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Abstract
Introduction: Anesthesia during pregnancy can impair fetal 
neurodevelopment, but effects of surgery remain unknown. 
The aim is to investigate effects of abdominal surgery on fe-
tal brain development. Hypothesis is that surgery impairs 
outcome. Methods: Pregnant rabbits were randomized at 28 
days of gestation to 2 h of general anesthesia (sevoflurane 
group, n = 6) or to anesthesia plus laparoscopic appendec-
tomy (surgery group, n = 13). On postnatal day 1, neurobe-
havior of pups was assessed and brains harvested. Primary 
outcome was neuron density in the frontal cortex, and sec-
ondary outcomes included neurobehavioral assessment 
and other histological parameters. Results: Fetal survival 
was lower in the surgery group: 54 versus 100% litters alive 
at birth (p = 0.0442). In alive litters, pup survival until harvest-
ing was 50 versus 69% (p = 0.0352). No differences were ob-

served for primary outcome (p = 0.5114) for surviving pups. 
Neuron densities were significantly lower in the surgery 
group in the caudate nucleus (p = 0.0180), but not different 
in other regions. No differences were observed for second-
ary outcomes. Conclusions did not change after adjustment 
for mortality. Conclusion: Abdominal surgery in pregnant 
rabbits at a gestational age corresponding to the end of hu-
man second trimester results in limited neurohistological 
changes but not in neurobehavioral impairments. High in-
trauterine mortality limits translation to clinical scenario, 
where fetal mortality is close to zero. © 2021 S. Karger AG, Basel

Introduction

Commonly used drugs in anesthesia like propofol, 
sevoflurane, and fentanyl rapidly cross the placenta and 
can therefore potentially affect fetal brain development 
(online suppl. Table 1; for all online suppl. material,  
see www.karger.com/doi/10.1159/000512489) [1–3]. In 

D
ow

nl
oa

de
d 

by
: 

A
cc

es
s 

pr
ov

id
ed

 b
y 

th
e 

U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n 
Li

br
ar

y
14

1.
21

5.
93

.1
65

 -
 5

/2
1/

20
21

 1
0:

08
:4

7 
A

M



Bleeser et al.Fetal Diagn Ther 2021;48:189–200190
DOI: 10.1159/000512489

2016, the US Food and Drug Administration issued a 
warning that the exposure of the developing brain to an-
esthesia might be associated with impaired neurocogni-
tive outcome later in life [4, 5]. This concern was based 
on preclinical evidence. Both in newborn and pregnant 
animals, it has been shown that repeated or prolonged 
exposure to virtually all commonly used anesthetics 
causes apoptotic neurodegeneration in the developing 
brain, resulting in persisting neurocognitive impairments 
[6–13]. Several retrospective clinical studies suggest that 
in young children, anesthesia exposure could be associ-
ated with structural brain deficits that result in develop-
mental disorders later in life [14–19]. Contrariwise, pro-
spective and randomized studies failed to demonstrate 
such an association [20–22]. The clinical relevance of 
these observations remains an open debate.

There is much less evidence of the effects of surgery on 
fetal brain development. Maternal surgery during preg-
nancy in rodent models has been reported to impair fetal 
neurobehavioral outcome [23, 24], but rabbit and guinea 
pig models did not show (long-term) neurological im-
pairments after laparotomy or carbon dioxide pneumo-
peritoneum [25, 26]. In neonatal rat models, it has been 
demonstrated that pain increases neuroapoptosis [27], 
but the opposite effect has also been reported, suggesting 
a potentially neuroprotective effect [28]. A similar neuro-
protective effect has been reported for fetal surgery in 
sheep [29]. Clinical studies are limited to the observation 
that maternal surgery during pregnancy is associated 
with adverse pregnancy outcomes, including a higher in-
cidence of preterm delivery and lower birth weight [30, 
31]. The neurodevelopmental effects of surgery ± anes-
thesia during pregnancy in humans have not been inves-
tigated yet.

