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Abstract
Preconception and prenatal exposure to environmental 
contaminants may affect future health. Pregnancy and early 
life are critical sensitive windows of susceptibility. The aim of 
this review was to summarize current evidence on the toxic 
effects of environment exposure during pregnancy, the neo-
natal period, and childhood. Alcohol use is related to foetal 
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alcohol spectrum disorders, foetal alcohol syndrome being 
its most extreme form. Smoking is associated with placental 
abnormalities, preterm birth, stillbirth, or impaired growth 
and development, as well as with intellectual impairment, 
obesity, and cardiovascular diseases later in life. Negative 
birth outcomes have been linked to the use of drugs of 
abuse. Pregnant and lactating women are exposed to endo-
crine-disrupting chemicals and heavy metals present in 
foodstuffs, which may alter hormones in the body. Prenatal 
exposure to these compounds has been associated with pre-
eclampsia and intrauterine growth restriction, preterm birth, 
and thyroid function. Metals can accumulate in the placenta, 
causing foetal growth restriction. Evidence on the effects of 
air pollutants on pregnancy is constantly growing, for ex-
ample, preterm birth, foetal growth restriction, increased 
uterine vascular resistance, impaired placental vasculariza-
tion, increased gestational diabetes, and reduced telomere 
length. The advantages of breastfeeding outweigh any risks 
from contaminants. However, it is important to assess health 
outcomes of toxic exposures via breastfeeding. Initial stud-
ies suggest an association between pre-eclampsia and envi-
ronmental noise, particularly with early-onset pre-eclamp-
sia. There is rising evidence of the negative effects of envi-
ronmental contaminants following exposure during 
pregnancy and breastfeeding, which should be considered 
a major public health issue. © 2021 S. Karger AG, Basel

Introduction

Environmental, lifestyle, and personal factors are con-
sidered health determinants with the capacity to influ-
ence diseases, quality of life, and mortality. Recent scien-
tific evidence suggests that preconception and prenatal 
exposure to toxic environmental agents may have a criti-
cal and lasting effect on future health and disease suscep-
tibility [1–3]. This programming hypothesis was intro-
duced by David Barker in 1990 who found an association 
between growth retardation, low birth weight, and pre-
mature birth, and hypertension, coronary heart disease, 
and non-insulin-dependent diabetes in adulthood. Given 
that development continues after birth, Woodruff et al. 
[3] described sensitive windows occurring in the pericon-
ceptional period (before, during, and shortly after fertil-
ization) and during pregnancy but also throughout in-
fancy, childhood, and puberty (Fig. 1) [4].

Relationship between environmental pollution and 
abortion has been demonstrated for exposure to magnet-
ic fields and tobacco. In addition, more recent studies 

suggest that exposure to air pollutants such as particulate 
matter or cooking smoke may also be associated with 
higher risk of abortion. However, exposure to carbon 
monoxide showed inconsistent results, and no clear evi-
dence was found for other pollutants like heavy metals or 
organochlorine compounds [5].

The placenta is a barrier between mother and foetus. 
It regulates the delivery of nutrients, removes waste prod-
ucts, and protects the foetus from potentially noxious 
substances [6]. However, most classes of environmental 
pollutants can reach the foetal environment and accumu-
late in the placenta and foetus. In these cases, foetal expo-
sure is greater than maternal exposure.

The World Health Organization warns that an esti-
mated 12.6 million people die each year as a result of liv-
ing in unhealthy environments [7]. Scientific societies 
such as the International Federation of Gynaecology and 
Obstetrics work to raise awareness on this fact, in an ef-
fort to minimize the exposure to toxins that negatively 
influence the health of mothers and their newborns [8].

