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Abstract: Brugada syndrome (BrS) was first described
in 1992 as an aberrant pattern of ST segment elevation in
right precordial leads with a high incidence of sudden
cardiac death (SCD) in patients with structurally normal
heart. It represents 4% » 12% of all SCD and 20% of
SCD in patients with structurally normal heart. The
extremely wide genetic heterogeneity of BrS and other
inherited cardiac disorders makes this new area of
genetic arrhytmology a fascinating one. This review
shows the state of art in diagnosis, management, and
treatment of BrS focusing all the aspects regarding genet-
ics and Preimplant Genetic Diagnosis (PGD) of embryos,
overlapping syndromes, risk stratification, familial
screening, and future perspectives. Moreover the review
analyzes key points like electrocardiogram (ECG) crite-
ria, the role of electrophysiological study (the role of ven-
tricular programmed stimulation and the need of
universal accepted protocol) and the importance of a cor-
rect risk stratification to clarify when implantable cardi-
overter defibrillator or a close follow�up is needed. In
recent years, cardiovascular studies have been focused on
personalized risk assessment and to determine the most
optimal therapy for an individual. The BrS syndrome has
also benefited of these advances although there remain
several key points to be elucidated. We will review the
present knowledge, progress made, and future research
directions on BrS. (Curr Probl Cardiol 2021;46:100454.)
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Introduction

B
rugada syndrome (BrS) was first described in 1992 as an aber-

rant pattern of ST segment elevation in right precordial leads

with a high incidence of sudden cardiac death (SCD) in patients

with structurally normal heart (Fig 1).1

It looked like a scientific curiosity, however, after all these years this syn-

drome is recognized as a major disease that integrated previous syndromes

like idiopathic ventricular fibrillation, sudden unexplained death syndrome,

and some forms of sudden infant death syndrome. BrS and other syndromes

like long or short QT syndromes and catecholamine polymorphic ventricular

tachycardia (CPVT) have as common denominator alterations of ionic cur-

rents leading to depolarization and/or repolarization abnormalities that result

in ventricular arrhythmias (VAs) causing SCD.

BrS represents 4% » 12% of all SCD and 20% of SCD in patients with

structurally normal heart. Where the syndrome is endemic, like in Asiatic

south-east regions, it is a leading cause of death in men under 40 years

old.2,3 Prevalence of BrS is believed to range from 1 in 5000 to 1 in 2000.

It is 8 -10 times more prevalent in men than women. ventricular fibrilla-

tion (VF) occurs at a mean age of 41 + 15 years but it may manifest at

any age, usually during rest or sleep.4

At least 19 different genetic variants of BrS are known nowadays, with

more than 300 mutations reported, most of them affecting the SCN5A

gene that encodes for the cardiac sodium channel. The extremely wide

genetic heterogeneity of BrS and other inherited cardiac disorders makes

this new area of genetic arrhytmology a fascinating one.

We will review the present knowledge, progress made, and future

research directions on BrS.
Electrocardiographic Features and Diagnosis
The diagnosis of BrS is a clinical-electrocardiographic one. The clini-

cal presentation can be very variable, from completely asymptomatic to

episodes of syncope and SCD, but also other manifestations like Atrial

fibrillation (AF) and atrioventricular (AV) block.

Characteristically, patients with BrS have no apparent structural heart

disease. The hallmark of BrS is the transient or persistent appearance of

typical ECG changes in the right precordial leads.5

Three different ECG patterns (Fig 1), all featuring ST segment eleva-

tion in the right precordial leads, have been recognized: Type I is the

only pattern that is diagnostic for BrS. It consists of a coved-type ST
2 Curr Probl Cardiol, March 2021



FIG 1. Brugada electrocardiogram (ECG) patterns. (A) A diagnostic coved-type (type I) Bru-
gada ECG pattern documented in a 9-year-old girl who presented with syncope and positive
family history of BrS. Note the pattern resembling a right bundle branch block (arrows) in leads
V1 and V2, with typical ST elevation. (B) Baseline ECG of a 58-year-old asymptomatic man with
positive family history of BrS. Example of a type II saddleback Brugada ECG pattern. Genetic
analysis revealed a mutation in the SCN5A gene. Note the saddleback-shaped patterns, with a
high initial augmentation followed by an ST elevation greater than 2 mm in lead V2. (C) Example
of a baseline type III saddleback Brugada ECG pattern (arrow) documented in a 61-year-old
asymptomatic man who was diagnosed on the basis of a positive result on class IC antiarrhyth-
mic drug testing.
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segment elevation equal or greater than 2 mm, followed by a descending

negative T wave in at least 1 right precordial lead (V1-V3). Type II and

type III are saddleback patterns with a broad R’ followed by a convex

saddle-type ST configuration with elevation greater than 2 mm for type II

and less than 2 mm for type III. Both patterns are suggestive of but they

are not diagnostic for BrS. ECG appearance of “BrS” is not so uncommon

in general population and identification of whom patient are really at risk

is still challenging nowadays.

Consensus papers and guidelines were heterogenous and conflicting

among years starting from BrS first description in 19921 through HRS,

ESC consensus documents in 2002, 2006, and 2013 till Shangai criteria

in 2016 and the last review made by Josep Brugada et al. in 2018.6�8

Until 2013 we were able to diagnose BrS in a setting of Brugada ECG

pattern plus symptoms which were needed to define the “syndrome.” A

patient had Brugada syndrome with a type 1 ECG pattern spontaneously

or after provocative drug tests with intravenous administration of

sodium-channel blockers plus 1 of the following:

� Documented VF or polymorphic VT.
� Inducibility of VAs with programmed electrical stimulation.
� Family history of SCD before age 45.
� History of nonvaso-vagal syncope
� Nocturnal agonal breathing.

Because many patients with a type 1 ECG are asymptomatic, in 2013

an expert consensus statement proposed a definition only based on ECG

appearance requiring any further evidence of malignant arrhythmias.9

Brugada ECG pattern can be intermittent and dynamic in the same

patient and can be present only during physical activity or other condi-

tions like fever or electrolyte imbalances.10 Some drugs like calcium

antagonists, nitrates, phenothiazines, selective serotonin reuptake inhibi-

tors etc can also unmask BrS pattern. This has important implications for

the diagnosis of BrS because the diagnosis can be completely missed if it

is not suspected and a pharmacologic challenge is not performed to

unmask the typical type I ECG.

A pharmacologic challenge test can be performed using sodium chal-

lenge blockers like ajmaline, procainamide, or flecainide (Fig 2). In

Japan, pilsicainide is used for that purpose. Ajmaline in a dose of

1 mg/kg over 5 minutes seems to be the best drug.

The full stomach test was proposed as an alternative tool in diagnosing

BrS.11 Here, the ST segment changes appear to be provoked by an
4 Curr Probl Cardiol, March 2021



FIG 2. Induction of a diagnostic coved-type (type I) electrocardiogram (ECG) by administration of a sodium channel�blocking agent.
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enhanced vagal tone. Adrenergic stimulation decreases the ST segment

elevation, whereas vagal stimulation increases it.