Exposure to anesthesia without (pronounced) organ 
manipulation occurs less frequently during pregnancy, 
but is necessary when pregnant patients require sedation 
for minimal invasive interventional cardiology (e.g., abla-
tion of atrial flutter), for interventional radiology (e.g., 
clipping of a cerebral artery aneurysm), or for endoscopy 
(e.g., endoscopic retrograde cholangiopancreatography 
and colonoscopy). Moreover, sometimes pregnant wom-
en require sedation without surgery on the intensive care 
unit (e.g., for the treatment of coronavirus disease 19) 
[31–33]. Much more frequent, however, is the situation 
in which pregnant woman are exposed to general anes-
thesia to perform a surgical procedure with organ ma-
nipulation. A first reason for surgery is for maternal indi-
cations, with the fetus being an innocent bystander. Every 
year, 0.5–0.7% of pregnant women need to undergo an-

esthesia for nonobstetric surgery [30, 31]. Most of the 
procedures are performed during the second trimester. 
Forty-nine percent of all procedures are intra-abdominal 
procedures (e.g., laparoscopic appendectomy, detorsion 
of ovarian mass, cholecystectomy, reduction of internal 
herniation, and sigmoid resection) [30, 31]. A second, yet 
less frequent, situation is that the fetus itself needs sur-
gery, for example, for the repair of an open spina bifida 
(SB) [34, 35]. In 2018 and 2019, a total of 333 fetal proce-
dures were performed in the University Hospitals of Leu-
ven, 34 of which were prenatal SB repairs under general 
anesthesia.

Recently, we demonstrated that the exposure of preg-
nant rabbits to sevoflurane anesthesia without organ ma-
nipulation transiently impairs neurobehavior and de-
creases neuron density, when compared to no anesthesia 
[26]. Because surgery with organ manipulation is much 
more frequent during pregnancy and because the current 
evidence of the effects of maternal surgery during preg-
nancy is conflicting, there is a need to further investigate 
the effects of clinically relevant maternal surgery on fetal 
brain development. Therefore, the aim of this study was 
to investigate the effects of abdominal surgery on fetal 
brain development in the rabbit model by disentangling 
the effects for anesthesia from those of surgery. We hy-
pothesized that maternal surgery impairs neurocognitive 
outcome in comparison with anesthesia without surgery.

Materials and Methods

Nineteen drug-naive time-mated pregnant rabbits (hybrids of 
New Zealand and the Flemish Giant rabbit) (on average 6 months 
old) were obtained from a certified breeder. After transport, the 
animals were acclimatized at least 3 days before the start of the ex-
periments. The rabbits were conventionally housed in individual 
cages at 21°C and 42% humidity, with a 12-h day-night cycle and 
free access to water and food. At a gestational age (GA) of 28 days, 
corresponding to the end of the second trimester in humans [36, 
37], does were randomized to either the sevoflurane group (n = 6) 
or the surgery group (n = 13).

Anesthesia and Surgery
Does underwent 2 h of general anesthesia at GA = 28 days, us-

ing a similar anesthesia protocol as previously described (online 
suppl. 1.1) [26]. After inhalation of 8 vol% sevoflurane, arterial and 
venous catheters were placed. Propofol was administered intrave-
nously, and the rabbit was intubated. The rabbits were ventilated 
with one minimum alveolar concentration of sevoflurane in 30% 
oxygen. Ventilation was adjusted to maintain normocapnia [38]. 
Fentanyl was administered intravenously, and antibiotics and me-
droxyprogesterone acetate were given subcutaneously. Does were 
continuously monitored using pulse oximetry, electrocardiogra-
phy, invasive arterial blood pressure monitoring, measurement of 
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ventilatory volumes, pressures, and gas analysis (inspiratory and 
expiratory O2, CO2, and sevoflurane). Esophageal temperature was 
maintained between 38 and 39.5°C using a heating pad and heating 
lamp. An arterial blood gas sample was taken 10 min after intuba-
tion and 10 min before extubation (sevoflurane group) or imme-
diately before releasing the capnoperitoneum (surgery group). The 
mean arterial pressure was maintained above 80% of the awake 
values using phenylephrine [38]. The rabbits were woken up 2 h 
after intubation.

