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Abstract
As an ancient Gram-negative bacterium, Helicobacter pylori 
has settled in human stomach. Eradicating H. pylori increases 
the morbidities of asthma and other allergic diseases. There-
fore, H. pylori might play a protective role against asthma. 
The “disappearing microbiota” hypothesis suggests that the 
absence of certain types of the ancestral microbiota could 
change the development of immunology, metabolism, and 
cognitive ability in our early life, contributing to the develop-
ment of some diseases. And the Hygiene Hypothesis links 
early environmental and microbial exposure to the preva-
lence of atopic allergies and asthma. Exposure to the envi-
ronment and microbes can influence the growing immune 
system and protect subsequent immune-mediated diseases. 
H. pylori can inhibit allergic asthma by regulating the ratio of 
helper T cells 1/2 (Th1/Th2), Th17/regulatory T cells (Tregs), 

etc. H. pylori can also target dendritic cells to promote im-
mune tolerance and enhance the protective effect on aller-
gic asthma, and this effect relies on highly suppressed Tregs. 
The remote regulation of lung immune function by H. pylori 
is consistent with the gut-lung axis theory. Perhaps, H. pylori 
also protects against asthma by altering levels of stomach 
hormones, affecting the autonomic nervous system and 
lowering the expression of heat shock protein 70. Therapeu-
tic products from H. pylori may be used to prevent and treat 
asthma. This paper reviews the possible protective influence 
of H. pylori on allergic asthma and the possible application of 
H. pylori in treating asthma. © 2020 S. Karger AG, Basel

Introduction

Since Gram-negative Helicobacter pylori was discov-
ered, the relationship between H. pylori infection and 
asthma has gradually attracted people’s eyes. Kalach et al. 
[1] analyzed the infection of H. pylori in adults and chil-
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dren from the perspective of host response, epidemiolo-
gy, related diseases, clinical features, therapies, and diag-
nosis. The incidence of H. pylori infection is decreasing in 
both adults and children in developed countries and sev-
eral developing areas, which is opposite from the in-
creased incidence of asthma in children and other allergic 
disorders. Ness-Jensen et al. [2] found that H. pylori infec-
tion has been related to a 40% decrease of asthma in those 
who are below the age of 18 years with abdominal obesity. 
A recent study found that 16.4 percent of children who 
were negative for H. pylori at the age of 2 and 10 had asth-
ma at the age of 16, but if they were positive for H. pylori 
at the age of 12, they did not have asthma at the age of 16. 
It is suggested that the early exposure to H. pylori can pre-
vent asthma [3]. Fouda et al. [4] used ELISA for determi-
nation of H. pylori IgG in the serum of asthma and healthy 
children. The results showed that the titer of IgG was neg-
atively correlated with the degree of asthma. Serum H. 
pylori could prevent asthma in children and was inverse-
ly correlated with the severity of asthma. Accumulating 
evidence suggested that the infection of H. pylori, par-
ticularly CagA-positive H. pylori, was negatively corre-
lated with the development of asthma. A study of Greek 
children has also proved this viewpoint [5]. Recent and 
earlier cross-sectional studies also suggested that H. py-
lori infection had protective effects on asthma [6–9]. 
However, not all studies supported this result, which still 
requires future research [10–16]. Although the effects of 
H. pylori in the pathophysiological mechanisms of asth-
ma still remain controversial, the researchers detected H. 
pylori exotoxin VacA in human lung biopsies and direct-
ly stimulated pulmonary airway epithelial cells to secrete 
inflammatory cytokines in vitro [17]. Moreover, H. py-
lori has been discovered in the lung tissues of patients 
with COPD [18]. More studies confirmed that existence 
of H. pylori provided protective effects against asthma, 
and eradication of H. pylori may have a negative impact 
[19–21].