It is important to rule out other causes of ST segment abnormalities in

right precordial leads which mimic BrS before making the diagnosis.

Those are known as BrS “phenocopies” (Table 1).12

A diagnosis of BrS requires a high degree of suspicion by physicians.

Symptoms that suggest a possible BrS and promote its intensive research are:

syncope of unknown origin, AF with a normal heart, peripheral or cerebral

embolism (as a complication of AF), and cardiac arrest of unknown cause.

These symptoms and signs can be the first and only manifestation of BrS.
TABLE 1. Acquired Brugada Syndrome (phenocopies): differential diagnosis of ST segment ele-
vation in electrocardiogram leads V1 and V2.

Drugs Antiarrhythmic
drugs

� Class 1C sodium channel blockers
(eg, flecainide, pilsicainide,
propafenone)

� Class 1A sodium channel blockers
(eg, procainamide, disopyramide,
cibenzoline)

� Verapamil (L-type calcium channel
blocker)

� Beta-blockers (inhibit ICa,L)
Antianginal drugs � Nitrates

� Calcium channel blockers
(eg, nifedipine, diltiazem)

Psychotropic
agents

� Tricyclic antidepressants
(eg, amitriptiline, desipramine,
clomipramine, nortriptyline)

� Tetracyclic antidepressants
(eg, maprotiline)

� Phenothiazines (eg, perphenazine,
cyamemazine)

� Selective serotonine uptake
inhibitors (eg, fluoxetine)

� Cocaine intoxication
Antiallergic
agents

� Histamine H1 antihistaminics.
First-generation (dimenhydrinate)

Acute ischemia
in RVOT

Electrolyte
disturbances

Hyperkalemia
Hypercalcemia

Hyperthermia
and hypothermia

Elevated insulin
level

Mechanical compression
of RVOT

RVOT, right ventricular outflow tract.
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The presence of a type I BrS pattern in first-degree relatives with a

family history positive for SCD can lead to a stronger suspicion of real

BrS ECG pattern in our patient. We recommend an ajmaline test in these

circumstances to prove or exclude the diagnosis.

Shangai criteria stated in 2016 rise up an important question, if a drug

challenge test is really necessary when we find a type 2 BrS ECG pattern.7

In the absence of symptoms like syncope (non vaso-vagal) or a family

history of SCD and type I BrS ECG the extensive use of drug challenge

test seems to be unnecessary, given that the risk of SCD of those patients

isn’t higher and sometimes is lower than general population.13 A

“positive result” in those patients can have negative psychological conse-

quences and unnecessary daily life restrictions like in agonist sports or

“medical clearance” for some jobs.

We should also remember that sodium-channel blocker challenge test

is not free from possible side effects.
Genetics
BrS is a familial disease. The most common type of inheritance is an

autosomal dominant pattern. To date, more than 300 pathogenic variants

in 19 different genes have been reported (Table 2). The first gene that

was associated with BrS was the SCN5A gene which encodes for the

alpha subunit of the cardiac sodium channel.14 Mutations in the SCN5A

gene result in loss of function of the sodium channel.

About 20%-25% of patients with BrS have a mutation in the SCN5A

gene, classified as BrS type 1.15

Recently, an individual diagnosed with BrS and concomitant conduc-

tion system disease had a large-scale deletion of the SCN5A gene.16 This

copy number variation is the only rearrangement identified as a cause of

the disease to date.

Despite these ongoing developments in understanding the genetic

causes of BrS, only 30%-35% of clinically diagnosed cases are geneti-

cally diagnosed, and most of these (25%-30%) result from pathogenic

alterations in SCN5A.15

Other mutations associated with BrS affect the SCN1B gene (codify-

ing for the sodium channel beta-1 subunit), the SCN2B gene (sodium

channel beta-2 subunit), and the SCN3B gene (sodium channel beta-3

subunit); all these mutations modify the channel’s function (increasing or

decreasing INa).17�19

Recently, SCN10A gene (neuronal sodium channel Nav1.8) has been

shown to modulate SCN5A expression and the electrical function of the
Curr Probl Cardiol, March 2021 7



TABLE 2. Brugada Syndrome (BrS) types.

Inheritance Locus Gene Protein

(Sodium) Autosomic
dominant

3p21-p24
3p22.3
19q13.1
11q24.1
11q23.3
3p22.2

SCN5A

GPD1-L

SCN1B

SCN3B

SCN2B

SCN10A

Nav1.5
Glycerol-3-P-DH-1
Navb1
Navb3
Navb2
Nav1.8

17p13.1
3p14.3
12p11.21

RANGRF

SLMAP

PKP2

RAN-G-release factor (MOG1)
Sarcolemma associated protein
Plakofilin-2

(Potassium) Autosomic
dominant

Chromosome X

12p12.1
11q13-q14
12p12.1
15q24.1
1p13.2
Xq22.3

ABCC9

KCNE3

KCNJ8

HCN4

KCND3

KCNE5

Adenosine triphosphate
(ATP)- sensitive

MiRP2
Kv6.1 Kir6.1
Hyperpolarization cyclic
nucleotide-gated 4

Kv4.3 Kir4.3
potassium voltage-gated channel
subfamily E member 1

(Calcium) Autosomic
dominant

2p13.3
10p12.33
7q21-q22
19q13.33

CACNA1C

CACNB2B

CACNA2D1

TRPM4

Cav1.2
Voltage-dependent b-2
Voltage-dependent a2/d1
Transient receptor potential M4
heart.20 Another gene reported as responsible for BrS is the GPD1-L.

Mutations in GPD1-L reduce both the surface membrane expression and

the inward sodium current.21

Kattygnarath et al. have published a study supporting that RANGRF can

impair the trafficking of Nav1.5 to the membrane, leading to INa reduction

and clinical manifestation of BrS.22 Ishikawa et al. reported in 2012 patho-

genic variations in the sarcolemmal membrane-associated protein’s gene, a

gene of unknown function that is found at T-tubules and the sarcoplasmic

reticulum. Sarcolemmal membrane-associated protein’s gene causes BrS by

modulating the intracellular trafficking of the Nav1.5 channel.23

Pathogenic variations in the plakophilin-2 (PKP2) gene have been also

reported to be associated with BrS.24,25 PKP2 is the primary gene responsible

for arrhythmogenic right ventricular cardiomyopathy, a desmosomal disease

characterized by fibro-fatty replacement of myocardium leading to SCD in

young men, mainly during exercise. Correlation between the loss of expres-

sion of PKP2 and reduced INa has been identified in BrS patients.