In the sevoflurane group, there were no additional manipula-
tions. In the surgery group, a laparoscopic appendectomy was per-
formed (online suppl. 1.2). First, a 5-mm camera trocar was placed, 
the peritoneal cavity was insufflated with CO2 at a pressure of  

7 mm Hg, and 2 additional 3-mm trocars were inserted. After dis-
section and ligation of the appendix, 7 cm of the distal end of the 
appendix was removed from the abdomen. The abdomen was de-
flated, trocars removed, and surgical wounds sutured and infil-
trated with levobupivacaine.

Ten minutes after intubation and 10 min before the end of an-
esthesia, a maternal serum sample was obtained and the concen-
trations of interleukin 6 (IL-6) and interleukin 10 (IL-10) were 
measured (online suppl. 1.3).

Cesarean Section, Neurobehavioral Testing, and Harvesting
At term (GA = 31 days), an arterial blood sample was taken to 

obtain a full blood count. A cesarean section was performed under 
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Fig. 1. Neuron density. a The brains were cut to obtain 2 sets of 3 consecutive slides (distance: 100 μm between 
the slides). b Neuron densities counted manually on NeuN-stained slides. Data are shown as individual data 
points, and bars represent mean and standard deviation. NeuN, neuronal nuclei.

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e

D
ow

nl
oa

de
d 

by
: 

A
cc

es
s 

pr
ov

id
ed

 b
y 

th
e 

U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n 
Li

br
ar

y
14

1.
21

5.
93

.1
65

 -
 5

/2
1/

20
21

 1
0:

08
:4

7 
A

M



Bleeser et al.Fetal Diagn Ther 2021;48:189–200192
DOI: 10.1159/000512489

local anesthesia and sedation to standardize fetal stress during 
birth. After delivery of the pups, the does were euthanized. The 
pups were kept in a warmed and humidified incubator and fed 3 h 
after birth (online suppl. 1.4) [26, 39].

Twenty-four hours after birth, the pups underwent neurocog-
nitive testing using a validated scale which assesses different mo-
toric and sensory aspects [26, 39–41]. In addition to the original 
scale, the number of hops and the number of falling overs were 
counted as ordinal variables. The videos of the assessment were 
scored a posterior by 2 blinded observers (online suppl. 2.1).

After neurocognitive assessment, the pups were sacrificed to 
obtain brain histology. Following anesthesia, the pups were trans-
cardially perfused with 0.9% saline followed by formaldehyde. The 
brains were extracted, embedded in paraffin, and serially cut to 
obtain slides of the frontal cortex, caudate nucleus, putamen, and 
hippocampus (Fig. 1a, online suppl. 2.2). These brain regions are 
involved in the control of memory (hippocampus, caudate nucle-
us, and putamen), planning/problem solving (frontal cortex), and 
movement (caudate nucleus and putamen) [42–44].

Neuron densities were counted manually on slides stained for 
the neuronal nuclei (NeuN) marker, using similar methods as be-
fore [26, 45–50]. Total cell densities were counted automatically in 
whole brain regions using Hoechst staining. Synaptophysin, Ki67, 
and ionized calcium-binding adaptor molecule 1 markers were 
used to measure synaptogenesis [26, 51], brain proliferation [26, 
52, 53], and inflammation [54], respectively (online suppl. 2.3). All 
slides were digitally scanned, and quantifications were done using 
Qupath [55] (Centre for Cancer Research & Cell Biology, North-
ern Ireland, Open source) and ImageJ [56] (Fiji, Los Angeles, CA, 
USA) software (online suppl. 2.4).

Statistical Analysis
Primary outcome was the neuron density in the frontal cortex. 