The aim of this review was to examine published stud-
ies on the effects of environmental exposure during preg-
nancy and the consequences on early life. Environmental 
contaminants included in this review are substances of 
abuse (alcohol, tobacco, and drugs of abuse), air pollu-
tion, chemicals, heavy metals, and noise. A search for 
English written articles was performed using the MED-
LINE/PubMed/Cochrane databases. Papers published 
between 2000 and April 2020 were selected. Combina-
tions of the following terms were used for the search: en-
vironmental exposure, pregnancy exposure, alcohol, to-
bacco, drugs of abuse, maternal food, endocrine disrup-
tors, toxic metals, air pollution, noise, and breastfeeding. 
Studies of interest were identified, and their methodology 
and key results examined. Review team members screened 
titles and abstracts and selected articles that seemed per-
tinent to the topic. Moreover, publications were also ana-
lysed based on the type of study, type of environmental 
exposure, number of cases, and possible biases. This is a 
narrative review, given the high heterogeneity of results 
on pregnancy exposure in the literature.

Environmental Exposure during Pregnancy

Exposure to toxic environmental agents during preg-
nancy has an effect on perinatal outcomes as well as on 
health during infancy and childhood. Different toxic sub-
stances have been studied to assess their impact on preg-
nancy, the neonatal period, and the child’s early life.
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Alcohol
Alcohol consumption is highly prevalent during preg-

nancy in our society. According to the Royal College of Ob-
stetricians and Gynaecologists, 29% of British pregnant 
women drink alcohol [9], while studies in Barcelona (Spain) 
reveal, through biological matrices, a 45% mild-moderate 
social consumption in the study population [10, 11].

Alcohol consumption during pregnancy may cause a 
range of adverse effects to the foetus (foetal alcohol spec-

trum disorders [FASDs]) [12]. To date, a safe level of al-
cohol consumption during pregnancy, or consumption 
period, has not been determined, and the use of alcohol 
should thus be avoided. FASDs affect up to 1% of the pae-
diatric population [12–14]. Broadly, the following clinical 
features are commonly seen in foetal alcohol syndrome: 
(1) morphological malformations, particularly craniofa-
cial features (midface hypoplasia, wide-spaced eyes, and 
a smooth philtrum); (2) growth restriction; and (3) cen-

Early prenatal
(1–16 wk)

Mid-late prenatal
(17–40 wk) 

Postnatal
(>birth)

Central nervous system (3 wk–20 yr)

Heart (3-8 wk)

Eyes (4–40 wk)

External genitalia (6–40 wk)

Immune system (8–40 wk): memory and competence birth-10 yr

Ears (4–20 wk)

Limbs (4–8 wk)

Kidneys (4–40 wk)

Lungs (3–40 wk): Alveloar phase birth–10 yr  

Reproductive system (7-40 wk): maturation in puberty

Skeleton (1–12 wk)

Personal exposure

Windows of susceptibility

Maternal and paternal exposure

Fig. 1. Human organogenesis and windows of susceptibility: prenatal and postnatal exposure. Modified from the 
World Health Organization “State of the science of endocrine-disrupting chemicals – 2012.” Summary for Deci-
sion-Makers [4].
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tral nervous system impairment, resulting in motor, cog-
nitive, learning, and behavioural disorders [14, 15].

Alcohol affects multiple metabolic pathways during 
foetal development, partly through the alteration of DNA 
methyltransferase activities (Dnmt) (Dnmt1, Dnmt2, 
Dnmt3a, and Dnmt3b) that shape the global epigenetic 
pattern of the developing foetus [16–18]. Consequently, 
the expression of key genes is deregulated, for example, 
insulin-like growth factors 1 and 2 [19–21], glial fibrillary 
acidic protein in astrocytes [22], and serine/threonine 
protein kinase GSK3β, which regulates the neurogenesis 
regulators NeuN and doublecortin (DCX) and neuronal 
survival [23]. Moreover, ethanol metabolism increases 
the production of reactive oxygen species, reducing the 
capacity of the endogenous antioxidant mechanisms 
[24], which promotes oxidative stress and neuroinflam-
matory processes [25]. The increase in reactive oxygen 
species alters protein structures and mitochondrial respi-
ration, leading to cellular apoptosis [26].

