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Abstract

Background: This study aims to investigate the regulatory
effect of microRNA-96-5p (miR-96-5p) in the pathophysio-
logical process of allergic rhinitis (AR). Methods: Nasal mu-
cosal tissue samples were collected from AR patients and
healthy controls. An in vitro AR model was established by
stimulating human nasal epithelial cells (HNECs) with inter-
leukin (IL)-13. The expressions of target genes and proteins
were measured by gPCR, Western blot, or ELISA. Dual-lucif-
erase reporter assay and pull-down assay were performed to
confirm the interaction between miR-96-5p and DEP do-
main-containing mammalian target of rapamycin-interact-
ing protein (DEPTOR). Results: The level of miR-96-5p was
increased while the expression of DEPTOR was decreased in
AR patients. The expressions of proinflammatory cytokines
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were markedly increased and the mammalian target of ra-
pamycin (MTOR)/NF-kB pathway was activated in HNECs fol-
lowing IL-13 stimulation. miR-96-5p downregulation allevi-
ated the stimulated function by IL-13. DEPTOR was the tar-
get of miR-96-5p. Knockdown of DEPTOR reversed the
function of miR-96-5p inhibitor on IL-13-stimulated HNECs.
Conclusions: The current study showed that miR-96-5p and
DEPTOR were aberrantly expressed in AR nasal mucosa. miR-
96-5p knockdown inhibited the production of inflammatory
cytokines and the activation of mMTOR/NF-kB pathway via tar-
geting DEPTOR. These findings suggested that miR-96-5p
might be used as a diagnostic marker and therapeutic target

for the treatment of AR. ©2021 S. Karger AG, Basel

Introduction

Rhinitis is defined as nasal mucosa inflammation and
is considered as one of the most common disorder world-
wide, affecting 10-20% of the population [1]. Allergic rhi-
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nitis (AR) occurs when the immune system overreacts
with allergens in the air, usually environmental allergens,
such as pollen, pet hair, dust, or mold [2]. The clinical
symptoms of AR include a runny or stuffy nose, sneezing,
red, itchy, watery eyes, and swelling around the eyes [3].
These clinical symptoms are known to be induced by in-
flammatory mediators, such as histamine and leukotri-
enes, and inflammatory cytokines produced by mast cell,
eosinophils, and basophils [4]. The incidence of AR is in-
creasing and this disease has a negative impact on pa-
tients’ quality of life, work performance, and quality of
sleep [5]. Despite the rapid development of various med-
ical treatments for AR, including immunotherapy, intra-
nasal steroids, and anti-histamines, there are still around
20% of the patients with no significant improvement in
symptoms [6]. Thus, it is of significant importance to
identify new therapeutic targets and improve treatment
strategies for AR patients.

The mammalian target of rapamycin (mTOR) is a con-
served serine/threonine protein kinase that plays impor-
tant roles in multiple cellular processes including cell me-
tabolism, growth, proliferation, survival, and angiogene-
sis [7-9]. The activation of mTOR was negatively
regulated by distinct proteins, such as DEP domain-con-
taining mTOR-interacting protein (DEPTOR). DEPTOR
was reported to be associated with both mTORCI1 and
mTORC2 through direct binding [10]. It was reported
that mTORCI inhibited autophagy via phosphorylation
of ULK1/RB1CC1/ATG13/ATG101 complex, and thus
upregulation of DEPTOR decreased the mTOR activity,
induces the autophagy, and inhibits the inflammation
[11]. It has been reported that human nasal epithelial cells
(HNECs) released interleukin (IL)-33, an endogenous
signal of tissue damage, to regulate the excretion of in-
flammatory factors from mast cells via activating the
phosphoinositide 3-kinase (PI3K)/protein kinase B
(Akt)/mTOR signaling pathway in AR [12]. The tran-
scription factor NF-kB is an essential mediator of im-
mune responses and inflammation that is often regulated
by Akt/mTOR-dependent signaling [13]. A previous
study showed that the NF-«xB pathway was activated in a
mouse model of ovalbumin-induced AR [14]. From these
findings, we speculated that the suppression of mTOR/
NF-xB signaling by DEPTOR may protect against the
progression of AR.

