are downregulated by “TH9” priming. Taken together, 
these data suggest that the addition of TGF-β to TH2 
priming with IL-4 represents an important differentia-
tion step toward pathogenic TH2 cells. However, addi-
tional differentiation cues remain to be identified for the 
induction of the full pathogenic TH2 phenotype (e.g., IL-
33R, FFAR3, and PTGDR2).

Transcriptional Overlap between Pathogenic TH2 Cells 
and Skin-Resident TH Cells
TRM reside long term in nonlymphoid tissues where 

they provide frontline immune defense [115, 116]. While 
it became clear that TRM are fundamentally distinct from 
circulating memory T cells, the precise transcriptome of 
human skin CD4+ TRM under homeostatic conditions re-
mained unknown. Recently, the core transcriptome of 
human CD4+ TRM from healthy skin has been defined 
and revealed an intriguing overlap of the TRM transcrip-
tome with that of pathogenic TH2 cells [76]. CD4+ TRM 
were found to be enriched for cytokines (IL9), chemo-
kine receptors (CCR8), cytokine receptors (IL17RB, 
IL9R, and TGFBR3), and transcription factors (PPARG) 
that are closely linked to pathogenic TH2 cells. At the 
same time, genes typically downregulated in pathogenic 
TH2 cells, such as IL4, CXCR3, CD27, and EOMES, were 
also downregulated in CD4+ TRM. While the relevance of 
this remarkable similarity remains to be understood, it 
indicates that both TRM and pathogenic TH2 cells share a 
tissue differentiation program that is – at least in part – 
the result of TGF-β signaling and that it represents their 
adaptation to the tissue environment. Indeed, in murine 
CD8+ TRM, PPARγ mediates metabolic adaptation to the 
lipid-rich microenvironment of the skin [23]. Since both 
TRM and pathogenic TH2 cells are linked to chronic im-
munopathologies of barrier tissues, this kinship holds 
great promise for future therapeutic or even curative 
strategies.

Pathogenic TH2 Cells in Allergic and Atopic Disease

Memory T cells are crucial for the maintenance of 
long-term antigen-specific immunity to previously en-
countered infections as they are capable of mounting a 
rapid and effective response program upon re-exposure 
to pathogens. However, this capacity to respond vigor-
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ously can have harmful consequences in the context of 
chronic inflammatory diseases. Exaggerated production 
of cytokines is tightly linked to the initiation and perpet-
uation of recurrent episodes of tissue inflammation. In 
allergic and atopic diseases, TH2 cells play a central patho-
genic role in promoting tissue inflammation [117]. Be-
low, we discuss TH2 differentiation in allergic diseases 
and present a summary of the known involvement of 
pathogenic TH2 cells in type 2 immunopathology. As an 
example, we summarize putative differentiation and 
function of pathogenic TH2 cells in allergic inflammation 
of epithelial tissue in Figure 5.

Differentiation of TH2 Cells in Allergic Diseases
TN, following their maturation, recirculate throughout 

the body, migrating within the secondary lymphoid or-
gans such as lymph nodes, where they interact with anti-
gen-presenting cells. When they encounter cognate anti-
gens presented by antigen-presenting cells in the pres-
ence of appropriate co-stimulatory molecules, they 
become primed and acquire the activated phenotype. Af-
ter priming, T cells migrate through post-capillary ve-

nules and infiltrate target peripheral tissues, where the 
antigen is located, such as skin, lungs, or gut, to exert their 
function [118].

Allergic inflammatory diseases, as previously dis-
cussed, have been found to be characterized mostly by 
the TH2 cell immune response. In this context, differen-
tiation from naive CD4+ T cells toward the TH2 pheno-
type typically rely on the presence of IL-4 in the local 
cellular environment. Binding of the IL-4R triggers 
JAK1/3-mediated phosphorylation and dimerization of 
STAT6, which translocates to the nucleus inducing the 
expression of GATA3, the master transcription factor of 
the TH2 cell lineage. GATA3, together with the activated 
form of STAT5, in turn promotes type 2 cytokines ex-
pression, like IL-4, IL-5, and IL-13 [119, 120]. However, 
TH2 differentiation does not only occur through the  
GATA3-STAT6 axis, but also proceeds through other 
“noncanonical” pathways. For example, IL-2 is able to 
induce IL-4 production via STAT5 activation [121]. Fur-
thermore, there is a number of other transcription fac-
tors, including the previously mentioned EOMES, 
STAT3, c-Maf, nuclear factor kappa-light-chain-en-
hancer of activated B cells (NF-Κb), and interferon regu-
latory factor 4 (IRF4) that have been shown to play a role 
in the early stages of TH2 cell differentiation [122–124]. 
The further differentiation into the pathogenic TH2 phe-
notype requires the activation of distinct epigenetic and 
transcriptional programs, which presumably takes place 
after multiple rounds of differentiation, following chron-
ic antigen exposure. TGF-β, together with IL-4, plays a 
crucial role in this process, promoting the development 
of the pathogenic TH2 signature. Pathogenic TH2 cells are 
therefore highly differentiated TH2 cells, defined by spe-
cific properties that result in enhanced effector function, 
innate responsiveness, and migratory capacity (shown in 
Fig. 5) [80].