Tobacco
Global prevalence of smoking during pregnancy is 

high. A national survey conducted in the USA in 2012 
revealed that 15.9% of pregnant women smoked ciga-
rettes [27]. Similar patterns were observed in Europe in 
2011 and Australia in 2014 [27].

Smoking during gestation is positively associated with a 
range of poor foetal outcomes, for example, increased risk 
of abortion or impaired development and growth [28] as 
well as with long-term consequences such as intellectual im-
pairment later in life [29]. Lean body mass of babies of non-
smoking mothers seems to be more affected than fat mass 
[30], and during the first year of life, children of smoking 
mothers show complete catch-up growth [31]. There is also 
a causal relationship between maternal exposure to smoke 
and the risk of orofacial cleft, congenital heart disease, neu-
ral tube defects, and gastrointestinal malformations [32–
34]. Pregnancy complications such as pre-eclampsia have 
also been linked to smoking. Over the last years, a number 
of studies have reported negative associations between 
smoking and pre-eclampsia. A recent case-control nested 
study [35] carried out in Iceland found that this paradox was 
due to selection bias of the previous studies and absence of 
crucial confounders in the analyses. Based on a program-
ming effect [36], maternal smoking during pregnancy may 
determine the child’s medium- to long-term future weight 
status, blood pressure, or cardiovascular diseases. Although 
the underlying mechanisms remain unclear, longitudinal 
studies sustain that children of smoking mothers have a 
higher risk of developing obesity over time [37, 38].

The effects of foetal exposure to nicotine from snus 
(moist snuff), nicotine replacement therapies, or vaping 
(electronic cigarette use) are less clear [39]; for example, 
plasma nicotine levels when snuffing is lower in compar-
ison to cigarette smoking, although total concentration 
over time is higher [39]. The amount of nicotine con-
sumed by vaping is similar to that of cigarette smokers 
[40]. This is important because the prevalence of female 
smokers of childbearing age in Scandinavian countries 
(where snus is popular) is decreasing but that of snus is 
increasing [41]. Besides, vaping is increasing worldwide 
with a misperception that e-cigarettes are not as damag-
ing as regular cigarettes during pregnancy [40]. However, 
similar to tobacco, once the nicotine is absorbed and 
reaches the maternal plasma, it affects the foetus by trans-
fer through placenta both in snus and vaping, so the po-
tential harmful effects are the same as in tobacco use.

Drugs of Abuse
Prenatal substance abuse has increased among preg-

nant women, although its prevalence is still underesti-
mated. In 2017, the American National Survey on Drug 
Use and Health determined that 194,000 pregnant wom-
en had used illegal drugs in the previous month [42].

Drug misuse has been linked to negative birth out-
comes, although the individual impact of each substance 
remains unclear because of the confounding effects with 
coexisting substances. Moreover, addicted women often 
experience inadequate prenatal care, malnutrition, 
chronic illness, and poverty, which may exacerbate any 
potential problem during foetal development [27].

Prenatal drug use has been associated with microceph-
aly and adverse consequences for the foetus and (later) 
adolescent brains [43]; changes in brain morphology and 
synaptic plasticity have been reported [44], leading to lack 
of attention, reduced executive functioning skills, and 
disabilities in learning and memory, and consequently 
poorer academic attainment and behavioural problems 
[45–47]. Cannabis, cocaine, heroin, and methamphet-
amine are the most consumed substances. Their use may 
cause foetal loss, preterm birth, small-for-gestational age, 
birth defects, and admission to the neonatal intensive 
care unit [48]. Cocaine and methamphetamine have been 
linked to premature rupture of membranes and placental 
abruption, pre-eclampsia, and gestational hypertension 
[49–52]. The main consequences of opioid exposure in 
pregnancy are postnatal growth delay, microcephaly, 
neurobehavioral disabilities, and sudden infant death 
syndrome [53, 54]. In addition, maternal opiate use in-
creases the risk of neonatal abstinence syndrome [54] in-
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cluding irritability, poor feeding, tremors, hypertonia, 
vomiting, loose stools, seizures, and respiratory distress.