MicroRNAs (miRNAs) are small, single-stranded,
noncoding RNAs with 22-24 nucleotides in length, which
play critical roles in RNA silencing and post-transcrip-
tional regulation of gene expression in multiple organ-
isms [15]. miRNAs regulate the expression of its target
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gene by binding to the 3'-UTR of this gene and promote
its cleavage [16, 17]. There are approximately 2,200 mi-
RNAs in mammalian genomes, and one-third of human
genomes are regulated by miRNAs [18, 19]. Emerging
evidence has shown that miRNAs play critical roles in the
regulation of the key pathogenic mechanisms of human
diseases, including cancer, cardiac failure, and allergic in-
flammation [20, 21]. MiR-96-5p is identified as an onco-
gene and biomarker in multiple cancers, such as hepato-
cellular carcinoma, breast cancer, and prostate cancer
[22-24]. It has been reported to activate the PI3K/Akt/
mTOR signaling via directly binding to phosphatase and
tensin homolog, the main negative regulator of the PI3K/
Akt pathway, in head and neck squamous cell carcinoma
cells [25]. Interestingly, TargetScanHuman database
(http://www.targetscan.org/vert_72/)  predicted that
DEPTOR was the target of miR-96-5p. However, wheth-
er the regulation of inflammation in AR by miR-96-5p is
associated with DEPTOR remained unknown.

In the current study, we aimed to explore the regula-
tory effects of miR-96-5p in the progression of AR and the
potential mechanisms involved in this process. Our re-
sults showed that the downregulation of miR-96-5p in a
cell model of AR inhibited the expression of proinflam-
matory cytokines and the activation of mTOR/NF-«B sig-
naling pathway via targeting DEPTOR.

Material and Method

Antibodies and Reagents

Anti-p-IkBa (#2859), anti-IkBa (#4812), anti-p-p65 (#3033T),
anti-p65 (#3034), anti-p-mTOR (#2974T), anti-mTOR (#2983T),
anti-p-4EBP1 (#2855), and anti-4EBP1 (#9452) were obtained
from Cell Signaling Technology (Danvers, MA, USA). Anti-B-
actin (sc-47778) and anti-DEPTOR (sc-398169) were obtained
from Santa Cruz Biotechnology (Dallas, TX, USA). Rapamycin
(Rapa) and IL-13 were purchased from Sigma-Aldrich (St. Louis,
MO, USA). DEPTOR siRNA and siRNA negative control were
purchased from Invitrogen (Shanghai, China). miR-96-5p inhibi-
tor and inhibitor negative control were obtained from Gene Phar-
ma (Shanghai, China). The sequences of siRNA and miRNA in-
hibitors were si-DEPTOR, 5-GCCATGACAATCGGAAATC-
TA-3'; siRNA negative control, 5~ACGUGACACGUUCGGA-
GAA-3"; miR-96-5p inhibitor, 5-UUUGGCACUAGCACAUU-
UUUGCU-3';and inhibitor negative control, 5-CAGUACUUUU-
GUGUAGUACAA-3".

Human Nasal Mucosal Samples

Nasal mucosal specimens were obtained from the inferior tur-
binate tissues of AR patients (n = 24) and healthy controls (n =
24) as previously described [26]. The diagnosis of AR was based
on allergic rhinitis and its impact on asthma criteria and a dem-
onstration of sensitization by a positive skin-prick test. No pa-
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Table 1. Prime sequences for gPCR

Genes Prime sequences (5'-3")
miR-96-5p
Forward GCCTTTGGCACTAGCACATT
Reverse GTGCAGGGTCCGAGGT
IL-1p
Forward CTGAGCTCGCCAGTGAAATG
Reverse TGTCCATGGCCACAACAACT
IL-6
Forward ACAGGGAGAGGGAGCGATAA
Reverse GAGAAGGCAACTGGACCGAA
Eotaxin
Forward CCCCTTCAGCGACTAGAGAG
Reverse TCTTGGGGTCGGCACAGAT
GM-CSF
Forward ATGTGGCTGCAGAGCCTGCTGC
Reverse CTCCCAGCAGTCAAAGGG
GAPDH
Forward CCAGGTGGTCTCCTCTGA
Reverse GCTGTAGCCAAATCGTTGT
U6
Forward CTCGCTTCGGCAGCACA
Reverse AACGCTTCACGAATTTGCGT
DEPTOR
Forward GCTCCGTATGCAAGGAAGAC
Reverse CCGTTGACAGAGACGACAAA

IL,interleukin; DEPTOR, DEP domain-containingmammalian
target of rapamycin-interacting protein.

tient received corticosteroid therapy 1 month before recruit-
ment. This study was approved by the Ethics Committee of Hain-
an General Hospital. All patients provided written informed
consent.

