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Abstract: Modern pacemakers can sense and pace mul-
tiple chambers of the heart. These pacemakers have dif-
ferent modes and features to optimize atrioventricular
synchrony and promote intrinsic conduction. Despite
recent advancements, current pacemakers have several
drawbacks that limit their feasibility. In this review
article, we discuss several of these limitations and detail
several emerging technologies in cardiac pacing aimed
to solve some of these limitations. We present several
technological advancements in cardiac pacing, includ-
ing the use of leadless pacemakers, physiologic pacing,
battery improvements, and bioartificial pacemakers.
More research still needs to be done in testing the safety
and efficacy of these new developments. (Curr Probl
Cardiol 2021;46:100797.)
Introduction

T
oday, modern pacemakers (PMs) can both pace and sense multi-

ple chambers of the heart, including the right atrium, right
ventricle, and left ventricle, depending on the patient’s clinical
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need. Different pacing modes, smart algorithms, and features have been

designed to optimize atrioventricular (AV) synchrony, promote intrinsic

conduction while preserving energy to prolong battery life. Furthermore,

intelligent algorithms can adjust heart rate to physical demands and pre-

dict impending heart failure exacerbation. Some PMs are now even

MRI-conditional, thereby allowing patients to undergo imaging when

indicated safely.1

Despite these advancements, modern PMs still come with several sig-

nificant limitations. First, pacemaker generators have a finite battery life,

which can last somewhere between 6 and 15 years depending on multiple

patients and device factors that affect energy consumption, such as pacing

requirements and capture thresholds. This means that patients, particu-

larly younger ones, will require more than one invasive procedure in their

lifetimes, leading to cumulative procedure-related risks. Second, PMs are

foreign objects (generators and leads) located inside the human body,

and they can potentially cause bloodstream infections that can predis-

pose to endocarditis and damage cardiac structures. Third, the same

pacemaker leads can also develop lead fracture and insulation break-

down causing pacemaker malfunction. Finally, the pacemaker implan-

tation can be associated with a spectrum of complications, including

pocket hematoma, infection, and wound dehiscence. A laundry list

would further include pneumothorax, cardiac tamponade, lead dislodg-

ment, venous thromboses and obstruction, and tricuspid insufficiency.

The rate of reported postoperative adverse events has been estimated

to be as high as 10%.2 Other limitations of modern PMs are the inabil-

ity to mimic physiological autonomic responsiveness, metal allergy,

and electrical interference.

Extensive research and development aimed at supplanting these defi-

ciencies are either on the table to be incorporated now or soon. This

review article reviews some of the emerging technologies in cardiac pac-

ing and discusses their putative role in the near future.
Leadless PMs
Leadless cardiac pacemakers (LCP) are PMs that do not have the tradi-

tional cardiac pacemaker components, particularly the transvenous leads.

Here the generator and the tines connected to the tissue are one assembly.

The size is that of a large multivitamin capsule. These devices are

implanted directly inside the heart. Eliminating the need for a surgical

pocket for generator implantation eradicates any form of pocket compli-

cations, including infection, hematoma, and fluid collection. This ensures
2 Curr Probl Cardiol, May 2021



that attendant symptoms, including pain, generator migration, lead con-

nection failures, are automatically absent. Similarly, the absence of trans-

venous leads appropriately abolishes chances of lead complications,

including lead infection and or lead damages, like insulation failures.

The concept of a self-contained intracardiac “leadless” pacemaker was

first proposed in 1970, but it was not clinically used initially due to bat-

tery longevity concerns.3 Since then, 2 different LCPs from two different

manufacturers have been developed, marketed, and become clinically

available: the NanoStim Leadless Pacemaker System (LPS) developed

by St. Jude Medical (now Abbott Laboratories) and the Micra Transcath-

eter Pacing Systems (TPS) by Medtronic. Unfortunately, St. Jude Medical

recalled the NanoStim device in 2016 after a higher than expected rate of

critical battery failure, so currently, only the Micra TPS (and its last reit-

eration Micra AV, see below) is clinically available.4

Indications for implantation of an LCP include:

Chronic atrial fibrillation with AV block or significant pauses;

Sinus rhythm with high-grade AV block with a low level of physical activity;

Sinus bradycardia with infrequent pauses, and

Unexplained syncope with abnormal electrophysiological findings

such as prolonged HV interval.