Apart from sodium channels, several potassium channels have been

also related to BrS. The first one described was KCNE3 which codifies

the MiRP2 protein which regulates the potassium channel Ito and
8 Curr Probl Cardiol, March 2021



modulate some others potassium currents in the heart.26 Another gene

associated to BrS is the KCNJ8, previously related to early repolarization

syndrome (ERS).27 The KCNJ8 was described as a novel J-wave syn-

drome susceptibility gene and a marker of gain of function in the cardiac

K(ATP) Kir6.1 channel.28

In 2011, Giudicessi et al. provided the first molecular and functional

evidence implicating novel KCND3 gain-of-function mutations (Kir4.3

protein) in the pathogenesis and phenotypic expression of BrS with

enhanced Ito current gradient within the right ventricle where KCND3

gene expression is the highest.29

Novel variants in KCNE5 were shown to cause gain-of-function

effects on Ito. KCNE5 gene is located in the X chromosome and encodes

an auxiliary b-subunit for K channels.30

A similar role is the one of sulfonylurea receptor subunit 2A (SUR2A),

encoded by the ATP binding cassette subfamily C member 9 (ABCC9)

gene.31 Gain-of- function pathogenic variants in ABCC9 induce changes

in ATP-sensitive potassium) channels and, when coupled with loss-of-

function pathogenic variants in SCN5A, they may underlie a severe

arrhythmic phenotype of BrS.

BrS was also associated gene HCN4 gene, which codifies for HCN4

channel or If channel (hyperpolarization-activated cyclic nucleotide-

gated potassium channel 4). Its mutations predispose also to inherited

sick sinus syndrome (SSS) and Long QT syndrome (LQTS) associated

with bradycardia.32

Calcium channels have also been associated to BrS. Mutations in

the CACNA1C gene are responsible for a defective a unit of the type-L cal-

cium channel. Mutation of the CACNB2B gene leads to a defect in the

L-type calcium channel. Both induce a loss of channel function.33 It was

reported that the CACNA2D1 gene was also responsible for BrS. The alpha-

2/delta subunit of the voltage-dependent calcium channel regulates current

density, and activation/inactivation kinetics of the calcium channel.34

Finally, pathogenic variations have also been reported in the transient

receptor potential melastatin protein number 4 (TRPM4) gene, a

calcium-activated nonselective cation channel that is a member of a large

family of transient receptor potential genes.35 This gene is involved in

conduction blocks and the consequences of pathogenic mutations are dif-

ferent. Thus, reduction or increase in TRPM4 channel function may

reduce the availability of the sodium channel and lead to BrS.

It is clear therefore, that BrS is an heterogenous genetic disease. It is not a

surprise that many overlapping syndromes can exist due to this very variable

and large spectrum of possible genetic causes. It also has to be clear that a
Curr Probl Cardiol, March 2021 9



direct cause-to-effect relation between these mutations and BrS has not been

completely established in the majority of genetic variations.
Genetic and Environmental Modulators
In recent years, several genetic and environmental modulators of the

phenotype have been described. It is well known that environment may

play a role in the predisposition to arrhythmias in patients with BrS. The

identification of several triggering factors of the Brugada ECG pattern

and of SCD as fever, cocaine, electrolyte disturbances, class I antiarrhyth-

mic medications and a number of other noncardiac medications, some of

them with a genetic predisposition, has important implications for the

prevention of arrhythmias in patients with BrS.36,37

In addition, the incomplete penetrance of the disease, as well as the

variable expressivity, has brought into question the role of additional

genetic factors in the final phenotype. Single nucleotide polymorphisms

became one of the first players to be studied in defining this variability.

The SCN5A polymorphism p.H558R is present in 20% of the population.

This polymorphism has been shown to partially restore the sodium cur-

rent impaired by other simultaneous BrS causing mutations in SCN5A.38

Thus, this common variant is a genetic modulator of BrS among carriers

of an SCN5A mutation, in whom the presence of the less common allele

makes BrS less severe.39

Genetics variants in the SCN5A promoter region may also play a path-

ophysiologic role in BrS. A haplotype of 6 polymorphisms in the SCN5A

promoter has been identified and functionally linked to reduced expres-

sion of the sodium current in the Japanese population.40 Other studies

have shown the role of double or even triple mutants in causing a more

severe phenotype.41,42

The role of the genetic mutation in risk stratification has yet to be

clearly defined. Recent data proposed the type of genetic mutation as a

tool for risk stratification in BrS. In this study patients and relatives with

a truncated protein had a more severe phenotype and more severe con-

duction disorders. Despite that this is the proof of concept that some of

the mutations appear to confer a worse prognosis, data are not yet suffi-

ciently strong as to help in risk stratification.43
Overlapping Syndromes
Is it possible to find different BrS phenotypes within the same family

even when they share the same mutation. Some individuals may present
10 Curr Probl Cardiol, March 2021



with 2 different phenotypes at the same time, like BrS with a long or a

short QT interval. These so-called “overlapping syndromes” represent a

strong challenge to physicians for diagnosis and risk stratification.
ERS
ERS is a common electrocardiographic variant characterized by

J-point elevation, ST-segment elevation with upper concavity and promi-

nent T-waves in at least 2 contiguous leads.44 ERS and BrS share cellular,

ionic, and ECG common features, representing parts of a phenotypic

spectrum called “J-wave syndromes,” although the degree to which ERS

and BrS may overlap remains undetermined.7 Patients having both with

BrS and ERS have been recently reported.45 ERS has been linked to

mutations in the CACNA1C, CACNB2, CACNA2D1, and KCNJ8 genes.46
Lev-Lenegre Syndrome
Lev-Len�egre syndrome (also known as progressive cardiac conduction

disease -PCCD) is a rare entity characterized by conduction disturbances

at the atrioventricular level leading to complete AV block. The syndrome

is a cause of syncope and even SCD. The presence of PCCD in the BrS

families is not uncommon, as they both result from a reduction in the

sodium current.

It has been described as a different expression of the same genetic phe-

notype. The first mutation associated with PCCD was described in the

SCN5A gene 39, 40, and on its B61 subunit.17,47,48 Patients with clear

BrS can die suddenly because of AV block and asystole, not only because

of ventricular fibrillation (Fig 3).
Sick Sinus Syndrome
SSS is characterized by persistent inappropriate sinus bradycardia, sinus

arrest, atrial standstill, and tachycardia-bradycardia syndrome, associated

with sinoatrial node dysfunction. Patients may exhibit varied symptoms

including syncope, and even SCD. The course of SSS can be intermittent

and unpredictable, related to the severity of the underlying heart disease.49

Both autosomal recessive and dominant forms have been described.

In 2003 an association between SCN5A mutations and congenital

SSS was reported.50 In 2005 a novel SCN5A mutation was identified in

patients presenting both SSS and BrS, showing that in the same family

both diseases may be related to the expression of a loss-of-function

mutation in Ina.51
Curr Probl Cardiol, March 2021 11



FIG 3. Survival curves in BrS depending on score.56
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The presence of SSS has important prognostic implications in BrS

because it increases SCD risk, particularly in children.
AF
AF is the most common atrial arrhythmia found in BrS.52 AF can be

the first manifestation of BrS, and, sometimes, its complications like

peripheral or cerebral embolization could be the first symptom.

BrS should be excluded by drug challenge in all individuals with atrial

flutter or AF and a normal heart if we have a suspicion of diagnosis.