Cell Culture, Transfection, and Treatments

Primary HNECs were isolated from the inferior turbinate tis-
sues of AR patients and cultured in Bronchial Epithelial Growth
Medium (Lonza, Basel, Switzerland) in a 5% CO, humidified in-
cubator at 37°C. When 70-80% confluency was reached, HNECs
were passaged. The second-passage cells were used for subsequent
experiments.

HNECs were transfected with designated sequences (miR-96-
5p inhibitor or inhibitor negative control; si-DEPTOR or si-con-
trol) diluted in OptiMEM medium with Lipofectamin 3000 (Invi-
trogen, USA) following the manufacturer’s instructions. After 48
h, all groups of HNECs were treated with or without IL-13 (10 ng/
mL) for 48 h in culture medium as previously described [27]. Cells
treated with Rapa at 1 uM were served as a positive control.

Quantitative PCR

The total RNAs were isolated from human nasal mucosal sam-
ples and primary HNECs using Trizol reagent (Thermo Fisher Sci-
entific, Japan) according to the manufacturer’s protocols. Then
2 pg of the RNAs were reverse transcribed to cDNAs using Reverse
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Transcription Kit (Thermo Fisher Scientific). qQPCR was per-
formed using TagMan primers, and the primers used in this study
were listed in Table 1. The reaction condition for gPCR was as fol-
lows: denature at 95°C for 10 min, followed by 40 amplification
cycles of 95°C for 15 s and 60°C for 1 min. The expression of target
genes was normalized to GAPDH, and the data were analyzed us-
ing the 2724¢T relative quantification method.

ELISA Assay

The supernatants of HNECs were collected at designated time
points after the treatment with IL-13. The expressions of cytokines,
including IL-1p, IL-6, eotaxin, and GM-CSF were determined us-
ing ELISA kits (Abcam, MA, USA) following the manufacture’s
protocols.

Dual-Luciferase Reporter Assay

HNECs were co-transfected with pmirGLO-DEPTOR-WT-
3'UTR or pmirGLO-DEPTOR-MUT-3'UTR (Promega, Madison,
WI, USA) and miR-96-5p mimic or miR-96-5p mimic negative
control (GenePharma, Shanghai, China) with Lipofectamin 3000.
Forty-eight hours after transfection, the relative luciferase activity
was determined using a dual-luciferase reporter assay kit (Prome-
ga, Madison, WI, USA).

Western Blot

Proteins from human nasal mucosal samples and HNECs were
prepared with the digestion of cell lysis buffer (50 mM Tris-HCI
[pH 7.4], 1% Nonidet P-40, 150 mM NaCl, ] mM EDTA, and 1 mM
PMSEF). The protein concentration of each sample was measured
using Bradford protein dye reagent (Bio-Rad, USA). Protein sam-
ples (30 ug) were separated on SDS-PAGE and transferred to poly-
vinylidene difluoride membranes. Then the membranes were
blocked with 5% nonfat dry milk in TBS for 1 h and incubated with
primary antibodies overnight at 4°C. After 2 washes, the mem-
branes were incubated with an HRP-conjugated secondary anti-
body for 1 h at room temperature. The protein expression was
visualized using enhanced chemiluminescence procedure follow-
ing the manufacturer’s instructions.

Argonaute Immunoprecipitation Assay

The pull-down assay was performed in HNECs using a Dyna-
beads Protein G Immunoprecipitation Kit (Thermo Fisher Scien-
tific) according to the manufacturer’s instructions. Briefly, a vol-
ume of 10 pL of anti-Argonaute2 antibody (#SAB4200085, Sigma-
Aldrich) was coupled with 1.5 mg Dynabeads. The protein lysates
(100 pg and 200 pL) isolated from HNECs were incubated with the
antibody-treated beads at room temperature for 20 min. After 3
washes, target antigens were eluted with the elution buffer. The
enrichment of DEPTOR was analyzed by qPCR.