Involvement of Pathogenic TH2 Cells in Allergic 
Disease
Chronic Allergic Rhinosinusitis
Chronic allergic rhinosinusitis is characterized by 

persistent inflammation of the nasal mucosa and nasal 
obstruction. Symptoms can be severe and difficult to 
treat. In Western countries, the disease is closely associ-
ated with allergic asthma, suggesting a pathogenic link 
[125]. Indeed, allergen-specific TH2 cells with a patho-
genic phenotype were identified in chronic allergic rhi-
nosinusitis and linked to eosinophilic tissue inflamma-
tion [126, 127].

Conventional

TGF-β
+ ?

CCR4/CCR8

HPGDS

IL-17RB

GATA3
PPARγ

Pathogenic

CCR4

IL-4

IL-4

IL-4TGF-β+ ?

IL-13

IL-13

IL-5
IL-9

?GATA3

TH2

Fig. 4. “TH9” polarization induces hallmarks of pathogenic TH2 
cells. Polarization of TN in the presence of IL-4 and TGF-β (“TH9” 
priming) induces many – but not all – phenotypic characteristics 
of pathogenic TH2 cells. Namely, IL-4 and TGF-β induce expres-
sion of CCR8, IL-17RB, PPARγ, HPGDS, IL-5, and IL-9, while 
expression of IL-4 is downregulated. Additional polarizing signals 
are likely required to induce the full phenotype of pathogenic TH2 
cells (e.g., expression of IL-33R, CRTH2, and FFAR3). TH, T help-
er; TN, naive T cells; PPARγ, peroxisome proliferator-activated re-
ceptor gamma; HPGDS, hematopoietic prostaglandin D synthase; 
FFAR3, free fatty acid receptor 3; TH9, T helper type 9.
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Allergic Asthma
Allergic asthma is a classic example of a chronic, type-

2-driven disease, characterized by inflammation, ob-
struction, mucus secretion, and hyperresponsiveness of 
the lower airways [128]. While TH2 cells have long been 
implicated in allergic airway inflammation, recent evi-
dence from mice and humans indicates that the disease is 
specifically driven by pathogenic TH2 cells [46, 52, 53, 67, 
80, 85]. This is further supported by successful clinical 
application of monoclonal antibodies against IL-5 and 
IL-13. Moreover, other therapeutics targeting pathogenic 
TH2 cells or associated pathways, such as anti-TSLP and 
anti-IL-33 treatments, are currently being developed in 
allergic asthma [129].

Atopic Dermatitis
AD is a common chronic inflammatory skin disease 

and affects both children and adults. AD has a genetic 
background and is characterized by a disturbed skin bar-
rier and excessive TH2 mediated inflammation [130]. 
Clinically, AD presents with eczematous skin lesions and 
intense pruritus [95]. First, evidence that the pathogenic 
TH2 cell subset might be crucially involved in AD came 
from mouse models in which a specific subset of CCR8+ 
memory TH2 cells expressing high levels of IL-5 was 

found to drive chronic skin inflammation [49]. In accor-
dance with these findings, CCL18, a ligand of CCR8, is 
overexpressed in lesional skin of AD and correlates high-
ly with disease severity [130]. Furthermore, TH2 cells ex-
pressing IL-5 and HPGDS were also linked to chronic in-
flammation in AD [80]. Accordingly, blocking of the TH2 
pathway with a monoclonal antibody against the alpha-
chain of the IL-4/IL-13 receptor shows high efficacy in 
severe AD [95]. However, initial clinical trials in which 
IL-25 or IL-33 signaling were targeted in AD showed am-
biguous results. Future studies will have to address wheth-
er targeting of other pathways associated with pathogen-
ic TH2 cells, such as the CCL18/CCR8 axis, are more 
promising therapeutic targets in AD.