Approximately 15%-20% of patients with BrS will develop supra

VAs.53 Some studies reported prolongation of atria-His and His-ventricu-

lar intervals; these changes occur principally in patients with SCN5A

mutations and are consistent with a decreased excitability in the conduc-

tion system secondary to loss of function of sodium channel.54,55
Long QT Syndrome Type 3
LQTS is an inherited arrhythmogenic disease characterized by prolonga-

tion of the QT interval and susceptibility to VA. Among all described sub-

types of LQTS, type 3 (LQT3) has a prevalence of 7%-10%.56

LQT3 is caused by mutations in the SCN5A gene. A most intriguing report

showed that some individuals may display the electrocardiographic pattern of

LQT3, while others the pattern of BrS in the same family and with the same

mutation.57 The overlap between the LQT3 and BrS phenotypes was also

reported in other SCN5A mutations.58 However, it is still unclear whether

development of the BrS phenotype in a patient with LQT3 is solely deter-

mined by the biophysical properties of the mutant channel or by coinherited

genetic variations, gender, ethnicity, or other environmental factors.59
Epilepsy and Schizophrenia
Some arrhythmias are related to abnormal ion channel function due to

gene mutations. Epilepsy neuronal function disorder involving abnormal

channel function. It’s demonstrated that etiologies of both BrS and epi-

lepsy may sometimes overlap.

It has been reported that SCN5A mutations may confer susceptibility

for recurrent seizure activity, supporting the emerging concept of a genet-

ically determined cardio-cerebral channelopathy.60,61

A high percentage of patients with schizophrenia (around 12%) shows

a BrS ECG pattern and this is not related to sodium channel blocker

drugs. The reasons of these findings are unclear.
Curr Probl Cardiol, March 2021 13



Myotonic Phenotypes
To date, except for nonspecific cardiac arrhythmias described in 2

SCN4A-associated case reports, no overlapping phenotypes between mus-

cular and cardiac sodium channelopathies have been reported.62

In a recent study, Bissay et al. reported a high number of patients with

coexisting BrS and sodium channel myotonia, suggesting a possible

impact of SCN4A variants on the pathophysiological mechanism underly-

ing the development of a type 1 ECG pattern and malignant arrhythmias

in some patients with myopathies.63
Risk Stratification
After BrS diagnosis the first questions are mainly related to the

patient’s outcome and prognosis.

To date, some markers of high risk in BrS patients have been clearly

identified and accepted by all groups, but the issue of risk stratification in

asymptomatic BrS patients remained controversial until the recent report

by our group.64

The reported annual rate of events decreased from the first case reports

to the most recent published series. This probably reflects the inherent

bias during the first years following the description of a novel disease due

to the fact that particularly severe forms of the disease are most likely to

be diagnosed.65

A recent study by Sieira et al. shows that arrhythmic events in asymp-

tomatic BrS patients are not insignificant (0.5% annual incidence rate). In

this cohort, inducibility of VAs, spontaneous type I ECG and presence of

sinus node dysfunction might be considered as risk factors and used to

drive long-term management.66

A recently published meta-analysis showed that asymptomatic sub-

jects with either spontaneous diagnostic ECG pattern or inducible

VAs at electrophysiological study (EPS) are at increased risk.67 The

risk of lethal or near-lethal arrhythmic episodes among previously

asymptomatic patients with BrS varies according to the series: 8%

recurrence rate at 33 § 39 months of follow-up reported by Brugada

et al., 6% recurrence rate at 34 § 44 months by Priori et al., 1% recur-

rence rate after 40 § 50 months and 30 § 21 months of follow-up,

respectively by Eckardt et al. and Giustetto et al. and finally, Probst

et al. reported a 1.5% recurrence rate at 31 months of follow-up.68�71

Several clinical variables have been demonstrated to predict a worse

outcome in patients with BrS.
14 Curr Probl Cardiol, March 2021



In almost all analysis the presence of symptoms before diagnosis like

an history of syncope, a spontaneous type-1 ECG at baseline and male

gender have consistently shown to be related to the occurrence of cardiac

events in follow-up.72,73

Spontaneous type 1 ECG has been identified as an independent predic-

tor of VAs in multivariate analysis of the largest cohort of BS patients

published to date (HR = 1.8; 95% CI 1.03-3.33; P = 0.04) and in the

majority of series by other authors.71

Male sex has consistently shown more arrhythmic events in all the

studies and has been defined as an independent predictor for a worse out-

come in a meta-analysis.74

Spontaneous AF, which can be present in 10%-53% of cases, has been

shown to have a prognostic value and spontaneous AF was associated

with higher incidence of syncopal episodes (60.0% vs 22.2%, P< 0.03)

and documented VF (40.0% vs 14.3%, P< 0.05).75

Little controversy exists on the value of a previous cardiac arrest as a

risk marker for future events (between 17% and 62% of patients will

have a new arrhythmic event within 48 and 84 months of follow-up).
Syncope
Syncope is an indisputable risk factor, well-recognized in literature

which identifies patients carrying a high risk of events.

Between 17% and 62% of BrS patients with syncope will have a new

arrhythmic event 48-84 months after diagnosis, which might lead to

SCD.76

Syncope in combination with a spontaneous type 1 ECG pattern has a

poor prognosis during follow-up (arrhythmic event in 6%-19% within

24-39 months of follow- up).77

Appropriate clinical evaluation to rule out vasovagal/neuromediated

syncope is recommended as these patients do not appear to have an

increased risk of VAs during follow-up.78

It is not always easy to understand the real nature of syncope in some

patients, including those with BrS. Both BrS and neurally-mediated syn-

cope share a susceptibility to vagal tone. High incidence of positive

Head-up Tilt test has been demonstrated in asymptomatic subjects with

Brugada pattern.79

There is general agreement that these patients should be protected with

an implantable cardioverter-defibrillator (ICD) irrespective to the pres-

ence of other risk factors, accepting the risk to overprotect a patient with

vaso-vagal syncope and Brugada ECG pattern with an ICD.
Curr Probl Cardiol, March 2021 15



Electrophysiological Study
Although large registries agree that VAs inducibility by ventricular

programmed stimulation (VPS) is greatest among BrS patients with pre-

vious cardiac arrest or syncope there is no consensus on the value of the

EPS in predicting outcome.68

Results of our previous data indicated that VAs inducibility was an inde-

pendent predictor for SCD and Giustetto et al. stressed on its good negative

predictive value (none of the patients with a negative EPS developed

arrhythmic events vs 15% of patients with a positive EPS during a 30 § 21

months of follow-up); other registries failed to demonstrate that.68�71

The largest series of BrS patients published so far, found that inducibil-

ity of sustained Vas was significantly associated with a shorter time to

first arrhythmic event in the univariate analysis but, when performing the

multivariable analysis, inducibility did not predict arrhythmic events.72

In 2015 a single center study has been published, showing results in a

cohort of 96 BrS patients with various clinical presentations and induc-

ible VF with an aggressive VPS protocol.