The immune system includes adaptive immunity (ac-
quired immunity) and innate immunity (natural immu-
nity) [22–24]. Adaptive immunity mainly recognizes 
“non-self” antigen and produces immune tolerance, and 
innate immunity is the first line of defense against patho-
genic microorganism invasion, which can effectively dis-
tinguish self from pathogenic microorganism [25, 26]. 
The immune pathogenesis of allergic asthma is quite 
complex. The studies have focused on Toll-like receptors 
(TLRs), dendritic cells (DCs), helper T cells 1/2 (Th1/
Th2), Th17, regulatory T cells (Tregs), etc. The formation 
of a complex interaction network between cells and re-

ceptors also provides a broad view for immunological re-
search of asthma [27–29]. The followings are the possible 
protective mechanisms of H. pylori against allergic asth-
ma reported in recent years and the possible associated 
treatment of asthma.

Possible Protective Mechanisms of H. pylori against 
Allergic Asthma

The Hygiene Hypothesis
The hygiene hypothesis [30, 31] links early environ-

mental and microbial exposure to the prevalence of atop-
ic allergies and asthma. The exposure to environment and 
microbes can help to form the growing immunity system 
and protect subsequent immune-mediated diseases [32]. 
“Unhygienic exposure” to microorganisms in an early age 
can prevent the development of allergic diseases in later 
years [33]. H. pylori infection usually occurs in children, 
and the way to be infected is related to unhygienic family 
environment or habits, and this association appears in 
mouse asthma models [34]. Early studies [35] have shown 
that the hygiene hypothesis may be related to Th1/Th2 
imbalance. Synthetic adjuvants or microbial components 
can directly influence the cells in the innate immune sys-
tem, including NK and DCs cells, and also stimulate the 
secretion of interferon-γ (IFN-γ), IL-12, and IFN-α, lead-
ing to the phenotypic transformation of allergen-specific 
Th2 to Th1 cells [7, 36]. The specific mechanisms still 
need to be further studied.

Adjusting Th1/Th2 Balance
It has been proved that Th1/Th2 ratio imbalance is one 

of the essential immunological mechanisms of asthma. 
According to the responses to foreign antigens, T cells can 
be divided into 2 types of effector cells, Th1 and Th2, 
which have totally different functions [37, 38]. Th1 main-
ly secretes IL-12, IFN-γ, and transforming growth factor 
β (TNF-β), activates macrophages and causes cytotoxic-
ity, and mediates cellular immunity. Th2 mainly secretes 
IL-4, IL-5, and IL-13, activates B cells to produce immu-
noglobulin, and mediates humoral immunity. Th1 and 
Th2 are restrictive to each other and reach a balance. 
Asthma is a disease characterized by the count of Th2 and 
the effects it exerts [39–41].

H. pylori neutrophil-activating protein (HP-NAP) is 
one of the main virulence factors of H. pylori, which is 
also applied as a possible biomarker in the diagnosis of H. 
pylori-related diseases [42]. Studies [43–45] have shown 
that HP-NAP plays a protective role in asthma, which 
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could stimulate Th1 activation and attenuate Th2 re-
sponse in allergy-related asthma both in vitro and in vivo 
(Fig. 1). In the research by Karakullukcu et al. [46], 18 
cases (20.4%) of H. pylori DNA were discovered in 88 
healthy stool samples but none in 92 asthmatic children 
(3–8 years). Multivariate Logistic regression analysis sug-
gested that HP-NAP had a protective effect on asthma in 
male children. In order to verify HP-NAP as a regulatory 
factor against the Th2 inflammatory effect, Zhou et al. 
[47] exposed the mice to purified recombinant H. pylori 
NAP (rNAP) through intraperitoneal injection or inhala-
tion. The increase and infiltration of the eosinophils were 
remarkably suppressed in the lungs of the asthma mice 
model induced by ovalbumin (OVA). Moreover, the 
count of eosinophils was decreased in the lavage fluid 
from bronchoalveolar (BALF) in the mice treated with 
rNAP. Additionally, the levels of IL-13 and IL-4 declined 
(p < 0.01), the levels of IFN-γ and IL-10 elevated (p < 
0.01), and the serum level of IgE declined (p < 0.01) in 
experimental groups in comparison with the control 
group. It is suggested that mucosal and systemic pretreat-
ment of rNAP might attenuate asthma in the mice in-
duced by OVA. Furthermore, rNAP could be used as a 
new method in preventing or treating allergic disorders. 
In phase I/II clinical trials, it has been reported that the 
effect of soluble IL-4 receptor (sIL-4R) was satisfactory in 
treating asthma. To discover more effective antiasthma 
therapies, Liu et al. [48] attempted to test whether the HP-
NAP could increase the therapeutic effect of sIL-4R on 