Statistical Analysis

Data were analyzed in GraphPad Prism and presented as means
+ SD (standard deviation). All experiments were performed in
triplicate and repeated at least 3 times. The statistical significance
between 2 groups was evaluated using unpaired 2-tailed Student ¢
tests. One-way AVONA with Tukey’s post-test was used for the
comparison among 3 or more groups. The linear correlation coef-
ficient was used to estimate the correlation in DEPTOR expression
versus miR-34b-5p level. A p value <0.05 was considered to be sta-
tistically significant.
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Results

The Expressions of miR-96-5p and DEPTOR Were

Negatively Correlated in the Nasal Mucosal Tissues

from AR Patients

To investigate the role of miR-96-5p and DEPTOR in
the pathogenesis of AR, the nasal mucosal samples were
obtained from AR patients and patients with nonallergic
rhinitis (NAR), and the expression of miR-96-5p and
DEPTOR were measured. AR patients showed signifi-
cantly upregulated miR-96-5p as compared to the NAR
group (Fig. 1a). However, DEPTOR, the negative regula-
tor of mTOR activation, was significantly lower in AR
patients than that in patients with NAR (Fig. 1b). The re-
sult from Western blot also showed a downregulated pro-
tein level of DEPTOR in AR patients (Fig. 1c). The cor-
relation analysis revealed that DEPTOR expression was
negatively correlated with the level of miR-96-5p in the
nasal mucosal tissues from AR patients (Fig. 1d). These
results indicated that miR-96-5p and DEPTOR may be
related to the pathophysiological process of AR.

The Downregulation of miR-96-5p Inhibited the

Upregulation of Proinflammatory Cytokines in

IL-13-Stimulated HNECs

To further explore the involvement of miR-96-5p in
the development of AR, an in vitro cell model was es-

miR-96-5p Regulates Inflammation of AR
via DEPTOR

tablished by stimulating HNECs with IL-13 for 0, 6, 12,
24,and 48 h. The level of miR-96-5p gradually increased
with the increase of IL-13 treatment time (Fig. 2a). Then
we transfected HNECs with miR-96-5p inhibitor or in-
hibitor negative control (inhibitor NC) and then treated
cells with IL-13 for 48 h. The delivery of miR-96-5p in-
hibitor significantly inhibited the upregulation of miR-
96-5p in HNECs following IL-13 treatment (Fig. 2b).
Then we analyzed the expressions of proinflammatory
cytokines, including IL-1p, IL-6, eotaxin, and GM-CSF
in cells transfected with miR-96-5p inhibitor or inhibi-
tor NC during IL-13 stimulation. Rapa, an mTOR in-
hibitor, has been shown to alleviate inflammatory re-
sponses in cells, and thus NECs treated with Rapa were
used as a positive control [28]. Results showed that IL-
13 increased the expressions of IL-1§, IL-6, eotaxin, and
GM-CSF in HNECs, whereas the downregulation of
miR-96-5p by its inhibitor sequence and Rapa signifi-
cantly suppressed IL-13-induced upregulation of these
cytokines (Fig. 2c-f). Consistently, ELISA revealed that
insufficient miR-96-5p expression led to decreased pro-
tein levels of proinflammatory cytokines in HNEC:s fol-
lowing IL-13 treatment (Fig. 2g-j). These results sug-
gested the regulatory effect of miR-96-5p on the pro-
duction of proinflammatory cytokines in the cell model
of AR.
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Fig. 2. miR-96-5p inhibitor suppresses IL-13-induced upregula-
tion of proinflammatory cytokines in HNECs. a HNECs were
stimulated with IL-13 (10 ng/mL) for indicated times (0, 6, 12, 24,
and 48 h) and then the expression of miR-96-5p was measured by
qPCR. The data were normalized to time 0. b HNECs transfected
with miR-96-5p inhibitor (or inhibitor negative control) were
treated with IL-13 (10 ng/mL) for 48 h. The level of miR-96-5p was
determined by qPCR. c-j HNECs were transfected with or without