The authors reported an excellent protective effect of class 1 antiar-

rhythmic drug (mainly quinidine) during EPS and an excellent clinical

outcome in drug-treated patients.80 Sieira et al. published a series of 403

BrS patients. Authors conclude that VPS is a good predictor of outcome

in individuals with BrS.81

If symptomatic patients have more easily induced arrhythmias during EPS

is still controversial. The absence of induction with VPS alone is not suffi-

cient to identify low-risk individuals, especially in symptomatic patients.82

So far, EPS could have a role in asymptomatic patients who still car-

ries a 0.5%-1.2% annual incidence of arrhythmic events and might be of

special value to guide further management. VPS may identify patients

with BrS at increased risk for cardiac arrest but the association appears

most relevant in patients induced with single or double extra-stimuli

rather than more aggressive stimulation protocols.77 Aggressive stimula-

tion protocol may lead to an excess of false positive results.

A recent study by Pappone et al. demonstrated how the extent of arrhyth-

mic substrate in EPS is a predictor of inducibility of VT or VF and may serve

as marker for risk stratification and therapy by substrate ablation.83

Current European guidelines for SCD prevention don’t give guidance

about use of EPS for BrS risk stratification but simply state that an ICD

may be considered in cases of inducible VAs.9

We still do not have a clear answer if VAs inducibility is a risk factor

strong enough for clinical decision-making and patient’s management.
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Looking at present evidence EPS can be a part of BrS patient evaluation

but it isn’t enough to classify patient’s risk.

EPS with VPS in asymptomatic patients with BrS is reasonable but

that the decision to proceed should be individualized after clinical risk

stratification and detailed counseling with patients about the implications

of a positive or negative result.
Genetics
A family history of SCD or the presence of an SCN5A mutation have

not been proven to be risk markers in any of the large studies conducted

thus far.74 However, recent data suggest that other genetic findings like

mutations leading to a truncated protein or the presence of common poly-

morphisms located in SCN5A might have some prognostic implications.

A recent publication by Meregalli of 147 BrS patients with SCN5A identi-

fied mutations showed a significantly higher rate of syncope among patients

carrying SCN5A truncation mutations (caused by a premature stop codon)

and those with SCN5A missense mutations resulting in a decrease of more

than 90% of the INa (nonfunctional Na+ channels), compared to patients

with SCN5A missense mutations that produce a decrease of Na current

(�90%). They could not demonstrate a higher rate of more serious arrhyth-

mic events (SCD or VF) in those patients with mutations encoding nonfunc-

tional Na+ channels. The first 2 groups of patients also presented longer PR

interval in the basal ECG and showed a greater increase of PR and QRS

intervals after the class I antiarrhythmic drugs (AAD) test. This is the first

study that proposed the use of genetics in risk stratification for BrS.43

The recent finding that common polymorphisms located in SCN5A

may modulate the effect of mutations resulting in a counterbalance of its

deleterious consequences with improvement of the BrS phenotype opens

the possibility of identification of polymorphisms as risk stratification

tools. These data also suggest that polymorphisms may be possible tar-

gets for therapeutical interventions.

Results of genetic screening do not currently influence prognosis or

treatment and no conclusive studies published focus on prognostic value

with regard to the genetic analysis.
Other Risk Factors
In an effort to solve the complex issue of risk stratification in BrS, several

other risk factors were postulated like QRS fragmentation, ST-segment ele-

vation during recovery from exercise, conduction abnormalities.84,85
Curr Probl Cardiol, March 2021 17



An early repolarization pattern in the inferior and/or lateral leads is

associated with an increased risk of arrhythmic events and may be present

in 10%-15% of patients.86

Other risk factors evaluated are: a decreased nocturnal standard devia-

tion of the “5 minutes averaged NN intervals “ (SDANN) measured in

Holter-ECG recordings, an S wave width in V1 � 80 milliseconds and

ST-segment elevation � 0.18 mV in V2, spontaneous changes in ST-seg-

ment, a corrected QT interval (QTc) higher than 460 milliseconds in V2;

prolonged T peak-T end (Tpe) interval and T p-e dispersion, the “aVR

sign” (R wave � 0.3 mV or R/q � 0.75 in lead aVR), prolonged QRS

duration in precordial leads (r-J interval in V2 � 90 milliseconds and

QRS � 90 milliseconds in V6; QRS � 120 milliseconds in V2).

Even an indicator of interventricular mechanical dyssynchrony has

been recently found to be associated with high risk of fatal or near-fatal

arrhythmias in BrS.

The usefulness of late potentials (LP) assessed by signal-averaged

ECG as a marker of high risk has been extensively studied by various

groups and a recent prospective study showed that positive LP was an

independent marker of high risk in BS patients with a hazard ratio of 10.9

(95% confidence interval 1.1-104.3, P = 0.038), sensitivity of 95.7%,

specificity of 65%, positive predictive value of 75.9%, negative predic-

tive value of 92.9%, and predictive accuracy 81.4%. Before including LP

as a marker for risk, there is the need of more prospective studies, includ-

ing more patients and with a longer follow-up, evaluating the value of dif-

ferent noninvasive markers of risk in BrS.

All those risk factors arise from observational studies and require vali-

dation in larger series. Their limit is that although they increase statisti-

cally the probability of VAs during follow-up only few of those patients

have arrhythmic events. For this reason they’re not useful for ICD

implant evaluation right now.

In summary, few things are clear from the risk stratification data:

� Symptomatic patients are at higher risk than asymptomatic ones.
� Sudden death survivors are at higher risk than patients with syn-

cope; males are at higher risk than females.
� Patients with type I ECG at baseline have a higher risk than those

who require drug challenge test.

We should not forget that asymptomatic patients may also die sud-

denly. This latter statement is based on the fact that all symptomatic

patients with BrS have remained asymptomatic for decades.
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Thus, at present the biggest challenge is the detection of these few

asymptomatic who will develop symptoms.
Scoring Systems for Risk Quantification
An analysis of several prospective studies on clinical outcome in BrS

patients showed that incidence of SCD in asymptomatic patient was 0.38%

for spontaneous type 1 ECG pattern and 0.06% after sodium-channel blockers

challenge test. Patients who died for VAs (24/1568) had more risk factors

(spontaneous type 1, syncope, SCD in relatives, induction of VA after VPS)

compared to other patients and probably they should have been implanted

with an ICD.13

Sieira et al. analyzed long-term follow-up in 400 patients with BrS and

concluded that 6 variables were related to a poor outcome and contributed

with a certain value to a scoring system developed by careful statistical

analysis (Table 3 and Fig 3). Multivariate analysis showed that the pres-

ence of a spontaneous type I ECG, a family history of sudden death

(<35 years or several cases), a history of syncope, inducibility during

VPS, SSS, and a previous cardiac arrest were the 6 variables that could

be assigned a certain value in points (Table 3). The survival curves with-

out sudden death or appropriate ICD discharge are shown for the different

score categories in Fig 3. While the incidence of events increases clearly

depending on the number of points, it has to be stressed that the first 2 cat-

egories (0 and 1 point) have still a high incidence of sudden death as com-

pared to the general population without BrS. Thus, a possible risk of

sudden death of 0.3% per year in the first category (0 points) represents at

least a 30 times increase of the risk as compared with an individual of the

same age without BrS (who has a general risk of sudden death of

1:10.000 per year at age 40).62

BrS patients remain at risk for many years after diagnosis. A simple

risk score might help in risk stratification and management of BrS

patients.
TABLE 3. Risk factors for sudden death in BrS.