asthma. In their research, pcDNA3.1-sIL-4R-NAP plas-
mid (PSN) was constructed, which could encode a fusion 
protein of murine HP-NAP and sIL-4R. PSN could re-
markably reduce inflammation in the airway, suppress 
the secretion of OVA-specific IgE in serum, and reestab-
lish the balance of Th1 and Th2. Moreover, PSN has been 
more effective in the treatment for asthma in comparison 
with the plasmid only generating sIL-4R.

Adjusting Thl7/Tregs Balance
With the development of scientific research, Thl/Th2 

imbalance cannot fully explain the mechanisms of asth-
ma [49]. Although allergic asthma is often associated with 
abnormal TH2 cellular responses, a group of patients 
with severe disease showed a mixture of TH2 and TH17 
cellular responses in the airways [50]. It was found that 
Thl7 and Tregs cells were also significantly related to the 
pathogenesis of asthma [51–53]. Synergy of multiple 
pathways, such as Th2, Th17, and even eosinophil/neu-
trophil infiltration, has been found in some asthma mod-
els [54–56]. The view that eosinophilic asthma is an ex-
clusive TH2 disorder and neutrophil asthma is an exclu-
sive TH17 disorder may be oversimplified [57]. It has 
been found that the TH2 and TH17 inflammatory path-
ways regulate each other in asthma [58]. Th1/Th2 and 
Thl7/Tregs and their various cytokines form an extreme-
ly complex interactive network [59, 60]. Thl7 cells are de-
fined as “proinflammatory” immune cells, which mainly 
secrete IL-17, mediate inflammatory responses, and pro-
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Fig. 1. H. pylori promotes Th1 activation and inhibits Th2 response through HP-NAP in allergic asthma. HP, H. 
pylori; HP-NAP, H. pylori neutrophil-activating protein; Th0/Th1/Th2, helper T cells 0/1/2.
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mote neutrophil maturation, proliferation, and chemo-
taxis. Retinoid-related orphan receptor (ROR) gamma t 
(RORγt) is a key transcriptional factor in the differentia-
tion of Thl7 cells. The deletion of RORγt leads to the fail-
ure of Thl7 differentiation [61, 62]. Tregs secrete IL-10 
and other inhibitory cytokines. Tregs play an important 
role in maintaining immune balance. Tregs specifically 
express forkhead transcription factor p3 (Foxp3), sup-
press immune response, and mediate immune tolerance 
[63–65].

The protective mechanisms of H. pylori in inflamma-
tory diseases such as asthma may be associated with in-
duction of Tregs, which could highly suppress the im-
mune activity [66–68]. Published data strongly suggested 
that H. pylori caused an increase in the response levels of 
Tregs, Th1, and Th17 in mouse models and human, 
which could prevent asthma. According to the ontogeny 
of the immune system, H. pylori tends to infect in one’s 
childhood and continues to stimulate immunity reaction 
throughout the life, including Th1, Th17, and Tregs re-
sponses. Additionally, children infected by H. pylori tend 
to have a stronger Tregs response than adults [69–72]. 
Once human is infected by H. pylori, Tregs are found to 
be highly active in the gastric mucosa. The secretion of 
IL-10 by Tregs in peripheral blood was significantly high-
er than that in H pylori-specific Th1 cells. When there was 
a strong Tregs reaction, the concentration of total IgE and 
allergen-specific IgE was low. Suppressing IL-10 could 
significantly restore the IgE reaction in animal models. 
Therefore, systematic IL-10 and Tregs may play a role in 
preventing allergies mediated by H. pylori [72].

