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Abstract
There is emerging evidence that the respiratory microbiota
influences airway health, and there has beenintense research
interest in its role in respiratory infections and allergic airway
disorders. This review aims to summarize current knowledge
of nasal microbiome and virome and their associations with
childhood rhinitis and wheeze. The healthy infant nasal mi-
crobiome is dominated by Corynebacteriaceae and Staphylo-
coccaceae. In contrast, infants who subsequently develop re-
spiratory disorders are depleted of these microbes and are
instead enriched with Proteobacteria spp. Although human
rhinovirus and human respiratory syncytial virus are well-
documented major viral pathogens that trigger rhinitis and
wheezing disorders in infants, recent limited data indicate
that bacteriophages may have a role in respiratory health.
Future work investigating the interplay between commensal
microbiota, virome, and host immunological responses is an
important step toward understanding the dynamics of the
nasal community in order to develop a strategical approach
to combat these common childhood respiratory disorders.

© 2021 S. Karger AG, Basel

Introduction

In recent years, the influence of commensal microbio-
ta on the development of host immunity has been the fo-
cus of intense research. The commensal microbiota also
maintains the integrity of mucosal and epithelial barriers
and modulates an equilibrium between commensal and
pathogen colonization, which in turn impacts upon
health and disease states [1]. This, therefore, gives rise to
the notion that establishing a symbiotic relationship be-
tween host and microbiota in early life is important and
could influence health in later life [2]. In this regard, the
influence of the gut microbiome on immunity has been
the main focus of attention. However, emerging data have
also provided evidence that the respiratory microbiota is
associated with airway health and may affect the develop-
ment of respiratory infections and disorders [3].

This review aims to present the current knowledge on
the upper airway microbiota and its development through
infancy and its influence on childhood respiratory infec-
tions and disorders such as rhinitis and wheeze. In view
of the limited published work, we also intend to identify
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knowledge gaps and directions for future research. We
also recognized that data comparisons between studies
may be challenging as nasal sampling techniques (ante-
rior nares vs. nasopharyngeal swabs) and molecular de-
tection techniques varied considerably between studies.
These factors have to be considered when interpreting
data between studies.

Methodology

The literature search for this review, which included relevant
cohort and case-control studies, was conducted between August
and October 2020 using the Google Scholar and PubMed database.
The search terms used were (1) ([nasal] OR [nose] OR [nasopha-
ryngeal]) AND ([infant] OR [neonate]) AND ([rhinitis] OR
[wheeze]) and (2) (nasal) OR (microbiome) OR (virome) OR (bac-
teriophage). The search was limited to English publications in the
last 2 decades and children from birth to 18 years.

Early Establishment and Succession of Nasal
Microbiota in Infants

The upper respiratory tract has been recognized as the
main entry point [4] and reservoir [5] for respiratory
commensal bacteria and pathogens. In adults, the bacte-
rial composition of the nasal microbiome is stable and
diverse as a result of maturation due to age progression
and interaction with the environmental microbiome [6,
7]. In comparison, the nasal microbiome of children, es-
pecially under 3 years of age, demonstrates significant
variability in composition, both between individuals and
across age groups [8, 9]. The data from these studies are
presented as relative abundance, and data on the bacteria
density are not available with the 16S ribosomal RNA
(rRNA) sequencing methods. Table 1 summarizes 5 stud-
ies performed on birth cohorts with repeated nasal sam-
pling over first 1-2 years of life. Although general com-
parisons in nasal microbiome profiles can be made, it is
recognized that there are some methodological differenc-
es between these studies. One such difference is the nasal
sampling site. Two studies [10, 11] of the 5 studies sam-
pled the anterior nares, whilst the other 3 utilized naso-
pharyngeal swabs [9, 12, 13]. It has been shown that the
nasopharynx is more likely to be colonized by nonlipo-
philic skin colonizers such as Haemophilus spp. and Strep-
tococcus spp.; thus, these species might be more likely to
be enriched in studies using nasopharyngeal samples [11,
12, 14, 15]. In terms of DNA sequencing techniques, 4
studies [9-12] utilized the 16S rRNA 454 pyrosequencing
technique, except for one [13] which applied the more
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advanced DNA shotgun sequencing techniques of the
16S rRNA gene. These techniques support comparisons
forlarger-order bacterial taxa. However, the low sequenc-
ing depth precludes species-specific comparisons [16].