Risk factor Points

Spontaneus type I ECG 1
Family history of sudden death 1
Inducibility during PES 2
History of syncope 2
Sick sinus syndrome 3
Resuscitated SCD 4
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Therapeutic Options and Management of BrS Patients
ICD
Actually the only proven effective therapeutic strategy for the preven-

tion of SCD in BrS patients is the ICD as in other primary arrhythmo-

genic hearth diseases and cardiomyopathies with high arrhythmic risk.87

Outcome of ICD implantation in BrS was outlines by Sacher in 201388

with a multi-center study (378 patients) and a long follow-up. Appropri-

ate shock rate at 10 years was 48% for sudden cardiac arrest, 19% for

syncope, and 12% for asymptomatic patients. Total 37% of patients

received an inappropriate shock at 10 years. Lead failure was found in

29% of patients.

Conte et al. recently supported ICD implantation in preventing SCD,

treating potentially lethal arrhythmias in 17% of patients during a follow-

up period of nearly 85 months. Appropriate shocks were significantly

associated with the presence of aborted SCD.89

It is important to remark that ICDs are not free from several disadvan-

tages, especially young individuals, facing a long-lasting coexistence

with the device and multiple device replacements.

Some series have reported low rates of appropriate shocks (8%-15%,

median follow-up 45 months) and high rate of complications, mainly

inappropriate shocks (20%-36% at 21-47 months follow-up).90�92

In a recent study, Rodriguez-Ma~nero et al. published that T-wave over-
sensing is a potential cause of inappropriate shocks by ICD in patients

with BrS. In the vast majority it can be solved by reprogramming. How-

ever, in some patients it still requires invasive intervention.

Incidence is significantly lower using an integrated bipolar lead system

when compared with a dedicated bipolar lead system and hence the latter

should be routinely used in BrS cases.93

So, ICD implantation, especially in young patients, is not without a signif-

icant price, with concern in risk of inappropriate therapy (due to sinus tachy-

cardia, supraventricular tachicardia, T-wave oversensing, lead failure).94

Subcutaneous ICD is an alternative device to reduce some risks, like

ICD related infections.95

ICD implantation is recommended (class I) in case of aborted cardiac

arrest or sustained VT. It can be useful in patients with spontaneous type

1 ECG and a history of syncope judged to be caused by VAs. It may be

considered when sustained VAs/VF are induced by VPS during EPS even

if current guidelines don’t give clear indication when to use of EPS for

BrS risk stratification; ICD implantation is not indicated in asymptomatic
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BrS patients with spontaneous or drug-induced type I ECG and on the

basis of a family history of SCD alone as their risk for life-threatening

events is very low.9
Pharmacological Treatment
With the aim to normalize ionic currents altered in BrS during drugs

that inhibit the Ito current or increase the Na+ and Ca+2 currents have

been tested.

Isoproterenol (which increases the Ica L current) has proved to be use-

ful for management of electrical storms in BrS.96

Quinidine, a class Ia AAD with Ito and I-Kr blocker effects, has shown

to prevent induction of VF and suppress spontaneous VAs in a clinical

setting and it’s currently used in patients with ICD and multiple shocks,

in patient in which ICD implantation is contraindicated or for the treat-

ment of supra VAs. It has been suggested that it could be also useful in

children with BrS as a bridge to ICD or as an alternative to it.

However, recent data from the international SABRUS registry have

shown that quinidine is of no value to prevent sudden death in BrS.97
Transcatheter Ablation
Morita et al. demonstrated in their animal model of BrS that right ven-

tricular outflow tract (RVOT) was the main substrate site, especially at

the epicardial site.98

There is a general consensus that arrhythmic substrates responsible for

the abnormalities seen in the typical BrS ECG pattern are located on the

anterior RVOT especially in the pericardium. This substrate is well-iden-

tified during electrophysiological mapping by abnormal electrograms

characterized by low voltage, prolonged duration, and fractionated late

potentials clustering in the RVOT epicardium and/or RV anterior free

wall. Some patients have also inferior wall arrhythmic substrates. Wider

abnormal areas were found in patients with the worst clinical presentation

and/or type 1 BrS ECG pattern.

Extensive electrophysiologically well-defined abnormal areas are

unmasked by sodium channel blockers, with the best results obtained by

ajmaline.99,100

After the demonstration that VAs events could be triggered by ventric-

ular ectopy of similar morphology, radio-frequency (RF) ablation of ven-

tricular ectopy has been postulated as a therapeutic approach in BrS

patients.
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Haı̈ssaguerre et al. were the first to attempt catheter ablation from the

endocardial site to treat patients with BrS with recurrent VF.101 Patients

with BrS rarely have PVCs making this approach impractical.

Case reports in high-risk BrS implanted with an ICD have shown no

short-term recurrence of VF, syncope, or SCD.98,102�104

Nademanee et al. have presented the first series showing that electrical

epicardial substrate ablation in the RVOT can prevent VF inducibility in a

high-risk population.104 At a mean follow-up of 20 § 6 months, only 1 of 9

patients had any recurrences of VF episodes, and there were no shocks from

the ICD. Postprocedure, predischarge, and follow-up 12-lead ECG con-

firmed the absence of BrS ECG pattern before and after flecainide test in all

patients and after a median follow-up of 5 months ECG remained normal

despite flecainide testing. ICD did not show arrhythmic events.

Forkmann et al. reported a BrS case in which epicardial ventricular

tachycardia ablation was performed and noninducibility of any VT during

PVS was identified. During a 9 months follow-up, device interrogation

showed no recurrence of any VAs.105

Recently, a study focused on epicardial ablation has been published

showing an apparent elimination of the BrS ECG phenotype. Epicardial

ablation was performed during subcostal implantation of the ICD where

the ICD leads are implanted around the heart epicardially (Fig 4).105

Pappone found well-defined abnormal epicardial areas identified as BrS

substrate, responsible for type 1 BrS-ECG pattern and VT/VF inducibility

on a series of 135 patients. Persistent ECG pattern normalization without VF

inducibility, even after repeated ajmaline challenge, suggested that substrate
FIG 4. X-ray after ICD implantation in a 6 months old child: Epicardial electrode on epicardial
right ventricle free wall, defibrillation electrode around the heart in the sinus tranversus. Genera-
tor in abdominal position.

22 Curr Probl Cardiol, March 2021



ablation can be considered as a potential therapy for preventing recurrent

VT/VF.106

As seen by those authors, adequately identify any potential substrate

represents the only way to successfully perform RF ablation in order to

ensure that the entire arrhythmic electrical substrate area is ablated and to

minimize the amount of healthy tissue ablated.

These findings clearly suggest that regardless of clinical presentation

and/or spontaneous ECG pattern, the BrS population has a well-defined

arrhythmic substrate which in many patients may be difficult to activate

in the absence of modulating factors or triggers.