Kyburz et al. [73] established C57BL/6 mice experi-
mental models of house dust mite- or ovalbumin-induced 
airway inflammation and influenza A virus or Citrobacter 

rodentium infection. It was found that the exposure to H. 
pylori extract or its immunomodulator vacuolating cyto-
toxin in the perinatal stage could exert robust protective 
functions against allergic inflammation in the airway not 
only in the offspring of the first generation but also the 
second generation, which did not increase the suscepti-
bility to bacterial or viral infection. The immune respons-
es correlated with prevention of allergy include inhibiting 
the activities of effectors or T cells, expanding the subsets 
of regulatory T cells expressing RORγt, and FOXP3 de-
methylation. The diversity and composition of the micro-
biota in the gastrointestinal system are notably influenced 
by the perinatal exposure of H. pylori. In conclusion, H. 
pylori exposure not only works on the carriers but also on 
the next generations. Maternal nutrient, the exposure to 
microorganisms, tobacco, and other environmental fac-
tors influence the formation of the immune system in a 
fetus via an epigenetic way (Fig. 2).

Inhibition of DCs
DCs can devour and kill invasive microorganisms and 

present microbial antigens to T cells, thus participating in 
the innate immunity [25, 74]. DCs help the initial T cells 
polarize into Th2 effector cells or differentiate into Tregs 
[75, 76]. It has been suggested that H. pylori targets DCs 
to promote immune tolerance and enhance the protective 
effect against allergic asthma, and this effect relies on 
highly suppressed Tregs [77, 78]. Oertli et al. [79, 80] 
found the level of Foxp3, the main regulatory factor ex-
pressed by Tregs, was increased in immature T cells when 
H. pylori was exposed to DCs in cells and animal experi-
ments. Depleting the DCs in H. pylori-infected mice in 
the neonatal stage resulted in the improvement of infec-
tion control and the destruction of specific tolerance to H 
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Fig. 2. H. pylori has a protective effect on 
asthma by inducing highly immunosup-
pressive Tregs and inhibiting Th17. HP, H. 
pylori; Tregs, regulatory T cells; RORγt, 
retinoid-related orphan receptor (ROR) 
gamma t; Foxp3, forkhead transcription 
factor p3.
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pylori. At the same time, it also aggravated the immune-
pathological reactions driven by T cells. IL-18 secreted by 
DCs could directly act on T cells and promote transfor-
mation into Tregs. It promotes specific immune toler-
ance and asthma protection in mice. Vacuolating cyto-
toxin A (VacA) and γ-glutamyl transpeptidase (GGT), 2 
virulence factors in H. pylori, independently interfere 
with the maturation of DCs, thus promoting the tolerance 
of DCs. Shiu et al. [81] found that the infection of H. py-
lori can upregulate the expression of anti-inflammation 
factors including IL-1 receptor-associated kinase M 
(IRAK-M). The expression of IRAK-M activated by TLRs 
in DCs directly inhibited the inherent function of DCs, 
such as the upregulation of cytokines and costimulatory 
molecules, rather than affecting the response of Th17 and 
Tregs (Fig. 3).

Activation of TLRs
TLRs are a group of widely studied pattern recognition 

receptors, which are associated with the incidence and 
progression of asthma. At present, it is considered that 
TLRs are mainly expressed in the membrane or organelle 
capsule of antigen presenting cells (such as macrophages 
and DCs). TLRs participate in the early host defense and 
play an important role in the innate immune response. 
On the other hand, TLRs participate in the inflammatory 
response via secreting cytokines, chemokines, adhesion 
molecules, etc., and finally activate the acquired immune 
system. Different TLRs have different functions [82–84]. 
TLR2 is an important pattern recognition receptor in 
Tregs [85, 86] and TLR9 mainly plays a negative role in 

the regulation of allergic inflammation [87–89]. TLR4 
not only relies on conserved sequences encoded by em-
bryological genes to identify pathogenic microorganisms 
and activate innate immunity but also regulates adaptive 
immunity [90, 91]. In conclusion, TLRs are closely related 
to asthma [92].