The overall results of these studies show that nasal mi-
crobiome undergoes dynamic changes in microbiota
composition throughout the first few years of life. There
is low microbial diversity soon after birth, and this in-
creases over the next few months of life. Five longitudinal
studies from European and American birth cohorts in-
volving nasal sampling over the first 2 years of life showed
that the nasopharyngeal microbiome of healthy infants is
dominated by a high abundance of Corynebacteriaceae
(Actinobacteria phylum), Moraxellaceae (Proteobacteria
phylum), and Staphylococcaceae (Firmicutes phylum),
with some studies describing also the presence of Pasteu-
rellaceae (Proteobacteria phylum), Propionibacteriaceae
(Actinobacteria phylum), and Lactobacillaceae (Fir-
micutes phylum) in the first few months of life. These ear-
ly colonizers are subsequently replaced by a dominance of
Streptococcaceae (Firmicutes phylum) and/or either Cory-
nebacteriaceae or Moraxellaceae and other minor families
[9-13]. Based on these studies, the changing profile of the
nasal microbiome in the first 2 years of life is depicted in
Figure 1. The adolescent/adult nasal microbiome profile
is also included as a comparison [17, 18]. The study from
the Netherlands and Switzerland demonstrated strong
seasonal variability of microbial profiles [9, 11]. The win-
ter profile was dominated by Pasteurellaceae (Proteobac-
teria phylum), while the summer was dominated by Cory-
nebacteriaceae (Actinobacteria phylum) and/or Bacte-
roidetes phylum. The differences were postulated to be a
result of interactions between seasonal infection patterns
and the host-environment equilibrium, where distur-
bances to the native nasal microbiota could be induced by
infection by pathogenic bacteria in the environment.

The consistent presence and dominance of the com-
mensals Corynebacteriaceae and Staphylococcaceae in the
nasal microbial profiles in early life have been substanti-
ated by the longitudinal nasal microbial profiles of healthy
controls from our study [19]. These early microbial pro-
files have also been shown to be associated with protec-
tion against any respiratory infection in later childhood
[9, 14, 20]. The exact role of Moraxellaceae is still contro-
versial. The Moraxellaceae family has been suggested to
be a symbiotic stabilizer of the nasal microbiome in early
life and associated with a lower probability of developing
upper respiratory tract infections [11, 12]. However, this
observation has not been consistent between studies [14,
21, 22].
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Bacteria with low abundance may also play a role in a
healthy infant’s respiratory tract. Lactobacillus spp. is a
probiotic bacterium that is well known for its protective
effects on the human gut microbiome and gut health. In
recent years, longitudinal profiles of the healthy infants’
nasal microbiome have shown that although Lactobacil-
lus is a minor bacteria (<1% relative abundance), it could
provide protection from infection and disorders, likely by
inhibiting pathogenic bacteria growth through inhibitory
substances such as bacteriocins [9, 10].

Infant Nasal Microbiota and the Development of
Rhinitis and Wheeze Disorders in Childhood

Compared to healthy infants, a reduced diversity of
nasal microbiota is associated with subsequent rhinitis
and wheezing disorders, as well as allergen sensitization
[19, 23, 24]. These studies suggest that colonization with
a diverse array of microbes may be protective against in-
flammatory disorders of the upper and lower airways.
The nasal microbiota promotes host resistance against in-
fection with pathogens by (1) competing for sites of colo-
nization and (2) direct production of inhibitory mole-
cules and depletion of nutrients to prevent proliferation
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of pathogens. Table 2 summarizes 11 studies performed
in both birth cohorts and cross-sectional studies which
provide insights into the association between the infant
nasal bacterial/viral microbiota succession/profiles. Their
contribution to the subsequent development of respira-
tory disorders such as wheeze and rhinitis in childhood is
also depicted in Figure 2.