Drugs of abuse such as cocaine and amphetamines act 
by inhibiting serotonin, norepinephrine, and dopamine 
transporters. Cocaine- and amphetamine-related inhibi-
tion of these transporters in the placenta may increase 
serotonin and norepinephrine levels, which are potent 
vasoactive mediators in the intervillous space. This may 
cause uterine contraction and vasoconstriction, with sub-
sequent premature delivery, decreased placental blood 
flow, and intrauterine growth retardation [55].

Prenatal Exposure to Endocrine Disruptors and Toxic 
Metals
Endocrine-disrupting chemicals (EDCs) are exoge-

nous chemicals (phenols, phthalates, parabens, flame re-
tardants, and heavy metals) that may alter the hormonal 
and homeostatic systems of the organism [56]. Epidemio-
logic studies have demonstrated that EDC exposure is 
nearly universal in pregnant women [2], through person-
al hygiene products, cosmetics, cleaning products, elec-
tronic devices, and food [2].

Pregnant and lactating women should be aware of the 
risks of heavy metals and other food toxic compounds 
[57]. Table  1 summarizes the main foods containing 
heavy metals. Of particular importance is the bioaccumu-
lation of heavy metals in fish and seafood, with children 
having higher potential health risk than adults [58], since 
they are the main source of mercury, lead, arsenic, and 
cadmium (Cd) (Table 1). Besides the contamination of 
seas and oceans by humans, the resuspension of contam-

inated marine sediments may release sediment-bound 
contaminants, leading to the most toxic (dissolved) state 
of metals and bioaccumulation in marine waters. Recur-
rent tides and waves may cause release of these contami-
nants into different marine environments [59]. Public 
health agencies should provide food recommendations to 
help prevent exposure of the population to these toxins 
through food. Specifically, the Spanish Agency of Food 
Safety and Nutrition recommends avoiding the con-
sumption of swordfish, tuna, shark, and pike during preg-
nancy and lactation and even for children under 10 years 
of age [60].

EDCs may alter normal hormone production or their 
levels, as well as mimic hormone function. The main ef-
fects of prenatal exposure to EDCs have been studied, 
with evidence on pre-eclampsia and intrauterine growth 
restriction, preterm birth, and thyroid dysfunction [61, 
62].

Regarding hypertensive disorders of pregnancy, there 
is strong evidence between persistent exposure to certain 
chemicals (lead, Cd, organochlorine pesticides, and poly-
cyclic biphenyls) and pre-eclampsia, although this asso-
ciation cannot always be made with low levels of expo-
sure. On the other hand, results have been inconclusive 
for bisphenols, phthalates, and organophosphates [62].

Metals and metalloids accumulate in the placenta, 
causing a decrease in uterine blood flow, with negative 
impacts on foetal growth [61, 63]. It has also been de-
scribed that plasticizers, such as diethylhexyl phthalate 
and its active metabolites and bisphenol A (BPA), induce 
pre-eclampsia and growth restriction [64–66]. Detrimen-

Table 1. Toxic chemicals and main dietary sources

Toxic compound Food presence Toxic compound Food presence

Mercury [59] Fish/seafood (swordfish, sharks)
Wild mushrooms
Dietary supplements
Non-alcoholic beverages

Cadmium [60, 61] Cereals/grains (rice, wheat)
Vegetables (roots)
Meat/poultry
Seafood (bivalve molluscs)

Lead [63] Bread and rolls
Tea
Tap water
Potatoes
Fermented milk
Beer-like beverages

Hexavalent chromium [62] Drinking water
Special nutritional use products
Herbs, spices, condiments
Sugar

Arsenic [65] Fish/seafood
Algae (hijiki)
Cereals (rice grains)

Aluminium [64] Cereals
Vegetables
Beverages
Infant formulas
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tal effects on foetal growth have also been suggested with 
the exposure to pesticides such as dichlorodiphenyltri-
chloroethane and its metabolites [67].