LCPs have also been reported to be a viable option for appropriately

selected adult patients with congenital heart diseases when transvenous pac-

ing is not a suitable option, such as in some patients with intracardiac shunts

or tricuspid valve disorders.5,6 The contraindications to implant include a

mechanical tricuspid valve, preexisting endocardial pacing or defibrillation

leads, inferior vena cava filter, and hypersensitivity to dexamethasone ace-

tate. Unfavorable femoral venous anatomy, morbid obesity preventing the

implanted device from obtaining telemetry communication, pacemaker syn-

drome, and preexisting severe pulmonary hypertension are some of the other

limitations.7-9 Micra is a single component LCP implanted into the right ven-

tricle (RV) percutaneously through the use of a catheter delivery system

inserted into the femoral vein. It is secured into the RV myocardium via pas-

sive fixation through four self-expanding electrically inert nitinol tines. Its

tip is steroid eluting designed to reduce inflammation and scarring. The other

end of the device has a mechanism that allows it to be retrievable if neces-

sary. Estimated battery longevity based on nominal settings is about ten

years, similar to conventional PMs. Micra features pacing modes identical to

a single chamber pacemaker (VVI, VVIR, VOO, OVO, OFF).9,10 These

devices can detect and adjust to physical activity through a 3-axis accelerom-

eter-based adaptive pacing feature.11
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Clinical experience with Micra has so far been positive. The LEAD-

LESS II trial,8 a prospective randomized, multicenter clinical study that

enrolled a total cohort of 526 patients with an indication for permanent

VVI pacing, showed that the Micra TPS was able to achieve both its pri-

mary efficacy endpoint (acceptable pacing threshold and R-wave ampli-

tude) and primary safety endpoint (freedom from device-related serious

adverse events at 6 months of follow-up). Implant success was reported

to be at 96%, with the median procedural time of 29§18 minutes. About

6.7% of patients had serious adverse events that included cardiac perfora-

tion, device dislodgement, elevated pacing thresholds requiring retrieval

and replacement, and vascular complications. Subsequent worldwide,

Micra Post-Approval Registry12 demonstrated excellent early and inter-

mediate-term safety and efficacy, closely reflecting previously reported

data. In this registry, the device was successfully implanted in 99.1% of

patients, and significant complications occurred 63% less than transve-

nous systems. Another large postapproval study13 involving 720 patients

showed that LCPs resulted in improved health-related quality of life at 3

and 12 months, a high level of satisfaction, and less activity restriction

than traditional pacemaker systems.

The Micra system’s safety profile has been corroborated by other stud-

ies that showed lower complication rates than conventional PMs.14 Major

complications are rare, but these most commonly include pacing issues

such as elevated thresholds, dislodgment, battery failure, and femoral

access site complications such as hemorrhage, hematoma, or pseudoa-

neurysms. Some other rare complications include procedure-related car-

diac injuries such as cardiac perforation, tamponade, or pericardial

effusion.15 However, more rare complications such as the development

of malignant ventricular arrhythmias, possibly related to traumatic myo-

cardial inflammation, have also been reported and need to be looked fur-

ther.16-18 While there was an initial concern of possible LCP

dislodgment, a large meta-analysis involving 2116 patients implanted

with LCPs showed a low rate of dislodgment of about 0-1% compared to

conventional PMs with 1%-2.69%.19 In cases of device end-of-life/pre-

mature battery depletion or when there is a requirement for a system

upgrade, the implanted LCP can simply be turned off or abandoned.

However, there are instances when it has to be extracted, such as in cases

of infection or dislodgment. A systematic review by Li et al20 found that

available data demonstrated that chronic retrieval could be performed up

to 4-5 years after implantation with high success and low complication

rates. A small single-center study in Europe showed that patients with a

Micra LCP could safely and effectively undergo cardiac magnetic
4 Curr Probl Cardiol, May 2021



resonance imaging at either 1.5 T or 3.0 T with no relevant changes in

device parameters within three months of follow-up.21

A key limitation of the original Micra TPS is the lack of atrial sensing.