Outcome parameters of the pups were analyzed using a linear 

Table 1. Maternal parameters during anesthesia

Sevoflurane Surgery p value

Does, n 6 13
Weight, kg 4.3±0.4 4.9±0.4 0.0106
Inspiratory O2 concentration, % 28±11 25±9 0.0793
End-tidal sevoflurane concentration, % 3.7±0.1 3.7±0.1 0.1738
End-tidal partial CO2 pressure, mm Hg 33±4 30±3 0.2364
Tidal volume, mL/kg 10.8±1.7 11.7±10.7 0.2364
Respiratory rate, /min 36±7 38±4 0.656
Inspiratory peak pressure, cm H2O 21±4 25±5 0.0393
Heart rate, /min 216±28 216±29 0.6931
Systolic blood pressure, mm Hg 69±12 69±15 0.9301
Diastolic blood pressure, mm Hg 40±8 41±9 0.6294
Mean arterial pressure, mm Hg 50±8 50±11 1
Pulse oximeter oxygen saturation, % 98±2 98±3 0.7589
Esophageal temperature, °C 38.7±1.1 38.2±0.8 0.4047
Total dose phenylephrine, µg 253±191 258±137 0.7923

Maternal parameters during the 2-h general anesthesia (± surgery) period on gestational day 28. Values are 
displayed as mean±standard deviation. Significant differences (p < 0.05) are highlighted in bold.

Table 2. Maternal arterial blood gas results

Sevoflurane Surgery p value

Start of anesthesia
pH 7.45±0.09 7.41±0.05 0.5683
paCO2, mm Hg 32±2 31±2 0.3286
paO2, mm Hg 148±14 155±10 0.4283
Hemoglobin, g/dL 9.9±1.2 9.7±0.8 0.6294
Potassium, mmol/L 3.4±0.5 3.5±0.5 1
Glucose, mg/dL 132±43 123±21 1
Lactate, mmol/L 4.1±1.1 4.6±1.1 0.4552
HCO3

−, mmol/L 22.5±4.2 18.6±1.7 0.0146
End of anesthesia

pH 7.43±0.06 7.39±0.07 0.2191
paCO2, mm Hg 32±5 29±3 0.1748
paO2, mm Hg 164±53 153±17 0.5681
Hemoglobin, g/dL 9.1±1.0 9.2±0.9 1
Potassium, mmol/L 3.4±0.5 3.5±0.5 0.9297
Glucose, mg/dL 136±27 156±33 0.2729
Lactate, mmol/L 4.5±2.0 5.2±2.2 0.8264
HCO3

−, mmol/L 21.3±5.0 15.9±2.8 0.0222

Maternal arterial blood gas results during anesthesia at 
gestational day 28. The first sample was taken 10 min after 
intubation. The second sample was obtained 10 min before the end 
of the anesthesia time of 2 h (sevoflurane group) or immediately 
before the end of the capnoperitoneum (surgery group). Values are 
displayed as mean±standard deviation. Significant differences (p < 
0.05) are highlighted in bold.
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mixed-effects model to correct for the fact that the pups of 1 litter 
are not independent observations (online suppl. 3) [57–61]. Using 
this model, the sample size was calculated a priori for the primary 
outcome. Parameters measured on the level of the does were ana-
lyzed using the Mann-Whitney U test. The inter- and intrarater 
reliability of the neurobehavioral evaluation was assessed using 
Spearman correlation (online suppl. 3). All analyses were per-
formed using SAS software (SAS System for Windows version 9.4; 
SAS Institute Inc., Cary, NC, USA). The graphs were constructed 
using GraphPad Prism 8 (GraphPad Software, San Diego, CA, 
USA). Data are mentioned as mean ± standard deviation.

Results

Maternal Outcomes
Maternal parameters during anesthesia (and surgery) 

were comparable (Table 1). Significant differences were 
limited to the weight of the does and the inspiratory peak 
airway pressure, which were significantly higher in the 
surgery group. Blood gas results were comparable (Ta-
ble  2), with the exception of bicarbonate levels, which 
were lower in the surgery group. There were no significant 
differences between both groups in the concentrations of 
IL-6 and IL-10 measured in maternal serum 10 min before 
the end of anesthesia (online suppl. Fig. 1). The time of 

capnoperitoneum was 48 ± 14 min. There were no surgical 
complications, and all surgeries could be performed with-
out manipulation of the uterus. None of the rabbits deliv-
ered prematurely or had a miscarriage. The full blood 
count and rectal temperature measured 3 days after anes-
thesia were comparable (online suppl. Table 2).