In recent days, hypotheses were proposed that H. py-
lori could facilitate the activation of inflammasomes in 
mouse and human immune cells. The possible mecha-
nisms and virulence factors stimulating the inflamma-
some have been discovered in animal and cell models. 
IL-1β could facilitate the responses of Th1 and Th17. IL-
18 has been a hallmark in humans and mice infected by 
H. pylori, which plays an important role in H. pylori per-
sistence, Tregs differentiation, and prevention of asthma. 
The secretion of IL-1β induced by H. pylori is regulated 
by the activation of NLRP3 (Nod-like receptor family 
member), caspase-1, and TLR2. The axis of TLR2/NLRP3/
caspase-1/IL-18 was essential in the regulation of H. py-
lori-specific immune response which could prevent in-
flammatory bowel disease and asthma induced by aller-
gens in mouse models [93–95].

NOD1 is considered as a pattern recognition receptor 
in cells and specifically targets the Gram-negative peptido-
glycan, which plays an important role in host defense 
against infections (e.g., H. pylori and Shigella flexneri) [96]. 
The variations in the NOD1 gene contribute to inflamma-
tory bowel disease and asthma. NOD1 could be activated 
by a rather low concentration of M-Tri DAP, which is a 
specific muropeptide ligand. Moreover, NOD1 could in-
duce minimal secretion of IL-10, TNF-α, and IL-1β from 
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Fig. 3. H. pylori targets DCs and relies on 
highly suppressed Tregs to promote im-
mune tolerance and enhance the protective 
effect on allergic asthma. HP, H. pylori; 
Tregs, regulatory T cells; DCs, dendritic 
cells; TLR, Toll-like receptors; GGT, 
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lating cytotoxin A.
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peripheral blood mononuclear cells in human and syner-
gistically facilitated the responses induced by TLRs. Syn-
ergistic responses occurred across a variety of cytokine se-
cretions (GM-CSF, IL-10, IL-4, IL-6, IL-1β, IL-1α, and 
TNF-α) and various ligands (to TLR5, 7/8, 2/6, 1/2, 4) [97].

TLR9 could partly contribute to the initiation of im-
munity responses induced by bacteria via binding to the 
unmethylated CpG-DNA rich in bacteria. A well-report-
ed single nucleotide polymorphism (SNP) in the TLR9 
promoter (TLR9-1237T/C) is related to multiple inflam-
matory diseases, such as atopy, allergic asthma, and in-
flammatory bowel disease. The sequence of the TLR9 
promoter gene was analyzed, and the results demonstrat-
ed that carrying the variant “C” allele on position −1237 
formed a possible site to bind NF-κB, which could theo-
retically stimulate the transcriptional process of the gene 
[98]. It has also been shown that the type IV secretion 
system of H. pylori facilitated the synthesis of IL-8 through 
the p38 protein kinase (p38MAPK) pathway in the pri-
mary tracheobronchial epithelial cells collected from 
young rhesus monkeys. It was suggested that the innate 
immune response in airway epithelial cells in infants in-
fected by H. pylori was enhanced, but the TLR4 pathway 
was not essential in this process [99].

Reduction of Gastroesophageal Reflux
Gastroesophageal reflux can induce or aggravate asth-

ma. Several possible mechanisms have been raised. The 
first is stimulation theory. The airway is stimulated by the 
aspiration resulting from the reflux, which increases air-
way responsiveness. The second is reflex theory. Since 
esophagus and bronchus are derived from the same em-
bryonic organ, the autonomic innervation is similar. Re-
flux not only stimulates esophagus but also activates the 
vagus nerve, thus inducing bronchospasm and aggravat-
ing asthma [100, 101]. It has been shown that H. pylori 
inflammation changed gastric hormonal status and influ-
enced the autonomic nervous system. H. pylori can also 
reduce gastroesophageal reflux [102].

The Gut-Lung Axis Theory
In recent decades, the role of gut flora in the pathogen-

esis of asthma has been extensively studied [103–105]. 
The gut and lungs interact with each other through mi-
crobes and immune functions, achieve bidirectional reg-
ulation, and amplify immune signals. It is known as the 
gut-lung axis [106]. Gut and lung microbes have certain 
homology at early colonization. They all first pass through 
the oropharynx and then enter the digestive tract or re-
spiratory tract through swallowing or breathing [107]. 