It does not have atrial tracking capabilities, which is helpful on some

occasions to augment cardiac output. Lack of atrial sensing can also cause

AV-desynchrony and lead to poor outcomes. Patients with sinus rhythm

and AV block have been shown to benefit from dual-chamber PMs that

can provide AV synchrony.22-24 More recently, customized software was

developed and downloaded for already implanted Micra devices to detect

atrial contraction using the devices’ built-in 3-axis accelerometers. Early

feasibility studies showed that this new algorithm could detect intracar-

diac accelerations and improve AV synchrony in patients with AV block

and a single chamber LCP.25,26 The prospective MARVEL 2 (Micra

Atrial Tracking using a Ventricular accelerometer 2) study involving 75

patients from 12 centers assessed this new algorithm’s performance and

found that it significantly improved AV synchrony in patients with sinus

rhythm and AV block without any pauses or episodes of oversensing-

induced tachycardia.27 Most recently, a case report showed that atrial

pacing from a preexisting pacemaker could be mechanically sensed by an

LCP with this downloaded algorithm and thus present a potentially novel

method to treat heart block in patients with concomitant sinus node dys-

function.6 Even though this new Micra LCP with atrial sensing can pro-

mote AV synchrony, it is still limited because it only offers pacing in the

right ventricle. Studies have previously shown that ventricular contrac-

tions from RV pacing are less physiologic than those from the native

intrinsic conduction system.28 High RV pacing burden is associated with

the development of heart failure. Promotion of intrinsic conduction is

therefore preferred. While this may be achieved through programming, a

pacing rate lower than intrinsic rate, those patients with concomitant

sinus node dysfunction can expect a high RV pacing burden. Hence,

LCPs with multichamber pacing are preferred. In the future, these are

expected to be developed and perhaps wholly obviate the need for trans-

venous leads.

EBR systems designed the WiSE CRT system to provide cardiac

resynchronization therapy (CRT) via a leadless pacing electrode in the

left ventricle in conjunction with a previously implanted dual-chamber

right-sided pacemaker/Intracardiac Defibrillator (ICD) (coimplant). This

device consists of an external transmitter and an internal receiver elec-

trode. The external transmitter detects RV pacing from the coimplant. It

then converts this signal to ultrasound (US) energy that gets transmitted

to the receiver electrode. The receiver electrode then provides a pacing
Curr Probl Cardiol, May 2021 5



stimulus to the left ventricle by converting ultrasound energy into an elec-

trical impulse. Current CRT technology relies on a transvenous lead

implanted into the coronary sinus or one of its branches to provide epicar-

dial pacing to the left ventricle. This can be associated with implant diffi-

culties in those with unfavorable coronary sinus anatomy, suboptimal

pacing related to epicardial pacing site, and limited locations for implan-

tation, thereby affecting optimal ventricular synchronization. WiSE CRT

system solves these issues by direct implantation of receive electrode in

the left ventricular wall endocardium thought to be the optimal site for

CRT pacing. Both the First-In-Man study and the nonrandomized

SELECT-LV study showed promising results of the WiSE CRT system

in terms of clinical response.29,30 A real-world registry involving 90

patients in 14 centers showed excellent technical success, but complica-

tion rates were still relatively high.31 The original WiSE CRT is not a

fully leadless pacemaker system. Recently, there was a case report of a

patient with a fully leadless pacemaker system that combined the Wise

CRT and Micra systems.32

While the use of leadless PMs may be promising, there are still some

issues that can be of concern for these devices. First, implantation of

these devices requires an invasive procedure that may have rare but dev-

astating complications. Second, except for the WiSE CRT, these devices

come with limited battery life. Once the Pacemaker’s battery gets

depleted, it may be possible to extract the old device and replace it with a

newer one. However, this adds 2 additional extraction and reimplantation

procedures, thereby adding to the cumulative procedural risk. The advent

of bioartificial Pacemaker possibly solves this problem (see below).
Physiologic Pacing
As the name implies, physiologic pacing (PP) utilizes the intrinsic con-