Organochlorine pesticides and flame retardants such 
as polychlorinated biphenyl ethers and tetrabromobi-
sphenol A [68, 69] may lead to preterm birth by disturb-
ing normal oestrogen-progesterone ratio [70]. These pol-
lutants may also increase the risk of autism spectrum dis-
order [71] and disrupt thyroid function [68, 69, 72].

A growing number of studies suggest a link between 
congenital anomalies (cleft lip and palate, neural tube de-
fects, and congenital heart disease) and maternal expo-
sure to organic solvents, pesticides, and dioxins [73, 74]. 
Toluene embryopathy has been described after maternal 
inhalation of paint or glue [75]. Phthalates have antian-
drogen-like effects as well as an important role in hypo-
spadias and cryptorchidism [76]. Pesticides are consid-
ered to be a risk factor for childhood leukaemia [77]. Fi-
nally, maternal exposure to BPA increases depression 
rates, leads to behavioural problems, and alters the white 
matter in preschool children [78, 79].

Prenatal Exposure to Air Pollution as a Potential Risk 
Factor
Polluted air has a heterogeneous composition: partic-

ulate matter (PM), ozone pollution (O3), carbon monox-
ide (CO), nitrogen oxides (NO2 and NOx), and sulphur 
dioxide (SO2) [80, 81]. PM is a mixture of suspended par-
ticles with different chemical compositions usually clas-
sified by size (e.g., PM10 and PM2.5) [81]. It can trigger 
oxidative stress and inflammation in the lung’s alveoli 
[82–84] and cross the alveolar epithelium reaching the 
blood stream, causing systemic problems [85].

Evidence on the effects of pollution on pregnancy is 
constantly growing. Its relation with adverse perinatal 
outcomes such as low birth weight (<2,500 g) or pregnan-
cy-induced hypertensive disorders is well established [82, 
86, 87]. Olsson et al. [88] reported a positive association 
between NOx levels and increased risk for pregnancy-in-
duced hypertensive disorders (odds ratio [OR] = 1.12; 
95% confidence interval [CI], 1.06–1.18 per 10 μg/m3 in-
crease in the NOx level). A systematic review conducted 
by Pedersen et al. [89] concludes that pregnancy-induced 
hypertensive disorders are associated with PM2.5 (OR = 
1.57; 95% CI, 1.26–1.96 per 5 μg/m3 increment), NO2  
(OR = 1.20; 95% CI, 1.00–1.44 per 10 μg/m3 increase), and 
PM10 (OR = 1.13; 95% CI, 1.02–1.26 per 10 μg/m3 in-
crease). Regarding foetal growth, exposure to PM2.5 is 
negatively associated with reduced head circumference 
and weight at birth [90], while NO2 is significantly linked 

to a shorter length at birth [90–92]. NOx has also been 
related to a decrease of abdominal circumference and 
femoral length as well as reduced weight at birth [93].

Exposure to both PM and O3 has been associated with 
a higher risk of preterm birth [91, 92, 94, 95]. Synergies 
between PM2.5 and O3 showed worse outcomes (risk ra-
tio = 3.63) than their independent effects (risk ratio = 0.99 
and 1.34, respectively) [96]. Moreover, the multicentre 
European birth cohort HELIX study with 1,396 subjects 
showed that prenatal and first year of childhood exposure 
to NO2 and PM2.5 were inversely associated with telo-
mere length [97].

PM10, NO, and O3 have been linked to macrosomia 
[98], and PM2.5 to profound metabolic effects (e.g., glu-
cose intolerance, decreased insulin sensitivity, and altered 
hepatic glucose and lipid metabolism) through oxidative 
stress, in animal studies [99]. A cohort study found that 
in utero exposure to PM2.5 during the first trimester de-
creased placental transcription of the brain-derived neu-
rotrophic factor. This factor plays an important role in 
foetal neurodevelopment [100].