There is evidence that Corynebacterium spp. is an im-
portant commensal for the development of healthy infant
nasal microbiota. The Growing Up in Singapore toward
Healthy Outcomes (GUSTO) birth cohort study showed
that the overall abundance of Corynebacterium spp. found
in the nasal microbiota was enriched in healthy infants
compared to infants with rhinitis and/or wheeze in the
first 18 months of life [19]. Moreover, Corynebacterium
spp. in nasal epithelium of healthy infants has been shown
to inhibit S. aureus colonization, which in turn reduced
S. aureus infections [24]. Biesbroek and colleagues [12]
also reported a lower incidence of upper respiratory tract
infections in infants with a Corynebacterium-dominated
nasal microbiome profile in early life.

Apart from Corynebacterium spp., a high abundance
of S. epidermidis is also associated with a reduced pres-
ence of potential pathogens such as S. aureus and M. ca-
tarrhalis. S. epidermidis was shown to exhibit high anti-
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Fig. 2. Graphic representation of the potential role of upper airway bacteria, eukaryotic viruses, and bacterio-
phages in the pathogenesis of rhinitis and/or wheezing.

microbial peptide-inducing and biofilm-forming capaci-
ties which help to outcompete pathogenic bacteria during
nasal colonization and has the ability to protect itself from
epithelial antimicrobial peptides in vivo [25]. In addition,
Rosas-Salazar et al. [26] found a lower abundance of Lac-
tobacillus in the nasal microbiome of wheezing infants in
the Infant Susceptibility to Pulmonary Infections and
Asthma Following RSV Exposure (INSPIRE) longitudi-
nal cohort. It could thus be postulated that the presence
of Lactobacillus might be protective against development
of viral-induced wheezing disorders.

On the other hand, early nasal establishment with pro-
inflammatory bacteria species has been postulated to pre-
dispose infants to respiratory disorders such as rhinitis
and wheezing. The Proteobacteria phylum, predominant-
ly Oxalobacteraceae and Moraxellaceae genera, was found
to be more abundant in infants with rhinitis and concom-
itant wheeze in the first 18 months of life (Singapore) and
in dust mite-sensitized rhinitis and asthma infant at 3-5
years of age (Taiwan), respectively [19, 23].

In a culture-based study, Bisgaard and colleagues [27]
observed an association between increased abundance of
M. catarrhalis and H. influenzae (Proteobacteria phylum)
and S. pneumoniae (Firmicutes phylum) in hypopharyn-
geal secretions of asymptomatic 1-month-old infants,
and subsequent acute wheeze. Furthermore, Teo and col-
leagues [14] demonstrated with 16S rRNA sequencing
that higher abundance of Streptococcus spp. in the nasal

Nasal Microbiota in Childhood Rhinitis
and Wheeze

microbiome of 7-9-week-old infants was associated with
an increased prevalence for chronic wheeze by 5 years of
age. These earlier reports are consistent with findings of
a Danish cohort of children born to mothers with asthma.
The authors also found an association between coloniza-
tion with H. influenzae, S. pneumoniae, or M. catarrhalis
in the upper airways at 1 month and development of trou-
blesome lung symptoms such as cough and wheezing
within first year of life [28]. A more recent study involv-
ing the COAST birth cohort study reported that overrep-
resentation of these same bacteria, H. influenzae, S. pneu-
moniae, or M. catarrhalis, during wheezing illnesses in
the first 2 years of life was associated with asthma in later
childhood. Moreover, a Staphylococcus-dominant micro-
biome (predominance of S. aureus) in the first 6 months
of life was associated with increased risk of recurrent
wheezing by age 3 years [29]. In another study in Ecua-
dorian infants with noninfectious early-onset wheezing,
there was a significantly higher abundance of Neisseria-
ceae and Haemophilus families in wheezing children at 10
months, compared to healthy subjects [30]. These longi-
tudinal studies strongly support the notion that the early
establishment of certain bacteria belonging to the Proteo-
bacteria and Firmicutes phyla could predispose to subse-

quent development of rhinitis and wheeze disorders in
early childhood.
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Proinflammatory Commensals and the Development
of Childhood Respiratory Disorders