duction system to pace the cardiac chambers. PP is not a new concept in

electrophysiology (EP) and has been the goal since the earlier days of device

implantation and development. However, PP’s idea has undergone dramatic

changes as our knowledge regarding cardiac pacing has expanded.33 Though

not physiological biventricular pacing is associated with lesser risk than RV

pacing. Chronic RVA pacing has been shown to lead to left ventricular

remodeling, left ventricular systolic and diastolic dysfunction, valvular

pathologies, and ventricular arrhythmias.28 CRT is recommended for

patients with an indication for synchronized pacing due to conditions such as

atrial fibrillation or bradycardia. Best candidates for CRT are patients with a

wide QRS complex, left bundle branch block (LBBB), and nonischemic
6 Curr Probl Cardiol, May 2021



etiology of heart failure; however, CRT is not recommended in patients with

a QRS duration of less than 120 ms.34 Classic Physiological pacing existent

today is His-bundle (HB) and left-bundle-branch (LBB).
HB Pacing
HB is responsible for synchronous activation of the right and left ven-

tricles under a normal conduction pathway, leading to the heart’s efficient

pumping function. His-bundle pacing (HBP) has been utilized for the past

several decades. Traditionally, the use of HBP was cumbersome due to a

lack of development in tools and techniques. Recent developments in EP

have enabled a more robust and mainstream HBP application with promising

results.35,36 For HBP, identifying His potential is critical in the lead and

device delivery.37 The most common pacing lead used is the 3830 Select

Secure MRI SureScan HIS lead (Medtronic, Minneapolis, MN) with an outer

lead diameter of 4.2 French (F) and is 69 cm in length. The lead has a

1.8 mm exposed active helix part and requires an outer sheath for placement.

There are 2 sheaths used for placement. C315 His sheath (Medtronic) is a

non-deflatable sheath with an outer 7.0 F diameter and an inner 5.5 F diame-

ter. It is 43 cm long with a primary curve to providing the ability to reach the

tricuspid annulus and a secondary cure that can reach the septum. C304-69

sheath (Medtronic) is a deflatable sheath with a 5.7 F inner diameter, and an

outer diameter of 8.4 F.38 Intracardiac electrograms (EGM) are recorded

using a pace-sense analyzer. Usually, an electrophysiology recording system

is used to help with EGM analysis during the procedure. Mapping catheter

(unipolar at the time of mapping) is used to locate the HB.39

For HBP implantation, after vascular access is obtained (cephalic, axil-

lary, or subclavian), C315 His sheath is inserted over a guidewire. The

pacing lead is advanced after the guidewire removal. A unipolar connec-

tion is made between the lead and the tissue allowing EGMs to be

recorded. Once an atrial to ventricular EGM ratio of 1:2 or greater is

seen, the sheath is pointed toward the superior-anterior septum or mid-

posterior septum to achieve a high-frequency near-field HB recording,

indicating a good contact. Unipolar pacing is initiated, and the QRS mor-

phology is monitored. The response can be selective HBP (SHBP) or non-

selective HBP (NSHBP). In SHBP, the paced QRD morphology is

identical to the intrinsic narrow QRS complex. In NSHBP, stimulus-ven-

tricular activation is shorter than the HV interval. In this case, the pacing

output is gradually decreased to observe the QRS morphology and deter-

mine the appropriate pacing location. Once the site is confirmed, the pac-

ing lead is fixed while leaving a loop in the atrium.39-41
Curr Probl Cardiol, May 2021 7



Long-term outcomes of HBP have shown promising results compara-

ble with CRT and RVA. HBP is successful in 76% of patients with infra-

nodal block and successful in 93% of patients with AV nodal block. QRS

morphology has remained relatively stable without progression. HBP

observational studies have shown a reduction in the combined endpoint

of heart failure hospitalization than RVA pacing. This benefit was more

in patients with higher ventricular pacing burden. Studies have shown

improved hemodynamics with HBP resulting in improved systolic blood

pressure and stroke volume.42,43 These findings were also demonstrated

by Lustgarten et al, who found improvements in clinical endpoints of

New York Heart Association class, 6-minute walk test, quality of life,

and ejection fraction.44 One of the significant drawbacks of HBP is the

difficulty in the procedure, and advanced centers with highly specialized

teams are required for successful procedural outcomes.45 HBP shows

great promise in reducing morbidity and mortality by offering proper

physiological pacing utilizing the native cardiac conduction system, and

with advancements in the technology, better outcomes are expected.
LBB Pacing
The LBB pacing (LBBP) concept arises from the idea that pacing at a

location distal to the block should resolve the block, which in turn would

translate into a low pacing threshold. Huang et al first reported direct LBBP

during HBP when high output was required to correct the LBBB. By advanc-

ing the pacing tip toward the ventricle, LBBB resolved, and there was a low

pacing capture threshold.46 The outcome included improvements in both left

ventricular ejection fraction and heart failure symptoms.