Microorganisms in the gastrointestinal tract can reach 
the lower respiratory tract through gastroesophageal re-
flux [108]. Due to the increase of intestinal and alveolar 
capillary permeability in some patients, the bacteria from 
the intestinal mucosa can be transferred to the lungs 
through the blood circulation [109]. Changes in the pul-
monary flora can also cause changes in the intestinal flo-
ra through the blood flow [110]. However, there is little 
evidence about direct shift of microorganisms between 2 
sites [107].

Disorders of the gut can be observed in lung diseases 
[105, 111–114]. Influenza virus can change the composi-
tion of intestinal flora and cause intestinal immune dam-
age through Th17 cell mediation [115]. Locally induced 
pulmonary anaphylaxis may also affect the composition 
of intestinal flora [116]. Studies have shown that the se-
verity of intestinal symptoms is highly consistent with the 
severity of pulmonary symptoms [117, 118].

Intestinal microbes promote development of the body’s 
immune system early in life and affect the whole body and 
lungs through the blood and lymphatic system [104]. Both 
the gut and lungs have a strong mucosal defense system. 
For instance, intestinal and respiratory mucosal goblet 
cells can secrete IgA. The intestinal microflora can regu-
late pulmonary immune responses through bacterial lipo-
polysaccharide, short-chain fatty acids (SCFAs), and im-
mune cells (e.g., Tregs and DCs), which can affect coloni-
zation of the lung microbiome [106, 119, 120]. The 
imbalance of intestinal flora is related to a variety of lung 
diseases such as asthma. The adjustment of intestinal flora 
can alleviate the symptoms and reduce the incidence of 
asthma. Probiotics supplementation has a certain preven-
tive and therapeutic effect on asthma in mice. High-fiber 
diet can change the intestinal flora of mice and increase 
the content of SCFAs, thus inhibiting the activity of Th2 
cells [121]. H. pylori can cause chronic immunopatholog-
ic changes in the stomach and dysbacteriosis and promote 
regulation of the immune function of the lung. H. pylori 
protects asthma by DCs, Tregs, etc., which is consistent 
with the gut-lung axis theory [106, 110, 122] (Fig. 4).

Reducing the Expression of Heat Shock Protein 70
Heat shock protein 70 (HSP70), an ATP-dependent 

chaperone protein, is a known inhibitor of caspase activa-
tion, showing antiapoptotic activity in a variety of cells 
[123, 124]. It has been found that HSP70 might play a role 
in promoting asthma inflammation. HSP70 deficiency 
leads to significant reduction in airway inflammation, 
goblet cell proliferation, and Th2 cytokine production, 
including IL-4, IL-5, and IL-13, and targeting HSP70 can 
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alleviate the potential utility of allergen-induced Th2 cy-
tokines, goblet cell proliferation, and airway inflamma-
tion [125–127]. HSP70/CD80 DNA vaccine can inhibit 
airway remodeling by regulating the development of 
Th1/Th2 subsets in asthma mice, and HSP70 may be a 
potential target for inhaled glucocorticoids (ICS) in the 
treatment of asthma [128, 129]. Another study also found 
that HSP70 directly inhibited irritation-induced gastric 
ulcer formation and promoted gastric ulcer healing [130]. 
HSP70 can also protect the gastric mucosa through inhi-
bition of apoptosis, proinflammatory cytokines, and cell 
adhesion molecules [131, 132]. H. pylori infection alters 
gastric epithelial cell proliferation and reduces or even 
abolishes HSP70 gene expression [133, 134]. The possible 
mechanisms included inducing the cellular protective ef-
fect of HSP70 against H. pylori infection via inhibiting the 
expression of inducible nitric oxide synthase (iNOS). 
However, the reliability and accuracy, as well as the un-

derlying mechanisms, in this relationship remains poorly 
understood, and large-sample clinical research must be 
performed to verify this theory [135, 136]. The direct 
mechanism of HSP70 related H. pylori in protecting asth-
ma remains to be further explored.