Fetal Outcomes
Primary Outcome
There were no significant differences in the neuron 

densities in the frontal cortex (517 ± 70 and 537 ± 85/
mm2, p = 0.5114) (Fig. 1b).

Survival and Biometrics
At the moment of cesarean section, all 6 does of the 

sevoflurane group had litters with alive pups. In contrast, 
in the surgery group, 6 out of the 13 does (46%) had litters 
of which all fetuses had died in utero (p = 0.0442) (online 
suppl. Table 4). For the does with surviving litters, 69% of 
all pups survived until the moment of harvesting in the 
sevoflurane group versus 50% in the surgery group (p = 
0.0352). There was no difference in postnatal mortality 
(14% of the total number of pups [death and alive] vs. 
12%, p = 0.6203), but there was a difference in the in ute-
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ro fetal deaths (IUFD) (17% of all pups vs. 38%, p = 
0.0079). The number of macerated stillbirths was signifi-
cantly lower in the sevoflurane group (11 vs. 37%, p = 
0.0010), but there was no significant difference in the 
fresh stillbirths (6 vs. 1%, p = 0.1678). Biometric data were 
comparable for both groups (Fig. 2).

Neurobehavioral Assessment
Neurobehavioral assessments of both groups were 

comparable (Fig. 3). There were no significant differenc-
es in motoric and sensory scores and number of hops and 
falling overs. The interrater reliability was moderate for 
the motoric scores, good for both the sensory scores and 
number of hops, and strong for the number of falling 
overs (online suppl. Fig. 2). The intrarater reliability was 
for every component good or strong for both observers 
(online suppl. Fig. 3).

Brain Histology
No significant differences were observed in the total 

cell densities (online suppl. Fig. 4). Neuron densities 
(Fig. 1b) were significantly lower in the surgery group in 

the caudate nucleus (781 ± 168 vs. 991 ± 280/mm2, p = 
0.0180), tended to be lower in the putamen (694 ± 99 vs. 
807 ± 175/mm2, p = 0.0521), and were comparable in the 
frontal cortex (517 ± 70 vs. 537 ± 85/mm2, p = 0.5114) and 
dentate gyrus (388 ± 71 vs. 353 ± 95/mm2, p = 0.4678). 
Proliferation, synaptophysin levels, and inflammation 
were comparable for both groups (Fig. 4, 5, online suppl. 
Fig. 5).

Discussion

Principal Findings
We recently reported that anesthesia without organ 

manipulation in pregnant rabbits resulted in a transient-
ly impaired neurobehavioral outcome and decreased 
neuron densities, when compared to a sham group with-
out anesthesia [26]. However, general anesthesia in preg-
nant women is more frequently used to perform surgical 
procedures, and the combined effects of anesthesia plus 
surgery on neurodevelopmental outcome remain contro-
versial. The aim of this study was, therefore, to investigate 
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the effects of abdominal surgery on top of general anes-
thesia on fetal brain development in pregnant rabbits 
with a GA corresponding to the end of the second trimes-
ter in humans, that is, the period during which abdominal 
surgery has to be performed most frequently [31, 36, 37]. 
First, there were more macerated IUFD in the surgery 

group. In survivors, however, there were no significant 
differences in neuron density in the frontal cortex. Neu-
ron densities were, however, significantly lower in the 
caudate nucleus and tended to be lower in the putamen 
in the surgery group, though without any other differ-
ences.
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Fig. 4. Proliferation. Proliferation in the brains of the pups measured using the Ki67 marker. Data are shown as 
individual data points, and bars represent mean and standard deviation.