In the LBBP method, similar leads and delivery systems to the HBP

are used. The pacing lead used is a SelectSecure (Model 3830 69 cm;

Medtronic Inc, Minneapolis, MN) with an exposed 1.8-mm active helix.

The sheath used is a Select Site fixed curve sheath (Model C315 HIS;

Medtronic Inc). An electrophysiological multichannel recorder is used

for intracardiac EGMs together with a 12-lead electrocardiogram. pace-

sense analyzer is used to test the pacing parameters and obtain EGMs.

LBBP uses a transventricular-septal approach. It is critical to use a tem-

porary pacing wire for back-up pacing for possible complete heart block

secondary to mechanical injury. Pacing and recording are done with a

unipolar configuration. There are 2 main methods used for LBBP lead

placement: single-lead method (SLM) and dual-lead method (DLM).48,49

In SLM, 2 main approaches are used to locate the pacing site. HB is

used as an anatomic marker in the first method, and the pacing lead is
8 Curr Probl Cardiol, May 2021



placed in the HB under fluoroscopic guidance. Images are obtained, and

the sheath and pacing lead is advanced toward the interventricular septum

below the septal leaflet of the tricuspid valve on the right side. This

location is usually 10-20 mm away from the HB region. In the sec-

ond approach, the tricuspid valve annulus is used as an anatomic

marker where the pacing lead and sheath are advanced directly across

the valve. A pacing site is identified on the right side of the interven-

tricular septum. The sheath is placed perpendicular to the septum,

and the pacing lead is advanced. Paced QRS morphology is observed,

which shows an LBBB morphology with a QRS duration of less than

150 ms, positive QRS in the lead II, biphasic QRS in the lead III,

and a notched QRS in lead V1. After ensuring the location is correct

with different fluoroscopic views, the lead is fixated with intermittent

pacing to ensure successful delivery. ECG is monitored for the pres-

ence of RBB delay on V1 and V2. After all criteria for LBBP are

met, the process is considered complete.47,49,50

In DLM, there are also 2 approaches possible. DLM uses 2 sets of 3830

leads and C315 delivery sheaths. In the first approach, the first pacing lead is

placed in the HB and used as an anatomic marker to assess the block site if

there is LBBB present. The second delivery sheath with the pacing lead for

LBBP is advanced inferior to the septal leaflet of the tricuspid valve in the

ventricular septum, approximately 10-20 mm from the HB. Fixation of the

lead is done similarly to the SLM. In the second approach, after an initial

attempt to perform LBBP with one pacing lead fails, a second pacing lead is

used to locate a more optimal pacing site while the first lead is used as an

anatomical marker. This method is mainly used in patients with enlarged

right atrium or ventricle. When the location is identified, the first lead is

moved to the right atrium and placed there.46,47,51

One advantage of the LBBP compared to the HBP is the relatively large

area available for selection. LBBP has good safety outcomes and clinical

feasibility. Lead fixation is more easily achieved than HBP, and there is less

risk of lead dislodgment as seen in HBP.52 Studies have further shown that

LBBP can achieve a low and stable capture threshold compared to SHBP

NSHBP (20).50 However, conditions such as severe fibrosis makes implanta-

tion more difficult. In patients with a dilated cardiomyopathy or mechanical

desynchronization, LBBP might not be the optimal choice.45 Although

LBBP provides a superior method for pacing compared to HBP, theoreti-

cally, it is not without limitations, and thus, clinical assessment for each tech-

nique is vital. One central area that LBBP is lacking is long-term safety

results. With more studies on these two promising methods, we can see the

real clinical significance of HBP and LBBP.
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Battery Improvements
Modern PMs require an electrical power source mainly provided by

batteries enclosed in the pacemaker unit. However, a significant draw-

back of such systems is the limited capacity and lifetime due to the finite

amount of energy stored in the unit. When devices approach the end of

life for the battery, unit replacement is required. This may embroil the

patient with complications associated with the procedure, such as possi-

ble infection, bleeding, and extra cost. To overcome these limitations,

various methods of energy-harvesting are currently being investigated.