Several mechanisms have been proposed to explain the
links between early proinflammatory bacterial coloniza-
tion, in particular S. pneumoniae, H. influenzae, and M. ca-
tarrhalis, and the development of respiratory disorders. The
survival of these commensals in the nasal mucosa has been
attributed to their ability to form interspecies biofilms. Bio-
film formation between S. pneumoniae and H. influenzae
confers increased resistance to host antimicrobial agents
(lysozyme, lactoferrin, and lipocalin), increased expression
of cell surface appendages (type IV pili, lipopolysaccharide
[LPS], or lipooligosaccharide) [31, 32], and the release of
biomolecules such as extracellular DNA [33, 34], which fur-
ther promotes the adhesion and cohesion properties of bio-
film cells. Moreover, studies also showed that co-coloniza-
tion with M. catarrhalis whose outer membrane vesicles
contain phospholipids, adhesins, and immunomodulatory
compounds, such as lipooligosaccharide, increases resis-
tance of biofilms to antibiotics (amoxicillin) and host clear-
ance [35]. Autoinducer-2 - an essential quorum signaling
molecule for interbacterial communication — which is con-
served among numerous bacterial species including H. in-
fluenzae enhances the establishment and maturation of
polymicrobial biofilms containing these species [36].

Furthermore, colonization by these proinflammatory
bacteria induces species-specific stimulation of the immune
responses of the airway mucosa and increases inflamma-
tion accompanied by higher production and release of host
antimicrobial peptides and proteins in the nasal epithelium
via activation of Toll-like receptors (TLR). Lipoteichoic ac-
ids of S. pneumoniae are sensed by TLR-2 [37], whereas li-
poproteins and LPS of H. influenzae are recognized by TLR-
2 and TLR-4, respectively [38]; TLR-4 has also been report-
ed to recognize the pore-forming toxin pneumolysin of .
pneumoniae [39]. To substantiate these in vitro findings,
the Copenhagen Prospective Study of Asthma in Child-
hood 2010 birth cohort demonstrated that the upper airway
lining fluid of neonates colonized with M. catarrhalis, H.
influenzae, and S. pneumoniae had higher levels of innate/
TH1/TH2/TH17-related cytokines and chemokines com-
pared to noncolonized neonates [40]. Infants who had pro-
inflammatory responses induced by these bacteria were
subsequently shown to be at higher risk of asthma at the age
of 7 years. The investigators also showed that peripheral
blood mononuclear cells collected from these children at
age 6 months induced aberrant production of TH2 and
TH17 cytokines in response to H influenza, M catarrhalis,
and S pneumoniae compared to nonasthma controls [41].

Nasal Microbiota in Childhood Rhinitis
and Wheeze

These studies suggest that early colonization with these pro-
inflammatory bacteria could influence type 2 chronic in-
flammation and subsequent asthma.

Nasal Virome

The respiratory virome is also an integral component
of the nasal microbiome, encompassing eukaryotic and
prokaryotic (bacteriophages) viruses which are found in
the upper respiratory tract and within the lung. However,
little is known about the role of bacteriophages and their
associations with eukaryotic viruses in respiratory health.
Moreover, there is still a lack of mechanistic data to pro-
vide insights into the physiological role of commensal vi-
ruses in respiratory homeostasis.

The role of infectious eukaryotic viruses during episodes
of acute respiratory tract infections (ARTIs) in young chil-
dren and their impact on subsequent development of
wheezing disorders are well documented. Human rhinovi-
rus (HRV) and human respiratory syncytial virus (RSV) are
major viral pathogens that trigger rhinitis and wheezing
disorders in infants and are also risk factors for subsequent
recurrent wheeze disorders in later childhood [27, 42-45].
These viruses incite lung damage through various immu-
nological pathways such as the activation of proinflamma-
tory mediators (such as TNF-q, interleukins, and chemo-
kines) as well as activation of leukocytes at the infection site,
resulting in lung function impairment, persistent bronchial
hyperreactivity, airway inflammation, and promoting Th2
sensitization [46]. Moreover, children with concomitant al-
lergen sensitization and skewed Th2-mediated responses
were shown to have impaired type I and type I1l interferons
leading to increased susceptibility to RSV and rhinovirus
infections and recurrent wheezing [47, 48].