Fig. 5. Synaptogenesis. Synaptophysin levels in the brains, measured as the mean gray value. Data are shown as 
individual data points, and bars represent mean and standard deviation.
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Results
Our observations suggest that, in rabbits, abdominal 

surgery impairs fetal survival. The incidence of macer-
ated IUFD in the surgery group was significantly in-
creased, while there was no difference in fresh stillbirths 
or postnatal mortality. Several factors may have contrib-
uted to the excess IUFD: the application of a 7-mm Hg 
capnoperitoneum, surgical manipulation, inflammation, 
a hitherto unknown vital function of the appendix in rab-
bits, or the susceptibility of rabbit fetuses. However, in 
guinea pigs, sheep, and humans, it has been demonstrat-
ed that laparoscopy during pregnancy is safe for the fetus, 
that is, it is not associated with an excess of fetal mortal-
ity [25, 62–64]. Anesthetic factors seem not to be in-
volved as in the surgery group, anesthesia parameters 
and blood gas results of pregnant does with surviving 
pups were comparable with the parameters of does with 
dead litters. There was also no correlation between CO2 
insufflation time and litter mortality (Spearman ρ = 
−0.249, p = 0.412). The duration of the capnoperitoneum 
was not correlated with neuron density, when insuffla-
tion time was added as a covariate to the mixed-effects 
model. Also, other maternal parameters were compara-
ble for both groups. The difference in body weight of the 
does can be explained by pure chance only, as the does 
were strictly randomized. Higher airway pressures in the 
surgery group can be attributed to the CO2 pneumoperi-
toneum required to perform laparoscopy. Both the vital 
parameters and blood gas results were within the range 
of healthy awake pregnant rabbits [38]. Exceptions were 
a higher partial oxygen pressure and higher glucose 
blood levels in the surgery rabbits, but it is unlikely that 
these would contribute to IUFD. Though statistically sig-
nificantly lower, the bicarbonate in the surgery group 
was above the 5th percentile of healthy awake rabbits, 
and no acidosis was observed [38]. Hence, we do not 
think the statistical difference to be of any clinical rele-
vance. Likewise, surgical manipulation and inflamma-
tion are unlikely explanations because the uterus was not 
touched during surgery and inflammatory parameters 
were not increased. The appendix was only partially re-
moved in this study. Even if an important gastrointesti-
nal or immunological function would have been com-
promised, it would not explain that most IUFD were 
probably around or immediately after the operation. Fe-
tal mortality is high in rabbits in all types of experiments 
in which physiological homeostasis is disturbed (e.g., 
prematurity [39, 65], surgery to induce fetal growth re-
striction [66, 67], or SB [68]) when compared to larger 
animal models (e.g., sheep [69]) and humans. Probably, 

the susceptibility of fetuses to surgical stimuli in general 
in small animal models is the explanation for the high 
IUFD.

When IUFD was added as a covariate to the mixed-
effects model, IUFD was not correlated with neuron den-
sities (frontal cortex: p = 0.8727, caudate nucleus: p = 
0.7520, putamen: p = 0.5547, and dentate gyrus: p = 
0.8082). The conclusions for the group effects also remain 
the same. This suggests that IUFD and neuron densities 
are independent outcome parameters.

This study was designed to document potential effects 
of abdominal surgery on the brain. We did not find obvi-
ous impairment by surgery. The differences were limited 
to a lower neuron density in the caudate nucleus. The loss 
of neurons in this region involved in movement was not 
reflected by a decreased motoric score. As many statistical 
comparisons were performed in this study and only one 
was significant, it is possible that this difference was ob-
served by random sampling error.

The underlying mechanisms for impairment of neuro-
development after exposure to anesthesia during early 
childhood or pregnancy remain still unknown. One 
mechanism that has been suggested is (neuro-) inflam-
mation [24, 70–72]. In our study, we could not document 
signs of increased maternal inflammation. The cytokines 
IL-6 and IL-10 and leukocyte counts were unchanged, 
and these have been earlier used in rabbits as a measure 
of inflammation [73, 74]. IL-6 has been previously shown 
to be involved in the pathways of neuroinflammation, re-
sulting in impaired fetal brain development [24, 70, 71]. 
Also, the density of microglial cells (marker of neuroin-
flammation) did not differ. The absence of inflammation 
could be an explanation for the limited differences in fetal 
brain development.