These methods include solar energy, piezoelectric energy, and transcuta-

neous US energy harvesting triboelectric units.
Solar-Powered PMs
One promising area is the use of solar energy for energy harvesting. The

use of solar power has become mainstream in modern days, and since near-

infrared light can easily penetrate the human skin, this can provide a pathway

for energy harvesting. It has been shown that even a few minutes of direct

sunlight may provide enough energy for a pacemaker to function for

24 hours.53 However, the fundamental limitation is the need for the person

to be exposed to direct sunlight, which can have various limitations based on

location, climate, and lifestyle. A recent study by Haeberlin et al investigated

the feasibility of battery-less, solar-powered cardiac PMs in animal mod-

els.53,54 Their group demonstrated that in ex vivo conditions, it is possible to

implant a fully functioning PM using ambient light as the energy source

with good functional outcomes. They measured the amount of energy har-

vestable under direct sunlight and established that a few minutes of direct

sunlight could provide enough energy for the PM to function for one day.

Under ambient light, they witnessed the possibility of harvesting a consider-

able amount of energy, which at its lowest levels was at least approximately

twice the housekeeping power consumption needed by a modern PM. In

vivo, they were able to see that a 1 cm2 subcutaneous solar module exposed

to direct sunlight for 1 minute could harvest enough energy for several hours

of PM function. They also showed that even with a 9 mAh accumulator

without any energy input, the device lasted 40 days. Song et al have investi-

gated the feasibility of such devices in human cadaver tissues and have

established that such harvesting is possible, and the amount of energy cap-

tured is dependent on the size chosen.55,56 To maximize harvesting, the

device needs to in a location that would guarantee higher solar irradiation,

such as the lateral neck, and the depth should be kept at a level to maximize

light penetrance and minimize the likelihood of skin erosion. Also, a method
10 Curr Probl Cardiol, May 2021



of notifying the patients that the battery level is low is critical. Nevertheless,

fundamental questions need to be answered before this technology is ready

for human use.
Conformal Piezoelectric Energy Harvesting
Another method of harvesting energy uses biomechanical energy by

using wearable or implantable PMs that can convert mechanical energy

using piezoelectric crystals to electrical energy for powering the

device.57,58 The main issue in this form of energy harvesting is the type

of device used. These devices need to have excellent electromechanical

coupling ability and be flexible. The development of nanowires that could

enable such a task is critical. These devices need to be biocompatible and

withstand various mechanical wear and tear levels while not causing

immune reactivity. Dagdeviren et al were able to show that piezoelectric

devices can yield significant electrical power by harvesting energy from

motions of internal organs.59 Li et al applied an implantable piezoelectric

energy generator to directly power a PM by harvesting the natural energy

of the heartbeat in vivo bovine model.60 Thus, with recent developments

in piezoelectric powered PM, implantation of such devices is a promising

area in the field of EP.
Capacitive Triboelectric Technology
Triboelectric generators is another promising area of research. These

generators use the triboelectric effect, an electrically charging phenome-

non using frictional energy when various materials are in contact.61 These

generators can be used for harvesting energy by using US generators as

the source for transferring energy in vivo. In this technology, high fre-

quency vibrating and implantable generator devices harvest the US

energy in vivo. These devices are thin and implanted under the skin at

around 10 mm depth. These devices have a thin and large perfluoroalkoxy

membrane, which contracts, causing the triboelectric phenomenon to

generate negative charges on the membrane’s surface, creating a current.