The “Disappearing Microbiota” Hypothesis
H. pylori is a kind of ancient, dominant bacteria that 

settle in the human stomach and closely attach to host 
cells. H. pylori might be a regular member in the gastric 
microflora in human. With the improvement of environ-
ment and lifestyle, and the eradication of H pylori, the 
prevalence of H. pylori infection in the developed coun-
tries has declined sharply, while the incidence of asthma, 
obesity, and allergic diseases has increased rapidly [137–
139]. According to Blazer [140], the proponent of the 
“disappearing microbiota” hypothesis, the absence of cer-
tain bacterial species from the ancestral microbiota could 
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change the environment where cognitive, metabolic, and 
immunological functions develop in our early life. This 
change could result in the increased susceptibility to some 
diseases. The disappearance of ancient microbiota may be 
a universal paradigm leading to modern diseases. This 
harmful trend implies that we need to put efforts in un-
derstanding and reversing the reasons contributing to the 
disappearing microbiota [5].

Treatment of Asthma Related to H. pylori Infection

Eradicating H. pylori could decrease the occurrence of 
dyspepsia, peptic ulcer, and gastric malignancy. However, 
concerns of extensive application of eradication treatment 
are also raised, such as the resistance to antimicrobial 
agents and an increase in the prevalence of disorders that 
are negatively correlated with the infection of H. pylori, 
including obesity, asthma, GERD, and Barrett esophagus 
[141, 142]. Eradicating the infection of H. pylori is consid-
ered as a double-edged sword. Thus, selective identifica-
tion and elimination of only the virulent strains of H. py-
lori are of great importance in the eradication therapy 
[143]. Epidemiology studies and experiments have dem-
onstrated that exposure to H. pylori could prevent asthma, 
especially in one’s childhood. Recently, in vivo studies 
have shown that live bacteria are not involved in induction 
of this protective role. Administrating an extract of H. py-
lori in a newborn could prevent inflammation in the air-
way and metaplasia of the goblet cells. Injection of H. py-
lori extract could inhibit DCs in processing the allergen in 
the mediastinal lymph nodes and lungs. These results sug-
gest that the extract of H. pylori following sensitization 
could effectively prevent allergic airway disorders [144]. 
H. pylori targets DCs and relies on highly suppressed 
Tregs. Since HP-NAP is considered as a possible regulator 
for Tregs and can inhibit allergic inflammation of asthma, 
it is possible to develop HP-NAP as an efficient H. pylori-
specific vaccine to treat allergic asthma [78, 145, 146]. van 
Wijck et al. [147] have shown that H. pylori extract can ef-
fectively reduce the production of mucus and multiple 
characteristics of inflammation in the mice rechallenged 
by house dust mite. VacA and GGT, 2 persistence deter-
minants in H. pylori, are sufficient in preventing asthma 
and could be given in their purified forms for treatment 
[148]. Transmaternal H. pylori exposure can reduce aller-
gic airway inflammation in the offspring through Tregs 
and also provide new insights for interventional therapy of 
asthma [73]. High doses of vitamin D and fish oil supple-
ments during pregnancy have been shown to help prevent 

and control disease in the offspring [149], and maternal 
treatment of Zika virus infection with the IL-1 receptor 
antagonist can directly reduce fetal neuroinflammatory 
response through placental immunity [150]. Immunolog-
ical methods can be used to design vaccines against H. py-
lori infection, and it should also be used for the prevention 
of asthma across generations [64, 68, 70]. VacA, GGT, HP-
NAP, Tregs, and even FOXP3 each play an important role 
in H. pylori-related asthma protection. It would be a very 
interesting topic if we could design an effective monoepi-
tope or multiepitope vaccine that could be used by the 
mother before pregnancy, during pregnancy, or during 
breastfeeding to prevent asthma of the offspring through 
the placenta or breast milk.

Conclusion

H. pylori may protect allergic asthma by regulating 
Th1/Th2 and Thl7/Tregs balance, inhibiting DCs and 
HSP70, activating TLRs, and reducing gastroesophageal 
reflux. The hygiene hypothesis, the “disappearing micro-
biota” hypothesis, and the gut-lung axis theory all support 
this protective effect. Therapeutic products made by H. 
pylori may be used to prevent and treat asthma. In par-
ticular, perinatal exposure to H. pylori can reduce allergic 
airway inflammation in the offspring, which also provide 
a new insight for interventional treatment of asthma.
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