Food Allergy
Food allergy is defined as an immune-mediated ad-

verse reaction to food and has become an increasingly 
prevalent health problem in developed parts of the world. 
Mechanistically, it is thought that allergen-specific TH2 
cells drive IgE class switching and the expansion of aller-
gic effector cells [131]. A growing body of evidence sug-
gests that in particular, pathogenic TH2 cells are the key 
drivers of food allergy [50]. For instance, IL-5, IL-9,  
HPGDS, and IL-33 are closely linked to intestinal pathol-
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Fig. 5. Putative differentiation and func-
tion of pathogenic TH2 cells in allergic in-
flammation of epithelial tissue. TN encoun-
ter cognate antigens presented by APCs 
and differentiate into cTH2. cTH2 migrate 
through postcapillary venules and infiltrate 
target peripheral tissue (e.g., epithelial tis-
sue). In the peripheral tissue, additional 
polarizing signals, such as TGF-β are likely 
required to induce the full phenotype of 
pathogenic TH2 cells. Pathogenicity of TH2 
cells likely results from (1) the ability to 
sense epithelia-derived tissue alarmins like 
IL-33 or IL-25, (2) the adaptation to the 
metabolic microenvironment via TGF-β-
induced PPARγ expression, and (3) a 
broadened effector repertoire, including 
IL-9 and IL-5, to active local innate im-
mune cells, such as mast cells and eosino-
phils, respectively. TH, T helper; TN, naive 
T cells; PPARγ, peroxisome proliferator-
activated receptor gamma; APC, antigen-
presenting cell; cTH2, conventional TH2 
cells.
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ogy in food allergy in humans as well as in disease models 
[60, 80]. In the context of established peanut allergy, a 
study provides evidence that interruption of the TH2 
pathway with a monoclonal antibody against the alpha-
chain of the IL-4/IL-13 receptor inhibits IgE recall re-
sponses, skews the TH2 dominant cytokine response, and 
prevents induction of anaphylaxis [132]. In further sup-
port of this scenario, a recent clinical trial with an anti-
IL-33 antibody in peanut allergy showed very promising 
results [133].

Eosinophilic Esophagitis
EoE is a chronic inflammatory disease of the esopha-

gus, mediated by a TH2  and eosinophil-dominated in-
flammation and consecutive esophageal dysfunction 
[134]. EoE patients suffer from a range of symptoms such 
as dysphagia, chest pain, and reflux [135]. Recent single-
cell analysis of T cells isolated from EoE tissue identified 
a TH2 cell population that expresses HPGDS, CRTH2, and 
IL-17RB; produces prodigious levels of IL-5 and IL-13; 
and correlates with disease severity [66]. Thus, these data 
add EoE to the growing list of diseases that are likely me-
diated by pathogenic TH2 cells.

Taken together, there is strong evidence that allergic 
inflammation in various human tissues is mediated by 
specific TH2 cells with particular phenotypic and func-
tional properties, thus warranting their classification as 
pathogenic TH2 cells. Their importance for disease patho-
genesis is supported by a growing number of clinical drug 
trials in which specific targeting of pathogenic TH2 cell 
biology shows beneficial effects [133, 136–138].

Conclusion

Subdividing TH cell subsets even further into “conven-
tional” and “pathogenic” “subsubsets” might appear like 
an academic exercise of questionable clinical and concep-
tual use at first. At the same time, it still represents an 
oversimplification of the vast diversity and plasticity of 
TH cells. Yet, it can serve as a model to understand clinical 
phenomena and to guide drug development. First, results 
of early clinical trials suggest that this might be the case, 
as shown with anti-IL-33 antibodies in human food al-
lergy and in preclinical models of multiple atopic diseas-
es [133, 136–138]. Similar predictions can be made about 
targeting IL-5/IL-5R [86], IL-25/IL-17RB [139], or, pos-
sibly, PPARγ [97]. Therapeutic targeting of the latter may 
be an elegant way of inhibiting multiple aspects of patho-
genic TH2 cells by interfering with their transcriptional 

regulation. In mesenchymal cells, PPARγ regulates the 
expression of a wide range of genes, thereby acting as a 
“master regulator” of these cells. By analogy, PPARγ 
might represent the Achilles heel of pathogenic TH2 cells, 
and its modulation might normalize multiple pathogenic 
pathways at once. However, targeting PPARγ specifically 
in TH2 cells represents a major pharmacological chal-
lenge as PPARγ is expressed in multiple cell types of mul-
tiple tissues in which it exerts protective functions [103]. 
Regardless, a better understanding of the intricacies of 
pathogenic cells and cTH2s will improve our understand-
ing of the pathogenesis of allergic diseases and stimulate 
the development of novel diagnostic and therapeutic 
tools.
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