The generated current is then used to charge a capacitance that can be

used to power a PM.62 This triboelectric signal depends on the acoustic

radiation pressure and decreases with an increased distance. Ex vivo stud-

ies have shown this technology’s capability to charge capacitors and bat-

teries, allowing PM to work with such energy sources.63,64 With more

developments in this field, this form of PM technology can provide a

promising future path.
Curr Probl Cardiol, May 2021 11



Bioartificial PMs
As eluded earlier, present-day PMs, though very intelligent machines,

come with many risks and compromises while mimicking the conduction

biology.65,66 Biological PMs have emerged in current research to address

these limitations, but more research that attends to ethical and reliability

problems must be done before cell-based, and gene-based therapy can be

applied clinically.
Prerequisites for Biological PMs
The sinoatrial node (SAN) spontaneously depolarizes during diastole

and is governed by many underlying currents, most notably the If current

and IK1 current. The If (funny) current is generated by sinoatrial nodal

cells and flows through hyperpolarization-activated cyclic nucleotide-

gated (HCN) channels, cation channels that are activated by hyperpolari-

zation (voltages lower than -50 mV). It is mainly involved in diastolic

depolarization, therefore playing an essential role in spontaneous automa-

ticity.67,68 HCN4 is one of four isoforms and is highly expressed in the

SA node, and it accounts for more than 81% of total HCN mRNA in the

rabbit SA node.69,70 Mutations in HCN4 are implicated in sinus node

dysfunction.71,72 The inward rectifier potassium (Kir) channel current,

also known as IK1, is mainly involved in maintaining prolonged action

potentials during diastole. IK1-enhanced human-induced pluripotent

stem cell-derived cardiomyocytes (hiPSC-CMs) acquire stable resting

membrane potentials.73 In contrast, guinea pigs were transduced with

dominant-negative Kir 2.1, and their left ventricular cardiomyocytes

showed spontaneous action potentials.74

Therefore, the biological approach to improve cardiac automaticity lies

in enhancing the If current and in attenuating the IK1 current to generate

a region of automaticity in the heart that functions as a substitute for a

dysfunctional SAN.75
Cell-Based Approaches
Biological PM involves the introduction of a cluster of spontaneously

beating cells into the heart. The earliest reported case of a cell-based sys-

tem utilized fetal cardiomyocytes injected into the left ventricle in can-

ines with AV block. This resulted in ventricular escape rhythms in the 2

transplanted dogs that were not observed in control dogs.76 This approach

has been further used with various spontaneously beating cell types.

Human embryonic stem cells (hESCs) readily differentiate into
12 Curr Probl Cardiol, May 2021



spontaneously beating cardiomyocytes, making them of interest in pro-

ducing ectopic pacemaker regions. In vivo transplantation of hESC-

derived cardiomyocytes into the left ventricle of guinea pigs resulted in

biological pacemaker activity in the form of a successful spread of mem-

brane depolarization from the site of injection confirmed by optical map-

ping.77 The transplantation of hESCs into the hearts of pigs with

complete AV block resulted in significant persistent pacing for weeks,

confirmed by optical mapping and histopathological examination.78 How-

ever, this approach has limitations in the form of ethical dilemmas (the

controversial origin of the cells), poor engraftment, and transplantation

requires extensive immunosuppression.

An alternative approach that addresses these limitations is to use

induced pluripotent stem cells (iPSCs), created from previously differen-

tiated adult cells obtained from skin or hair. These iPSCs are then further

differentiated into SAN-like cardiomyocytes, which can be used in vitro

or in vivo. A study used iPSC-derived cardiomyocytes in dog hearts by

open thoracotomy, but biological pacemaker activity of rates 40-50 bpm

was only seen in 50% of the animals.79 Though the strategies address

hESC limitations, iPSCs still produce mixed populations of cells with

various phenotypes, which leaves the possibility of immature cells

migrating or differentiating into different cell types. It has been shown

that overexpressing a transcription factor-like Shox2 (specific to SAN

development during differentiation) can highly favor cardiac PM cell

population from iPSCs.80
Gene-Based Approaches
The gene-based approach to induce biological pacing involves identi-

fying a gene of interest involved in PM activity of the heart and deliver-

ing (through a vector) a short nucleic acid sequence to manipulate the

expression of the gene. The earliest gene therapy approach targeted b2
adrenergic receptors found in increased density at the SAN. This

approach suggested that these receptors are involved in regulating the

funny current.81 By overexpressing the b2 adrenergic receptors, studies

were able to significantly increase the endogenous SAN rate of mice and

pigs compared to controls.82,83 Though these studies did not technically

create a biological pacemaker, it was shown that gene therapy could have

a profound impact on sinus node pacing.