The Downregulation of miR-96-5p Inhibits

mTOR/NF-Kb Signaling Pathway in HNECs

NF-«B signaling pathway has been widely reported to
regulate the production of proinflammatory cytokines
[29]. To explore whether miR-96-5p is a mediator of the
NF-kB pathway in IL-13-stimulated HNECs, we analyzed
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miR-96-5p inhibitor (or inhibitor negative control) followed by
the stimulation with IL-13 (10 ng/mL) for 48 h. Cells treated with
1 uM Rapa were served as a positive control. The mRNA levels of
IL-1P (c), IL-6 (d), eotaxin (e), and GM-CSF (f) were assessed us-
ing qPCR. The data were normalized to control. The protein ex-
pressions of IL-1pB (g), IL-6 (h), eotaxin (i), and GM-CSF (j) were
measured by ELISA kits. *p < 0.05, **p < 0.01, ***p < 0.001. IL,
interleukin; HNEC, human nasal epithelial cell; Rapa, rapamycin.

the phosphorylation levels of p65 and IkBa in cells with
insufficient miR-96-5p expression. Our data showed that
IL-13 treatment significantly increased the phosphoryla-
tion of p65 and IkBa in HNECs, while miR-96-5p inhibi-
tor decreased the levels of phosphorylated p65 and phos-
phorylated IkBa without affecting the expressions of p65
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Fig. 3. Downregulation of miR-96-5p inhibits mTOR/NF-kB sig-
naling pathway in HNECs. HNECs were transfected with or with-
out miR-96-5p inhibitor (or inhibitor negative control) followed
by the stimulation with IL-13 (10 ng/mL) for 48 h. Cells treated
with 1 uM Rapa were served as a positive control. a The expressions
of p-IkBa, IkBa, p-p65, and p65 were measured by Western blot.
b The ratios of p-IkBa/IkBa and p-p65/p65 were shown. ¢ The ex-

and IxBa (Fig. 3a,b). Moreover, we investigated the regu-
latory effects of miR-96-5p on mTOR-related proteins.
The treatment of HNECs with IL-13 resulted in signifi-
cantly increased phosphorylation levels of mTOR and
4EBP1 as compared to untreated cells. DEPTOR, an en-
dogenous regulator involved in mTOR signaling path-
way, was significantly decreased in IL-13-treated cells
(Fig. 3¢, d). However, the transfection of HNECs with
miR-96-5P inhibitor effectively impeded the activation of
the mTOR pathway in HNECs as shown by decreased
phosphorylation levels of mTOR and 4EBPI, as well as
increased expression of DEPTOR, as compared to the in-
hibitor NC-transfected cells. Taken together, these data
implied that miR-96-5p downregulation inhibited the ac-
tivation of mTOR/NF-kB signaling pathway in IL-
13-stimulated HNECs.

miR-96-5p Regulates Inflammation of AR
via DEPTOR

pression levels of p-mTOR, mTOR, p-4EBP1, 4EBP1, and DEP-
TOR were assessed by Western blot. d The ratios of p-mTOR/
mTOR, p-4EBP1/4EBP1, and the relative expression of DEPTOR
were shown. **p < 0.01, ***p < 0.001. mTOR, mammalian target
of rapamycin; HNEC, human nasal epithelial cell; IL, interleukin;
Rapa, rapamycin; DEPTOR, DEP domain-containing mTOR-in-
teracting protein.

DEPTOR Is a Direct Target of miR-96-5p

The TargetScan and Starbase databases predicted that
DEPTOR might be a potential target of miR-96-5p with
a putative binding site (Fig. 4a). The transfection of
HNECs with miR-96-5p mimic significantly increased
the expression level of miR-96-5p compared to cells de-
livered with mimic NC sequence (Fig. 4b). Then we co-
transfected HNECs with WT-DEPTOR reporter (or
MUT-DEPTOR) and miR-96-5p mimic (or mimic NC).
The dual-luciferase assay showed that the luciferase activ-
ity of WT-DEPTOR was significantly lower in cells trans-
fected with miR-96-5p mimic in comparison to mimic
NC group, whereas cells transfected with MUT-DEPTOR
showed no difference in the luciferase activity between
miR-96-5p mimic and control mimic groups (Fig. 4c).
The overexpression of miR-96-5p significantly decreased
the mRNA level of DEPTOR in HNECs (Fig. 4d). Fur-
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Fig.4. DEPTOR is a direct target of miR-96-5p. The putative bind-
ing site of miR-96-5p for DEPTOR was predicted and the WT (a)
and MUT binding sequences were shown (b) HNECs were trans-
fected with or without miR-96-5p mimic (or mimic NC), and then
the expression of miR-96-5p was detected by qPCR. ¢ HNECs were
co-transfected with WT-DEPTOR (or MUT constructs) vector
and miR-96-5p mimic (or mimic NC). The luciferase activity was

thermore, the pull-down assay demonstrated that the en-
richment of DEPTOR in miR-96-5p mimic-transfected
cells was significantly higher than that in the mimic NC
group, suggesting the interaction between miR-96-5p
and DEPTOR (Fig. 4e). The above findings suggested that
DEPTOR was a downstream target of miR-96-5p.

