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Abstract: Coronary heart disease (CHD) and depres-
sion are common disorders that markedly impair qual-
ity of life and impose a great financial burden on society.
They are also frequently comorbid, exacerbating patient
condition, and worsening prognosis. This comorbidity
strongly suggests shared pathologic mechanisms. This
review focuses on the incidence of depression in patients
with CHD, deleterious effects of depression on CHD
symptoms, and the potential mechanisms underlying
comorbidity. In addition to the existing frequent mecha-
nisms that are well known for decades, this review sum-
marized interesting and original potential mechanisms
to underlie the comorbidity, such as endocrine substan-
ces, gut microbiome, and microRNA. Finally, there are
several treatment strategies for the comorbidity, involv-
ing drugs and psychotherapy, which may provide a theo-
retical basis for further basic research and clinical
investigations on improved therapeutic interventions.
(Curr Probl Cardiol 2021;46:100413.)

Introduction

he ancient Chinese theory that the “Heart Governs the Spirit
I Light” is an expression of the complex spiritual activities of

human beings. If the “Heart Governs the Spirit Light”
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appropriately, the spirit is healthy and vigorous; conversely, a dysfunc-
tional heart will cause mental abnormalities such as insomnia, memory
loss, and insanity." Traditional Chinese medicine emphasizes that unity
of heart and mind (or the harmonization between soma and spirit) is nec-
essary for life fulfillment.

Recently, there has been a shift from specialized medicine to holis-
tic integrative medicine,”” and from a purely biomedical model to a
bio-psycho-social medical model.” Although the understanding of
“heart” is different in Chinese and Western medicine, scientists have
long recognized the importance of psychological factors in the patho-
genesis, prognosis, and treatment of coronary heart disease (CHD).”°
Conversely, the incidences of cardiovascular and cerebrovascular dis-
eases are significantly higher in patients with mental disorders.”*
Depression is a common mental illness clinically characterized by
loss of willpower, persistent fatigue, and depressed mood. The preva-
lence of depression in patients with cardiovascular and cerebrovascu-
lar diseases is 25%-40%, many times higher than in the general
population.” "

Currently, although the relationship between depression and CHD has
attracted increasing academic attention, the mechanisms underlying this
comorbidity have not yet been fully elaborated. From many cross-sec-
tional studies,”'" it is unambiguous that the incidence of depression is
significantly increased in patients with CHD, whereas the incidence of
CHD is also increased considerably in patients with depression. To
explain this phenomenon, several plausible mechanisms have been
assumed to underlie the relationship between CHD and depression. In
addition to the traditional ones that are well known for decades, some
novel potential mechanisms, such as endocrine substances, gut micro-
biome, and microRNA, are emerging as new therapeutic targets. More-
over, available treatments, involving drugs and/or psychotherapy, could
alleviate the patients’ condition. In the present review, we summarize
recent progress in understanding the pathogenic mechanisms linking
CHD with depression.

The Interaction of CHD and Depression

It is commonly recognized that depression plays an important role in
the pathogenesis of CHD or is at least a predisposing factor for CHD,'*"?
whereas patients with CHD are prone to experience mental disorders, par-
ticularly depression.'* The causal linkage between the 2 diseases is very
intricate.'”
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Comorbidity is Common

The prevalence of depression in patients with CHD varies throughout
the world, likely due to different screening tools and population samples,
but is nonetheless significantly higher than in the local population.
According to several studies in the United States, the prevalence of clini-
cally significant depression in patients with acute coronary syndromes
(ACSs) is as high as 31%-45%, and 20% of ACS patients meet the Amer-
ican Psychiatric Association’s Diagnostic and Statistical Manual of Men-
tal Disorders criteria for major depression.'®'” In 2014, a meta-analysis
of CHD complicated with psychological disorders enrolling cases at
23 hospitals (a total of 5236 patients) found that the comorbidity rate of
CHD and depression was 51%, while a study of 4 community groups
including a total of 1353 patients found a comorbidity rate between
34.6% and 45.8%, with major depression found in 3.1%-11.2% of CHD
patients.'® Therefore, the prevalence of depression in CHD patients is far
higher than the 4.3% in the general population estimated by the World
Health Organization (WHO, 2017).