Many placental biomolecular changes have been ob-
served secondary to air pollution exposure, including al-
tered proteins and gene expression, increased oxidative 
stress inflammation, mitochondrial dysfunction, altered 
DNA methylation, and hormone dysregulation [101, 102]. 
These pathologic features are the result of increased oxida-
tive stress and inflammatory response in the placental cells 
[102, 103]. The accumulation of vesicular-bound particles 
triggers many dysfunctional cellular processes that lead to 
the expression of proteins that are similar to those seen in 
pre-eclampsia and intrauterine growth restriction, includ-
ing the tumour necrosis factor and vascular endothelial 
growth factor signalling [104, 105]. In later stages of preg-
nancy, exposure to PM2.5 induced placental chorioamnio-
nitis and thrombosis of placental capillaries in an animal 
model [82]. These changes in the placental tissue may lead 
to a reduction in the maternal-foetal exchange surface and 
the development of placental dysfunction.

Prenatal Noise
Noise pollution is a major environmental health con-

cern. Around 113 million people in Europe are exposed 
to excessive environmental noise levels according to the 
European Environmental Noise Directive (2002/49/EC), 
mainly from road traffic noise. The impact of environ-
mental noise on several health disorders is already recog-
nized [106, 107].

Many studies have found an association between expo-
sure to noise and cardiovascular effects, for example, hy-
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pertension, stroke, and myocardial infarction [107]. Fur-
thermore, there is high-quality evidence linking road traf-
fic noise and incidence of ischemic heart disease [108]. 
Repeated exposure to noise generates stress and sleep dis-
turbances, leading to endocrine and sympathetic respons-
es with the consequent increase in blood pressure, heart 
rate, and cardiac output through the release of catechol-
amines [106] and corticosteroids [109], as well as oxida-
tive stress and immunological responses [110]. These re-
actions to noise persist even during sleep and may cause 
chronic physiological deregulations [107]. Few studies 
have investigated the effect of noise exposure in pregnant 
women, with pre-eclampsia being of special interest. A re-
cent study in Quebec, Canada, comprising 269,263 deliv-
eries, showed that women exposed to >65 dB(A) had 1.29 
times the odds of severe (95% CI, 1.09–1.54) and 1.71 
times the odds of early-onset (95% CI: 1.20–2.43) pre-ec-
lampsia compared to those exposed to <50 dB(A) [111].

A Danish prospective cohort study with 72,745 wom-
en showed that a 10-dB increase in road traffic noise was 
associated with increased risk (10%) of pre-eclampsia 
[112]. These associations were stronger for mild and ear-
ly-onset pre-eclampsia but not evident for severe pre-ec-
lampsia. The authors conclude that the effects of air pol-
lution and noise were generally difficult to separate.

Studies evaluating exposure to noise pollution and its ef-
fect on placental development are still scarce. However, it 
has been hypothesized that noise, through a sustained stress 
reaction, may lead to excessive secretion of stress hormones, 
for example, cortisol, causing adverse effects on the uterus 
and foetus. Furthermore, stress reactions activate the sym-
pathetic-adrenal axis and release of catecholamines, with 
the consequent increase in blood pressure and possibly an 
increase in uterine reactivity and impairment of placental 
function leading to foetal hypoxia [113].

These initial studies suggest that exposure to environ-
mental noise may be associated with pre-eclampsia, par-
ticularly early-onset pre-eclampsia. Further studies are 
needed to confirm these findings.

Effects of Environmental Factors on the Placenta

The placenta is a highly sensitive organ to environ-
mental contaminants with estrogenic activity, as it ex-
presses the oestrogen receptors ERα and ERβ [114]. Al-
though there are many publications on the in vitro effects 
of different EDCs on the human placenta, some contro-
versies remain regarding the timing, dose, and duration 
of exposure [115]. It is important to emphasize that the 

effects of EDCs on human trophoblasts are dose-depen-
dent: low doses, which are detected in humans, are more 
effective than high doses [76].