Nowadays the only case when transcatheter ablation could be the first

choice is a patient refusing ICD implantation as suggested by a case report

of RF ablation without ICD implantation with a 18 months of follow-up

without arrhythmic events.107

We have to remember that the target of ablation is the elimination of

the phenotypic characteristic that is traditionally used to decide whether

an ICD should be implanted in a genetic disease such a BrS. So EPS fol-

lowed by ablation of substrate may be a future direction to prevent VAs

and need for ICD implantation, preventing also all the complications

associated with device therapy in those young patients; this promising

approach still need long-term follow-up data before it could be consid-

ered an alternative to ICD.

A randomized multi-center trial which is ongoing (Ablation in Bru-

gada Syndrome for the Prevention of VF - BRAVE) probably will help

us understanding better the results of trascatheter ablation.
PGD of Embryos
A therapeutic option that can be considered to stop further genetic

transmission of the disease is PGD. The use of this technique is only

possible when the genetic cause of the disease is well-known.

Embryos are prepared via an in vitro fertilization. When the embryos

are large enough (about 16 cells) they are biopsied and tested geneti-

cally. Only embryos not affected by the mutation are implanted in the

mother. In this way one can be sure that the offspring will not suffer

from the mutation.

Use of this technique has been criticized from the ethical and philo-

sophic point of view, however, this is only a moral and nonscientific

issue. There have been also retractors to this technique that state that BrS

may be a polygenic and not a monogenic disease, so that eliminating a

single mutation may be not sufficient to eliminate the disease.
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On the other side, the theory of multiple genetic hits favors to this PGD

approach. According to the multiple genetic hits theory a single mutation

is not sufficient to cause a disease but multiple abnormalities (hits), from

mutations to polymorphisms, may be necessary to really suffer from the

disease. According to this theory, eliminating 1 genetic hit (1 mutation)

may thus also be sufficient to prevent all manifestations of the disease.

Patients managed this way at our centre have not suffered from any

unwanted consequences so far, however, the offspring is still too young

to make any conclusions about manifestations of the BrS.

A first follow-up after puberty will be essential to make the first

conclusions.
Brugada Syndrome, the Environment, and External
Factors

The ECG in BrS can be intermittent and dynamic; it typically changes over

time among different types or even become completely normal. Thus, it is

imperative to record serial ECGs when the syndrome is suspected.108

Modulating factors play a major role in the dynamic nature of the ECG

and also may be responsible for the ST-segment elevation in genetically

predisposed patients.

Sympatho-vagal balance, hormones, metabolic factors, and pharmaco-

logic agents, by means of specific effects on transmembrane ionic cur-

rents, are thought to modulate not only the ECG morphology, but also to

explain the development of VAs under certain conditions. Indeed, brady-

cardia and vagal tone may increase ST-segment elevation and arrhythmia

initiation by decreasing calcium currents.109 This explains the greater

ST-segment elevation recorded in vagal settings and the notorious inci-

dence of cardiac arrhythmias and SCD during night-time in patients with

BrS.110,111

The role of sex hormones has been established. Published data suggest

that they might also play a role in the phenotypic manifestations of

BrS.112 For example, regression of the typical ECG features has been

reported in castrated men and levels of testosterone seem to be higher in

Brugada male patients as compared with controls.113,114

According to hormonal hypothesis, the few available data existing thus

far on BrS in children have not shown a difference in phenotypic presen-

tation between boys and girls.115

The gender-related differences in the phenotypic expression of BrS

have been widely reported but the basis for gender distinction is not yet

fully understood.116
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Body temperature may be an important modulator in some patients

with BrS. Premature inactivation of the sodium channel has been shown

to be accentuated at higher temperatures in some SCN5A mutations, sug-

gesting that febrile states may unmask certain BrS patients or temporarily

increase the risk of arrhythmias.117 It seems that fever would be a particu-

larly important trigger factor among the pediatric population.10,115

Brugada Syndrome and Pregnancy
During pregnancy autonomic and hemodynamic alterations occur and

estrogen and progesterone blood levels are reduced at peripartum. The larg-

est study of pregnant women with BrS has been reported from our institu-

tion. This study showed a relatively benign course of pregnancy and

peripartum period among women with BrS.118 In addition, only a few cases

exhibiting syncope were found and the presence of syncope during preg-

nancy did not seem to be related to a worse outcome of the disease, neither

in postpartum nor peripartum periods. Nevertheless, the management of

pregnant women affected by BrS should be very strict and multidisciplinary

in cooperation with a cardiologist and an anaesthesiologist.119

Further clinical assessment and follow-up during the pregnant, post-

partum, and peripartum periods should be performed, taking into account

the favourable maternal and fetal outcome of the disease.

Brugada Syndrome in Children
SCD accounts for approximately 20% of sudden deaths on pediatric

population. Inherited arrhythmias are increasingly known as responsible

for these deaths. The prevalence of BrS in children is variable among

different studies, accounting up to 0.0098% in Japanese series.120

Despite progresses in characterizing BrS, little is known about this

disease in the pediatrics.

In the initial description of the disease, 3 out of 8 patients were

children.1 Since then, several authors have reported isolated cases.121

In 2007 Probst et al. published a study with 30 affected individuals less

than 16 years of age from 13 European institutions, the largest series in

pediatric BrS patients by that time, but nowadays most of our understand-

ing of the BrS in children has come from the SABRUS registry.97,115 This

study has confirmed the very poor prognosis of children with BrS and

particularly the inability of quinidine to prevent SCD.

The largest series of children with BrS and with the largest follow-up

has been reported from our Institution.122 Data on a total of 95 children

with age <19 years and BrS were used to create a risk stratification
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system. Results were similar as in adults showing that a spontaneous type

I ECG, syncope, SSS, conduction disturbances, and VAs inducibility dur-

ing VPS could be used to create a scoring system.
Diagnostic and Clinical Presentation
Brugada ECG pattern in children remains the same as in adults, taking

into account its transiency.

Moreover, there are no standardized data for optimal positioning of the

right precordial leads in children and the shape of the chest in a growing

body can lead into confusion. With all these characteristics, symptoms of

syncope associated with typical ECG pattern should alert to the possibil-

ity of BrS.

From asymptomatic patients (mainly discovered in routine ECG

screening or familial screening) to sudden death, in children as in adults

the whole spectrum of clinical presentations is possible. In contrast to

adults, no male predominance in symptomatic patients is found. This

could be related to lower levels of testosterone in prepuberal children.115

Several case reports have demonstrated the importance of fever as a pre-

cipitating factor for VAs in children, probably not because of special pre-

disposition of children. Interestingly, as febrile state can unmask BrS

pattern, a 12-lead ECG should be recorded during fever. Also, as febrile

convulsions are a relatively common occurrence in childhood, we wonder

if ECG should be part of the diagnostic routine when a febrile seizure

occurs to exclude BrS and VAs as the cause of the convulsions.115
Drug Challenge Test
Sodium channel blockers test (ajmaline 1 mg/kg over 5 minutes or fle-

cainide 2 mg/kg over 10 minutes) should be restricted to children with

normal baseline ECG and typical symptoms with a positive family

history.123

The existence of an age-dependent response to ajmaline challenge is an

intriguing recent finding and might have relevant clinical implications.124

Thus, in a recent study, Conte et al. showed that repeating ajmaline chal-

lenge after puberty unmasked BrS in 23% of patients with a previously

negative drug test performed before puberty. The ECG phenotype does

not appear during childhood in most cases, but may develop later in

response to hormonal, autonomic, or genetic factors.125

As in adults, spontaneous type I ECG pattern is enough to establish the

diagnosis.
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EPS in Children
If controversy exists whether performing EPS testing or not in adult

population, even more if children should undergo VPS to test malignant

arrhythmias inducibility.4 When indicated, the stimulation protocol

remains the same as in the adult population.
Therapeutic Implication and ICD Implantation
BrS can overlap with other syndromes as long QT syndrome type 3 or