Clinical and Research Implications
This study could not demonstrate an effect of abdom-

inal surgery under anesthesia on brain development. We 
observed only limited effects for neurohistological pa-
rameters, with all but one parameter being unaffected by 
surgery. We were neither able to detect any neurocogni-
tive impact. Our results are therefore in line with previous 
findings showing that maternal surgery during pregnan-
cy does not result in major differences compared to anes-
thesia without surgery [25], or only in slightly impaired 
neurological outcome [23, 24, 27]. As the high IUFD is 
probably the consequence of the susceptibility of fetuses 
in a small animal model, the results should be confirmed 
in a large animal model.
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Strengths and Limitations
We acknowledge that our study has several limita-

tions. First, IUFD rate after abdominal surgery was exor-
bitant and bears no similarity to the clinical situation, 
where IUFD rates are close to zero [64]. This questions 
per se the translational character of our study. Second, 
abdominal surgery was performed in healthy rabbits 
without underlying pathology necessitating surgery. 
Hence, there was no local and/or systemic inflammation. 
Third, a laparoscopic appendectomy in rabbits is not an 
exact correlate of this procedure performed in humans 
due to the different anatomy of the cecum and appendix 
[75, 76]. Therefore, a laparoscopic appendectomy in rab-
bits is probably rather the equivalent of more invasive 
abdominal surgery in humans (e.g., complicated chole-
cystectomy, reduction of internal herniation, and sig-
moid resection). Fourth, rabbits have multiple fetuses, 
thereby not entirely mimicking the clinical reality in hu-
mans. Fifth, it cannot be ruled out that surgery had a 
more pronounced effect when studying other GAs. How-
ever, this is unlikely because the timing of our experi-
ment already reflects the worst case scenario in which 
surgery is performed at the moment on which the devel-
oping brain is most vulnerable to noxious factors, that is, 
the beginning of brain growth spurt and peak synapto-
genesis [36, 37, 77]. Sixth, this study did not include a 
control group without anesthesia. The primary objective 
of this study was to elucidate the effects of surgery plus 
anesthesia versus anesthesia alone on fetal brain develop-
ment. Of note, the effects of anesthesia versus awake an-
imals on fetal brain development and the validity of our 
model have already been demonstrated in our previous 
study [26] and were, therefore, out of the scope of this 
study. Seventh, even minimal surgery in the rabbit mod-
el results in fetal mortality. As this is inherent to this 
model, the sevoflurane group is probably not the most 
appropriate group to investigate fetal mortality after ab-
dominal surgery. Sham surgery (e.g., capnoperitoneum 
without surgery) would have been more appropriate re-
garding to the mortality.

Our study also has some strengths. The fetal rabbit 
model has multiple advantages over other animal models. 
First, the rabbit is a relevant model to investigate factors 
affecting the brain development [78]. The most vulnera-
ble period of brain development is the brain growth spurt, 
the period during which the brain is at its peak growth 
[78–80]. The brain growth spurt occurs in humans as well 
as in rabbits perinatally, whereas in other often used spe-
cies, such as rodents, this peak is postnatally, or in nonhu-
man primates prenatally [78, 80]. The GA of 28 days in 

rabbits is at the onset of the brain growth spurt and the 
peak synaptogenesis and corresponds to the end of the 
human second trimester [36, 37, 77]. Second, both the as-
sessment of neurobehavior and brain histology have been 
validated, and hence are robust and reliable [26, 39–41]. 
Third, the rabbit allows the use of well-controlled anes-
thesia and to use the American Society of Anesthesiolo-
gists monitoring [26].

Conclusions

Abdominal surgery in pregnant rabbits at a GA cor-
responding to the end of the second trimester in humans 
does not affect fetal brain development. We were unable 
to observe impairments in neurocognitive function or 
brain histology in the surviving pups. While we demon-
strated a lower neuron density in the caudate nucleus, no 
differences could be found in other brain regions, neither 
in biometrics, neurobehavior, total cell densities, prolif-
eration, synaptogenesis, or brain inflammation. The 
study is limited by a high IUFD rate after abdominal sur-
gery which is in contrast to human abdominal surgery in 
which fetal mortality is luckily close to zero. This limits 
the translation of the results of this study to the clinical 
scenario.
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