Ferguson et al. [116] found a positive correlation be-
tween BPA urine levels and an increase in plasma soluble 
vascular endothelial growth factor receptor-1 (sFlt-1) as 
well as an increase in the ratio of sFlt-1 to placental growth 
factor. This suggests altered placentation and trophoblast 
function related to pre-eclampsia and hypertensive disor-
ders [117]. In vitro studies have shown that para-nonyl-
phenol substances, used in the industry, may increase 
β-hCG secretion and cell apoptosis, reduce trophoblast 
migration and invasion, and downregulate the expression 
of some placental carriers like ABCG2, a key transporter 
for xenobiotics [118]. In addition, polybrominated di-
phenyl ether mixtures enhanced in vitro placental proin-
flammatory response to infection. This may increase the 
risk of infection-mediated preterm birth by lowering the 
threshold for bacteria to stimulate a proinflammatory re-
sponse [119]. The effects of polybrominated diphenyl 
ether exposure on the placenta and foetus in rats during 
gestation varied by foetal sex. Moreover, higher concen-
trations of polycyclic aromatic hydrocarbons such as 
benzo[a]pyrene, benzo[b]fluorine, and dibenz[a,h]an-
thracene were found in the placenta of preterm deliveries 
in comparison to term deliveries [120].

Regarding heavy metals, the New Hampshire Birth 
Cohort Study (N = 1,159) reported an indirect relation-
ship between placental Cd and birth weight mediated by 
placental weight. With every ng/g increase in placental 
Cd concentration, lower placental weight was seen (−7.81 
g; 95% CI, −15.42, −2.48) [121]. Furthermore, the authors 
observed greater decrements in placental weight and ef-
ficiency associated with placental Cd concentrations, de-
pending on placental zinc and selenium concentrations. 
For the placenta with concentrations below median zinc 
and selenium values, decrements in placental weight were 
−8.81 g (95% CI: −16.85, −0.76) and −13.20 g (95% CI: 
−20.70, −5.70), respectively. No appreciable differences 
were observed with other elements (arsenic, mercury, or 
lead) [121].

Concerning air pollution, Liu et al. [82] reported cho-
rioamnionitis and thrombosis of placental capillaries in 
rats following exposure to PM2.5. These placental tissue 
changes cause a decrease in the maternal-foetal exchange 
surface as well as placental dysfunction. Human studies 
have demonstrated that PM-induced circulating proin-
flammatory cytokines may disrupt trophoblastic invasion 
during placenta formation [122, 123]. In a cohort study, 
Neven et al. [103] analysed placental DNA and found an 
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association between elevated placental mutation rate and 
prenatal exposure to PM2.5 and black carbon. The au-
thors postulated that placental mutations may represent 
an early effect to air pollutant exposure in the process of 
carcinogenesis.

Breastfeeding: Environmental Toxins in Human Milk 
and Effects on Early Life

Breastfeeding is the gold standard of newborn and child 
nutrition for at least the first 6 months of life [124]. How-
ever, transfer to breast milk of toxic substances to which the 
mother has previously been exposed may occur during 
breastfeeding. Several comprehensive reviews conclude 
that breastfeeding is generally contraindicated in mothers 
who use illegal drugs [125], although there are little phar-
macokinetic data available for lactating women [126].

Smoking and alcohol consumption should be avoided 
during breastfeeding. Alcohol interferes with the milk 
ejection reflex and may reduce milk production. Human 
milk alcohol levels generally parallel maternal blood alco-
hol levels. Some authors suggest limiting alcohol intake 
to the equivalent of 8 ounces of wine or 2 beers [125]. 
However, others hold that alcohol consumption during 
pregnancy and breastfeeding should be totally avoided 
since no specific amount has been proven to be safe [11, 
127]. Nicotine and other compounds can be passed to the 
infant through breast milk, increasing the incidence of 
respiratory allergy in infants and the risk of sudden infant 
death syndrome risk [128].