Another approach attempts to suppress and downregulate IK1 currents,

involved in action potential repolarization and maintaining resting poten-

tial in diastole. Suppression of this current and similar potassium currents
Curr Probl Cardiol, May 2021 13



can therefore generate automatic rhythms because they release the IK1

current’s so-called “electrical brake.” A study successfully reduced the

number of functional Kir channels by overexpressing Kir2.1 AAA, a

dominant-negative construct, in the left ventricular myocardium of

guinea pig hearts.84 The overexpression of the construct allowed cardio-

myocytes to depolarize spontaneously by suppression of the IK1 current.

However, because IK1 was downregulated, an essential factor in repolari-

zation is eliminated, leading to prolonged repolarization, increasing the

risk of torsades de pointes.

As previously mentioned, HCN channels generate the funny current

during the hyperpolarization phase of the action potential. Therefore,

another approach is to overexpress HCN to generate functional pacing.

Qu et al overexpressed HCN2 in dogs, which was a more promising target

because of its better activation kinetics than the other HCN isoforms.

Spontaneous rhythms were found 4 days after delivery in the left atria,

and heart rate showed autonomic responsiveness.85 Follow-up studies

injected HCN2 construct into the LBB of canines with AV block, intro-

ducing biological pacemaker function. However, basal and maximal rates

were significantly slower.86
Hybrid Gene-Cell Approach
A hybrid gene-cell approach involves overexpression of pacemaker

genes in cells before transplanting them in vivo. Plotnikov et al overex-

pressed HCN2 in human mesenchymal stem cells and injected them into

canine hearts with complete heart block.87 Animals showed biological

pacemaker activity without cellular rejection. This approach avoided

using viral vectors and the necessity for immunosuppression, but heart

rates were comparatively low (50-60 bpm).87
Somatic Reprogramming
Somatic reprogramming involves reactivating developmental path-

ways studied in embryonic development to reprogram adult cardiomyo-

cytes into pacemaker-like cells by overexpressing transcription factors.

TBX18 is a vital transcription factor shown to be relevant in the

embryonic differentiation of SAN cells.88 By overexpressing TBX18,

Kapoor et al reprogrammed ventricular cardiomyocytes into SAN-like

cells, creating a biological pm rhythm that corrected the bradycardic dis-

ease model in guinea pigs.89
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Another approach identified pair-related homeobox 1 (prrx1), a transcrip-

tion factor, as a way to differentiate stem cells into sinus node-like cells. Yin

et al overexpressed prrx1 in brown adipose-derived stem cells and found it cur-

rent in altered cells only and none in the control group, showing successful

induction of sinus-node-like cells.90 They also found that prrx1 was coex-

pressed with other transcription factors and genes involved in SAN-like cell

development, such as TBX18, ISL-1, and HCN4.
Conduction Tissue
Another biological pacing approach is to engineer conduction tissue in

vitro and precisely transplant it in vivo for therapeutic results. Zhang et al

seeded cardiac progenitor cells into a collagen sponge and transplanted them

into rat hearts to determine if they could act as an AV conduction pathway.91

Staining revealed that 60 days after transplantation, a large amount of myo-

cardial tissue formed and that HCN2 and other connexins were present. This

suggested that the engineered conduction tissue formed gap junctions in the

surrounding myocardium, and the EKG confirmed clear pre-excitation in the

transplanted rats. Within one hour following AV block, transplanted rats had

a recovery rate of 61.54% with normal heart rhythms in contrast to only

4.17% in the control group. This study shows that engineered conduction tis-

sue can be a potential therapy for AV block and could potentially function

as a method to introduce biological pacing clinically.
Conclusions
PMs have come a long way since the first one was implanted over half

a century ago.92 Recent developments in pacemaker technology have led

to improvements in its efficacy profile. Despite such achievements, many

compromises are inevitable while implanting a pacemaker compared to

the body’s pacing mechanism. Leadless PMs have circumvented certain

complications associated with transvenous pacing but do carry its limita-

tions. With research involving HB and left bundle pacing, options for PP

have emerged. Improvements in the pacemaker battery and energy har-

vesting may address the issue of limited battery life. Finally, the advent

of bio-PMs may be a solution to complications related to a traditional car-

diac pacemaker. However, despite substantial developments in the last

one decade, the technology is far from prime. Given the fast pace of

research, it is tenable to dream of one in the near future.
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