The K-DEPACS and EsDEPACS studies reported that 46.3% of ACS
patients showed persistent depression at the 12-month follow-up.'” A pro-
spective study by Korbmache et al found that 20.7% of patients scheduled
for cardiac coronary artery bypass graft surgery had high depression
scores before surgery, and that the rate increased to 28% at reassessment
6 months after surgery.”’ Therefore, there is compelling evidence that
depression is common in patients with CHD, and that depressive symp-
toms persist following treatment.

Lower Quality of Life in Comorbid CHD-Depression

In CHD patients with poor prognosis (such as those with recent myo-
cardial infarction [MI]), quality of life declines sharply when complicated
by depression independent of traditional predictors. CHD patients with a
history of depression reported a significantly greater frequency of angina
pectoris than patients without depression, as well as limited physical
activity.”' > Moreover, Kim et al found that the decline in quality of life
associated with recurrent chest pain and depression was inconsistent with
objective evidence of myocardial ischemia.”*

Increased Healthcare Costs in Comorbid CHD-Depression

Comorbid CHD-depression also increases the probability of ambu-
lance calls, emergency hospitalization, and disability. In a 3-year follow-
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up study, Palacios et al evaluated the depression scores of 803 British
CHD patients every 6 months, and reported that the medical costs of
patients with long-term depressive symptoms were 95.5%-107.2% higher
than those of patients without depression after adjusting for demo-
graphics, social factors, clinical risk factors, and disease severity.”

Multivariate analyses have also found that depression and anxiety are
independent predictors of hospitalization expenses for CHD patients,
with overall expenses increasing with the severity of depression and anxi-
ety symptoms.””*° This may be related to poor treatment compliance, the
greater self-reported severity of various symptoms (eg, angina), and more
frequent requests for medical examinations in CHD patients with depres-
sion and anxiety.

Poor Prognosis of CHD With Comorbid Depression

CHD patients with comorbid depression demonstrate higher readmis-
sion rates, increased frequency of chest pain, and higher risk of major car-
diovascular events.”’”® Meijer et al conducted a meta-analysis of 29
studies between 1975 and 2011 in which a total of 16,889 patients with
MI were followed-up for an average of 16 months. They concluded that
all-cause mortality was 2.25 times higher in MI patients with depression,
while cardiac mortality was 2.71 times greater and the risk of cardiovas-
cular events 1.59 times greater.29 Moreover, another meta-analysis of
4037 MI patients with major depression followed up for a mean of 39
months concluded that the risk of death was 3.04 (95% confidence inter-
vals, 2.12-4.35) times higher in those with untreated or treatment-refrac-
tory depression than in treatment-responsive patients; likewise, all-cause
mortality was higher in patients with refractory depression.’

CHD Results in Depression

Psychological Factors

Given the long disease course and unsatisfactory prognosis, it is unsur-
prising that the majority of CHD patients have to deal with negative emo-
tions, such as depression and anxiety, which may manifest as asthenia,
distraction, irritability, and poor sleep. In particular, patients with unfa-
vorable living conditions and poor education are more vulnerable, which
exacerbates psychological problems and has a marked impact on normal
life, ultimately leading to more depressive symptoms.”' In addition,
A-type personalities, characterized by a sense of urgency and hostility,
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are often tense and thus more prone to CHD as well as to anxiety, depres-
sion, and other mental disorders.””