Respiratory viruses such as HRV and RSV can trigger an
outgrowth, rather than a new acquisition of S. pneumoniae
and M. catarrhalis from the resident microbial community
[49], as well as enhance their adherence to the respiratory
epithelium by upregulating the expression of bacterial ad-
hesion molecules such as fibronectin and platelet-activating
factor receptor [50], which in turn facilitate secondary bac-
terial infection [51], and depress innate immune responses
such as neutrophil and natural killer cell recruitment [52].
HRV was also shown to induce impairment on epithelial
proliferation and promote airway remodeling [53].

Far less is known about the commensal virome, particu-
larly its succession from birth, and its role in modulating
respiratory health. Several technical challenges exist in
studying the nasal virome. The low biomass and subopti-
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mal viral nucleic acid extraction technology currently avail-
able limits viral detection capabilities. The odds of detecting
viral agents in a study of infants and young children up to
5 years old decreased significantly (up to 70%) with increas-
ing age [54], which might be due to fewer viral infections in
older children. For these reasons, untargeted metagenomic
sequencing for the identification of commensal viruses in
nasal specimens has not been systematically evaluated. Fur-
thermore, knowledge of bacteriophages has lagged substan-
tially behind that of bacteria and other members of the mi-
crobiome due to technical difficulties in the isolation of bac-
teriophages and limited reference databases for phage
genomes [55]. Nevertheless, the improvement of molecular
detection techniques, including standardization, is already
and will continue to facilitate the field [56].

A recent metagenomic sequencing study of the nasal vi-
rome in hospitalized asthmatic children below 15 years of
age revealed that rhinovirus C, bocavirus 1, RSV-B, and
parvovirus B19 were commonly detected, and bacterio-
phages such as Propionibacterium phage, Staphylococcus
phage, and Streptococcus phage were also present, albeit
with lower read counts [57]. Another study reported a sig-
nificant elevation of relative abundance of Propionibacte-
rium phages in children with multiple ARTIs compared to
those with isolated ARTIs. This relative increase in abun-
dance of these phages was associated with higher levels of
serum tissue inhibitor matrix metalloproteinase 1 and
platelet-derived growth factor subunit BB, which are in-
volved in airway remodeling and epithelial inflammation
conferring susceptibility to common respiratory viral infec-
tions or colonization by pathogenic bacteria [58]. These
studies shed light on the possible role of bacteriophages on
the upper respiratory tract and lung infections in children.

To the best of our knowledge, there is only 1 preprint
study evaluating the nasal virome in asymptomatic chil-
dren [59]. This study evaluated the nasal virome in Euro-
pean preschool children with stable asthma and who were
symptom-free for atleast 1 month. They showed a relative
bacteriophage deficiency (richness and diversity) and in-
creased eukaryotic viral presence, predominantly Anello-
viruses, compared to healthy controls, indicating that chil-
dren with asthma have a characteristically dysbiotic vi-
rome. The core eukaryotic virome in both groups
consisted of Caudovirales, Anelloviridae, and Picornaviri-
dae families. However, as this study was conducted in chil-
dren with known asthma, it is not known if the differenc-
es observed in the respiratory virome during stable asth-
ma episodes might be attributed to the disease itself or its
treatment. Despite its small sample size, this study sug-
gests that maintaining a stable respiratory core virome
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comprising eukaryote viruses and bacteriophages could
be functionally important for the maintenance of a
“healthy” equilibrium and could confer protection against
asthma symptoms. Bacteriophages have been suggested to
play an essential role in regulating bacterial populations
within the respiratory tract that would in turn prime and
modulate host immune responses in children [60-62].

Conclusion

This review provides a broad overview of the current
body of evidence relating to the human upper respiratory
microbiota and virome and its influence on rhinitis and
wheezing disorders in children. There are substantial data
showing that there are distinct differences in nasal micro-
biota composition in children with respiratory disorders
and that colonization patterns in early life appear to impact
development of disease in later life. There is also now emerg-
ing evidence that commensal respiratory virome, including
bacteriophages, also play a role in childhood respiratory in-
fections and asthma, but advances in viral detection technol-
ogy are needed to improve our understanding of the host-
virome interactions in disease pathogenesis. Understanding
the influence of the commensal microbiota and virome on
the integrity of the respiratory tract and mucosal immune
responses is an important step toward the implementation
of strategies to reduce susceptibility to these disorders.
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