The Knockdown of DEPTOR Reversed the Protective

Effect of miR-96-5p Inhibitor on IL-13-Induced

Inflammation

To ascertain that miR-96-5p regulated IL-13-induced
inflammation in HNECs via targeting DEPTOR, we co-
transfected HNECs with miR-96-5p inhibitor and si-
DEPTOR. MiR-96-5p inhibitor decreased IL-13-induced
elevation in the expressions of IL-1p, IL-6, eotaxin, and
GM-CSF, while the downregulation of DEPTOR signifi-
cantly increased the expression of these cytokines
(Fig. 5a). DEPTOR knockdown also attenuated the in-
hibitory impact of miR-96-5p inhibitor on the activation
of NF-kB pathway by increasing the phosphorylation of
p65 and IkBa (Fig. 5b, ¢). In addition, the phosphoryla-
tion levels of mTOR and 4EBP1 were also higher in the
cells co-transfected with si-DEPTOR and miR-96-5p in-
hibitor following IL-13 treatment when compared with
the group delivered with control siRNA (si-NC) and
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determined by luciferase assay. d HNECs were transfected with
miR-96-5p mimic or mimic NC. The mRNA expression of DEP-
TOR was measured by qPCR. e The enrichment of DEPTOR in
HNEC:s transfected with miR-96-5p mimic or mimic NC was ana-
lyzed by pull-down assay. **p < 0.01, ***p < 0.001. DEPTOR, DEP
domain-containing mammalian target of rapamycin-interacting
protein; HNEC, human nasal epithelial cell.

miR-96-5p inhibitor (Fig. 5d, e). These results indicated
that the downregulation of DEPTOR diminished the in-
hibitory effect of miR-96-5p inhibitor on the activation of
mTOR/NF-«kB signaling pathway in IL-13-induced
HNECs.

Discussion

ARisan inflammatory disorder of mucosa tissues with
varied prevalence rates according to the regions and age
ranges [30]. The pathogenesis of AR is complex, involv-
ing the intense activation of inflammatory cytokines and
the infiltration of immune-related cells [1]. In this study,
we showed that miR-96-5p was significantly upregulated
while the level of DEPTOR was decreased in the nasal
mucosal tissues from AR patients in comparison to the
group with NAR. The expressions of proinflammatory
cytokines, including IL-1p, IL-6, eotaxin, and GM-CSF,
and the phosphorylation levels of IkBa, p65, mTOR, and
4EBP1 were markedly increased in primary HNECs fol-
lowing IL-13 stimulation. However, the downregulation
of miR-96-5p suppressed the secretion of proinflamma-
tory cytokines and the activation of the mTOR/NF-kB
pathway via targeting DEPTOR. The current study, for
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Fig. 5. The knockdown of DEPTOR diminished the suppressive
effect of miR-96-5p inhibitor on IL-13-induced inflammation.
HNECs were transfected with miR-96-5p inhibitor alone, co-
transfected with miR-96-5p inhibitor and si-DEPTOR, or co-
transfected with miR-96-5p inhibitor and si-NC. Transfected cells
and the control group were treated with IL-13 at 10 ng/mL for
48 h. a The mRNA expressions of IL-1p, IL-6, eotaxin, and GM-
CSF were determined by qPCR. b Western blot was performed to

the first time, showed the aberrant expression and regula-
tory function of miR-96-5p in AR, suggesting that miR-
96-5p might be a potential target for the therapeutic in-
tervention in AR.