Physiological Factors

Numerous clinical investigations have reported chronic brain hypoxia
in CHD, which can eventually lead to neurological symptoms and mental
disorders, including depressive symptoms.”~” We speculate that there
are several possible mechanisms: (1) coronary atherosclerosis—coronary
atherosclerosis causes myocardial ischemia and hypoxia, and the weak-
ened heart cannot deliver enough blood to the brain, resulting in cerebral
anoxia and abnormal brain function, including depression; (2) cerebral
arteriosclerosis—coronary arteriosclerosis is often accompanied by cere-
bral arteriosclerosis, which decreases brain blood flow and thereby leads
to brain dysfunction; (3) alterations in blood oxygen content—decreased
arterial oxygen content as a consequence of poor cardiopulmonary circu-
lation contributes to cerebral anoxia and psychiatric symptoms; and
(4) cardiac emboli—during a heart attack or myocardial infarct, blood
pressure drops sharply and blood coagulation deteriorates, contributing to
cerebral thrombosis.

Depression is an Independent Risk Factor for CHD

Depression is not only associated with CHD, but is also an independent
predictor that increases the Framingham risk score for CHD.”*”” Depres-
sion severity, duration, and responsiveness to treatment are all associated
with adverse outcomes in CHD patients. Moreover, a number of potential
mechanisms have been proposed to explain this association, including
inflammation, endothelial dysfunction, and platelet activation, hypotha-
lamic-pituitary-adrenal (HPA) axis hyperactivity, autonomic dysfunction,
and various behavioral factors.

Abnormalities in the Inflammatory Response

Since the 1980s, the prevailing theory on immune dysfunction in
depression has shifted from immunosuppression to overactivation of
neuroinflammatory processes.”*” Indeed, a multitude of studies have
found a close association between depression and the inflammatory
response, including dramatically increased levels of certain inflamma-
tory cytokines such as interleukin (IL)-6, C-reactive protein, and
tumor necrosis factor-o in patients with depression.”®*’ Further, a
meta-analysis of patients with chronic physical illnesses concluded
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that tumor necrosis factor inhibitors ameliorate depressive symptoms
by alleviating severe and chronic inflammatory conditions.”' More-
over, inflammatory cytokines are directly associated with the forma-
tion and rupture of atherosclerotic plaques, which accelerates
atherosclerosis and leads to CHD, as well as angina pectoris and
MI 4243

Many studies have indicated that depression accompanied by elevated
inflammatory factors is a significant risk factor for mortality from CHD.
Whooley et al reported that depression (as indicated by patient health
questionnaire-9 score > 10) predicted adverse cardiovascular outcomes
in CHD patients. This association was reduced by 11.3% after adjustment
for inflammatory cytokine concentrations, suggesting that inflammatory
factors are associated with adverse cardiovascular events in patients with
symptoms of depression.** Similarly, Vaccarino et al found that the asso-
ciation between depression and cardiovascular events was reduced by
20% after controlling for inflammatory cytokines.”” These findings
strongly implicate inflammation associated with depression as a major
factor leading to poor cardiovascular outcomes.

Endothelial Dysfunction and Excessive Platelet Activation

The effect of depression on subsequent cardiac events may be medi-
ated by endothelial dysfunction and excessive platelet activation. Cai et
al reported that average platelet volume (an indicator of platelet activity
and chronic inflammation) was significantly higher in major depression
patients compared to healthy controls.*>*” In addition, adenosine diphos-
phate-induced platelet activity was higher in patients with comorbid ACS
and moderate depression compared to ACS patients without depres-
sion.”®*” Depression can also cause vascular endothelial dysfunction in
healthy people, CHD risk groups, and CHD patients.”” Moreover, flow-
mediated vasodilation of the brachial artery, an indicator of normal vas-
cular endothelial function, is reduced in depressed patients.”’