Lev-Len�egre syndrome. Brady-arrhythmias can be a cause of death in these

patients, thus pacemaker implantation is mandatory in certain cases.115

Hydroquinidine has not been a good alternative to ICD implantation.97

Patients presenting with aborted SCD and syncope with spontaneous

type I ECG are clearly at high risk of malignant arrhythmias should

receive an ICD, irrespective of age.

Special approaches for ICD implantation have been described for

small children when needed (Fig 4).
Brugada Syndrome in Elderly
The fourth decade of life is the mean age of clinical manifestations of

BrS, mainly in men. Thus, the clinical course and prognosis of BrS in

older individuals is unknown.

Recently, Conte at al. published a systematic analysis of BrS in the

aging population, reporting a benign prognosis and lower risk category of

BrS patients in comparison to younger patients. Consequently, older

patients presented less VAs and less family history of SCD.

However, 2 main challenges remain controversial: use of drug-induced

tests and device guided management. Thus, despite Conte et al. reporting

in the same above mentioned study that “BrS was diagnosed after ajma-

line challenge in 86% of elderly patients,” the value of unmasking a type

I ECG as well as its safety has not been methodically assessed.125

Regarding the use of an ICD, a consensus conference reported that older

BrS patients with syncope should undergo ICD implantation if life expec-

tancy is at least 6 months.5

Recently, Kamakura et al. reported that long-term follow-up of high-risk

BrS patients with ICD showed a low incidence of VF in those aged

>70 years. Considering the increasing risk of inappropriate shocks because

of the relatively late onset of supraventricular tachycardia and lead failures,

avoidance of ICD implantation or replacement may be considered in elderly

BrS patients who remain free from VF until 70 years of age.126
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However, clinical decisions regarding both controversies should be

analyzed on a case-by-case basis.

Familial Screening
Since BrS follows an autosomal dominant genetic pattern with variable

penetrance, first-degree relatives should be screened by clinical history and

12-lead ECG (basal and upper intercostal space recording). Genetic test should

be performed in index cases and, when a positive result is obtained, mutation

analysis can be done in children, whatever age they are, in order to follow rec-

ommendation on fever control and avoidance of listed drugs. Mutation carriers

should be annually screened for ECG when asymptomatic, taking into account

that whatever symptom of dizziness should carry out a 12-lead ECG.

In the era of personalized medicine using high-throughput tools (Next

Generation Sequencing -NGS), is the best cost-effective approach to iden-

tify the cause of the disease. The main problems in using NGS technologies

are the large amount of data provided and the insufficient experience to

translate this information into clinical practice. One of the crucial elements

for the correct interpretation of pathogenicity is the genotype�phenotype

correlation in families.127,128 This leads to the need for each family to be

studied separately, analyzing the variations in each relative, and correlating

clinical-genetic information.

Final decisions should be made by a group consensus based on the

experience of each of the members of the working group in each institu-

tion dedicated to this purpose.

Is Brugada Syndrome a Rare Disease?
After all these years of scientific research much has been learned about

BrS in terms of pathophysiologic mechanisms, prognosis, and the value

of the ICD to prevent SCD.

However, all the considerations have been made accepting that BrS

was a rare disease. Clear data to really assess the true prevalence and inci-

dence of the disease have not been available.

It is only recently that a study by Papadakis et al. has brought a

completely different picture about BrS and its prevalence.129 In their study

they analyzed data from 303 individuals who died suddenly and where no

diagnosis could be done even after autopsy. In the 911 relatives studied by

ECG, echocardiogram, exercise test, adrenaline, and ajmaline test, a diagno-

sis of inherited cardiac disorder could be made in 42% of the families. Of

them, 85 suffered from BrS (28% of the total) followed by 22 individuals

(7%) in whom a diagnosis of long QT syndrome was made.
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Thus, the general idea that long QT syndrome is the most common

cause of SCD in individuals with a structurally normal heart has to be

abandoned. The most common cause is BrS, but the diagnosis can only

be done with the systematic use of ajmaline test.

Thus, BrS is not a rare disease, on the contrary it is the first diagnosis

that has to be considered after SCD of an individual with a structurally

normal heart considering, in particular, all the information deriving from

an accurate analysis of ECG to avoid misinterpretation.130
The Future
In recent years, cardiovascular studies have been focused on personal-

ized risk assessment and to determine the most optimal therapy for an

individual. The BrS syndrome has also benefited of these advances

although there remain several key points to be elucidated. Future genet-

ics, epigenetics, transcriptomics, proteomics, metabolomics, and animal

model approaches can help us to understand the complexity of BrS-like

diseases through the establishment and use of more reliable models at in

silico, in vitro, and in vivo levels.

The genetic revolution in cardiac diseases was initiated with the

knowledge of the human genome and has advanced exponentially linked

to the development of new genomic technologies (Next Generation

Sequencing NGS). These new genetic technologies will allow to perform

comprehensive genetic analysis in BrS patients, improving the identifica-

tion of pathogenic variations.

Research in stem cells is one of the last fields that it has been incorpo-

rated into the cardiac arrhythmia scenario. It has improved the identifica-

tion, derivation, and characterization of human stem or progenitor cells,

comprising embryonic stem cells ESC, and the recently described

induced pluripotent stem cells iPS. The human iPS cells from patients

diagnosed with long QT syndrome can differentiate into cardiomyocytes,

allowing electrophysiological and molecular understanding of arrhythmic

mechanisms.131�134 However, BrS has not yet fully benefited from all

these advances.

Another interesting point is the use of animal models. They constitute

useful tools for addressing the role of genetic and environmental modi-

fiers on cardiac electrical activity. The only genetic model of the BrS to

date is the SCN5A knockout mouse. The heterozygous SCN5A null allele

results in impaired AV conduction, delayed intramyocardial conduction,

increased ventricular refractoriness, and ventricular tachycardia.134
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Computational power allows molecular modeling and molecular

dynamics simulations of complex proteins. A full in silico model of

potassium channel has been developed based on the available structures

of channels which includes all transmembrane segments.135

Altogether, there is still a long way to be made towards the future of

cardiac diseases associated to SCD, supporting the need to use the new

emerging tools in the field of biomedicine.

In spite of these limitations, it has to be recognized that the progress in

the understanding of BrS has been steady and that the future of patients

with BrS looks very promising. It should not take too long before we will

be able to genetically manipulate and cure the disease.
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