Polycyclic aromatic hydrocarbons and heavy metals 
are among the most studied contaminants [129]. Polycy-
clic aromatic hydrocarbons are lipophilic compounds 
and are stored in maternal body fat, released into breast 
milk with the onset of lactation, and passed directly to the 
child. However, limited evidence exists on significant 
toxicity associated with this mode of transmission. On the 
other hand, the presence of heavy metals such as arsenic, 
lead, Cd, and mercury in milk stimulates or supresses im-
portant immune modulators and may indirectly affect 
the child’s health, for example, allergy development, dis-
orders of the endocrine system, and even neurodevelop-
mental delay [130]. Lactating mothers are a high-risk 
population to mercury exposure and may transfer signif-
icant quantities to their babies [131].

The endocrine disruptor BPA has also been widely stud-
ied. A temporary tolerable daily intake of 4 μg/kg bw/day 
for oral exposure to BPA has been established [132]. Inter-
estingly, while BPA content in mature milk reflects recent 

ingestion, its presence in the colostrum reflects intake in the 
second half of pregnancy [133]. The place of residence of 
the mother and use of personal care products showed sig-
nificant association with BPA concentration [134].

In addition, human milk contains conjugated and un-
conjugated paraben forms, exposing the mother, foetus, 
and neonate during windows of heightened vulnerability 
for endocrine disruptors [135]. In a Spanish study, the 
detection frequency ranges of parabens in breast milk 
were 41–60 and 61–89% for unconjugated and total (un-
conjugated + conjugated) parabens, respectively. Esti-
mated daily intake of parabens by newborns through hu-
man milk (median = 0.014 μg/kg bw/day) was several or-
ders of magnitude lower than the 1–10 mg/kg bw/day 
acceptable daily intake established by the European Food 
Safety Authority [132, 136]. In a recent study, Sanchis et 
al. [137] found high urinary concentrations of methyl-
paraben (MP), ethylparaben, and BPA in lactating moth-
ers although estimated exposures were lower than the ref-
erence values for risk assessment. The use of personal care 
products was associated with higher urinary levels of MP 
and propylparaben. MP was also associated with the con-
sumption of packaged and bakery products [137]. All 
these chemicals may affect infant gut microbial function 
[138]; increase the risk of hyperkinetic disorder [139]; 
and cause toxicity to the liver and kidney, cancer, repro-
ductive and respiratory disorders [132, 140], or changes 
in thyroid and growth hormones with potential neurode-
velopmental sequelae [132, 141].

Conclusions

Exposure to environmental contaminants is a health 
determinant that may lead to the development of diseas-
es, which could be life-threatening, and affect quality of 
life. Although exposure may be deleterious to any person, 
pregnancy and early life exposure are critical windows of 
susceptibility, with lasting effects on future health and 
susceptibility to disease [1–3].

The use of alcohol, tobacco, and/or drugs of abuse by 
pregnant women is linked to harmful effects for the new-
born and later in life, including FASD and other negative 
pregnancy and birth outcomes. EDCs and heavy metals 
present in food or the environment are related to pre-
eclampsia, foetal growth restriction, preterm birth, and 
thyroid dysfunction. Air pollution may lead to preterm 
birth, foetal growth restriction, effects on pregnancy vas-
cularization, increased gestational diabetes, and reduced 
telomere length. Association between pre-eclampsia and 
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environmental noise is rising. Breastfeeding is recom-
mended; however, mothers should be warned about the 
risk of exposure for their newborns via breast milk.

Healthcare professionals (e.g., physicians) should have 
sound knowledge on harmful exposures, be able to coun-
sel their patients on their risk, and provide advice on the 
precautions they should take to minimize them, especial-
ly during pregnancy and breastfeeding. Protection from 
governments should be strengthened through actions 
limiting environmental exposure to substances known to 
have deleterious effects. The design of a global public 
health policy in the early future is the best way to translate 
evidence into action.
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