The nasal mucosa serves as the first line of defense
against environmental allergens [31]. The in vitro models

miR-96-5p Regulates Inflammation of AR
via DEPTOR

assess the phosphorylation of IkBa and p65. ¢ The ratios of p-IkBa/
IxBa and p-p65/p65 were shown. d The expressions of p-mTOR,
mTOR, p-4EBP1, 4EBP1, and DEPTOR were measured by West-
ern blot. e The ratios of p-mTOR/mTOR, p-4EBP1/4EBP1, and
the relative expression of DEPTOR were shown. *p < 0.05, **p <
0.01, ***p < 0.001. mTOR, mammalian target of rapamycin; DEP-
TOR, DEP domain-containing mTOR-interacting protein; IL, in-
terleukin; HNEC, human nasal epithelial cell.

using HNECs exhibit similar responses to exogenous
stimuli, and thus are essential in exploring the therapeutic
target for AR patients [32]. IL-13 is a Th2 cytokine that
has been demonstrated to mediate a series of pathological
events in allergic diseases, such as mucus cell metaplasia,
subepithelial fibrosis, smooth muscle hypertrophy, and
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eosinophil recruitment [33-35]. Teng et al. [27] reported
that the IL-13 signaling pathway played a critical role in
the pathogenesis of AR by increasing the secretion of in-
flammatory cytokines, such as eotaxin, GM-CSF, and IL-
1B, and inducing mucus production in primary HNECs
from AR patients. Our data showed that the level of miR-
96-5p was significantly increased in the nasal mucosal tis-
sues from AR patients as compared to the group with
NAR. Consistent with previous results, we found elevated
expression of IL-1pB, IL-6, eotaxin, and GM-CSF in
HNECs following IL-13 stimulation. The downregula-
tion of miR-96-5p, however, inhibited the expressions of
proinflammatory cytokines in HNECs at both transcrip-
tional and translational levels.

The NF-«B pathway is a classic inflammatory pathway
associated with the progression of AR. Gao and Yu [36]
showed that miR-16 inhibited IL-13-induced cytokine se-
cretion and mucus overproduction via inhibiting the ac-
tivation of IxB and p65 in HNECs. Pan et al. [37] found
that catechin, an anti-inflammatory component in green
tea, inhibited the phosphorylation of IkB and p65 in a
murine model of ovalbumin-induced AR and in poly
(I:C)-stimulated HNECs. Consistently, our data present-
ed that IL-13 stimulation induced the activation of NF-xB
pathway in HNECs, whereas the transfection with miR-
96-5p inhibitor effectively impeded the phosphorylation
of IxB and p65. And previous evidence suggested that the
Akt-dependent regulation of NF-kB pathway is mediated
by mTOR [13]. Here, the analysis of the phosphorylation
levels of mTOR and its substrate, 4EBP1, demonstrated
that the downregulation of miR-96-5p inhibited IL-
13-induced activation of both mTOR and 4EBP1 in
HNECs.

There are 2 multi-component complexes of mTOR:
mTOR complex 1 (mTORC1) and mTOR complex 2
(mTORC2) [38]. mTORCI plays a pivotal role in the reg-
ulation of protein synthesis via mediating the phosphory-
lation of S6 kinase and EIF4EBP1, while mTORC?2 is in-
volved in the regulation of cell survival via regulating
AKT phosphorylation [39]. DEPTOR is a key protein that
belongs to mMTORC1 and mTORC2 complexes and has
been shown to negatively regulate the activation of mMTOR
[10]. In the current study, DEPTOR was confirmed as a
downstream target of miR-96-5p and their expressions in
the nasal mucosa from AR patients were inversely corre-
lated. By transfecting siRNA against DEPTOR in HNECs
with insufficient miR-96-5p, we found that the knock-
down of DEPTOR reversed the protective effect of miR-
96-5p inhibitor on IL-13-induced AR as evidenced by in-
creased cytokine production and elevated phosphoryla-
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tion levels of IxB, p65, mTOR, and 4EBP1. These results
indicated that miR-96-5p ameliorated the development
of AR in HNEC:s via directly targeting DEPTOR. The reg-
ulatory effects of miR-96-5p on DEPTOR expression and
the mTOR/NF-xB signaling pathway need to be con-
firmed in animal AR models.

In conclusion, our study revealed that miR-96-5p is
upregulated in the nasal mucosa of AR patients. The
downregulation of miR-96-5p inhibited the expression of
inflammatory cytokines and the activation of the mTOR/
NF-kB signaling pathway via direct interaction with
DEPTOR. These findings suggested the potential use of
miR-96-5p as a diagnostic marker and therapeutic target
for the treatment of AR.
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