Endothelial dysfunction and excessive platelet activation are also
directly related to myocardial ischemia and atherosclerosis. Vascular
endothelial cells induced by S5-hydroxytryptamine (serotonin, 5-HT)
release nitric oxide, which in turn triggers blood vessel dilation. Thus, the
decreased serum 5-HT associated with depression could exacerbate vaso-
constriction in atherosclerotic vessels, leading to platelet aggregation and
thrombosis.”” Selective serotonin reuptake inhibitors can attenuate vascu-
lar endothelial dysfunction in CHD patients with anxiety and depression,
thereby improving adverse cardiovascular prognosis.”*”*
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Hyperactive HPA Axis

It has been confirmed that depression is associated with hyperactivity
of the HPA axis and autonomic nervous system dysregulation through
enhanced release of corticotropin releasing hormone.”””® The ensuing
sustained release of glucocorticoids (GC) is known to damage hippocam-
pal neurons via activation of HPA axis. In addition, persistent GC eleva-
tion reduces the number and impairs the function of glucocorticoid
receptors, which weakens negative feedback inhibition of the HPA axis
and promotes HPA axis hyperactivity, ultimately forming a vicious cycle
of uncontrolled GC release.”’ Elevated plasma cortisol from excessive
corticotropin releasing hormone release is linked to the development of
hypertension, diabetes, and atherosclerosis, major risk factors for poor
outcome in CHD patients. Thus, HPA axis hyperactivity may link depres-
sion to poor cardiovascular outcomes.”®”

Elevated norepinephrine in cerebrospinal fluid and plasma has also
been reported in patients with major depression, which could in turn
increase the contractility, oxygen consumption, and excitability of cardiac
muscle, potentially leading to adverse cardiovascular events.’” Similarly,
a large-sample study of CHD patients by Otte et al (n = 693) found signif-
icantly higher 24-hour urinary cortisol levels in those with comorbid
depression,”’ which could lead to abnormalities in glucose and lipid
metabolism, resulting in hyperlipidemia and insulin resistance. In addi-
tion, HPA axis dysfunction may contribute to metabolic syndrome by
promoting the release of proinflammatory factors, thereby further increas-
ing the risk of cardiovascular disease.

Autonomic Dysfunction

Autonomic dysfunction may also contribute to the association between
depression and CHD. The heart is innervated by sympathetic and para-
sympathetic nerves, which cooperatively regulate the response of the
heart to stress and other external factors.’” Patients with a history of CHD
or congestive heart failure always show increased sympathetic activity
and decreased parasympathetic activity, which leads to reduced heart rate
variability (HRV), an independent risk factor for cardiac death, and lower
baroreflex sensitivity.®” Autonomic dysfunction increases the mortality of
patients with acute myocardial infarction (AMI), and the occurrence of
complications after cardiac surgery.®

HRYV, indicative of a shift in the autonomic balance toward
increased sympathetic activity, is also reduced in depressed patients
with or without heart diseases.®”°® Furthermore, there is a linear
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relationship between HRV reduction and depression severity; that is
symptoms of depression may be aggravated as the HRVfalls.®
case-control study of CHD patients with or without comorbid depres—
sion found that HRV was significantly lower in the depressive group,
indicating that depression may affect the prognosis of CHD patients
through autonomic dysfunction.”” Worse still, a recent meta-analysis
revealed that antidepressant (AD) drugs failed to increase HRV or
improve the prognosis of CHD patients; in fact, ADs may further
reduce HRV in depressed patients.’®

Behavioral Factors

Patients with comorbid CHD and depression are prone to several
unhealthy behaviors and lifestyles, such as (1) smoking, (2) poor die-
tary habits, (3) lack of regular exercise, and (4) poor treatment
compliance.

(1) Smoking: Depression increases the risk of smoking and the dif-
ficulty quitting.”” (2) Poor diet: Low intake of fruits and vegetables
may contribute to the relationship between depression and cardiovas-
cular disease.”’ (3) Lack of exercise: CHD patients with major
depression are less likely to exercise regularly. Moreover, in a study
of 1017 patients with stable CHD, physical inactivity was the stron-
gest factor contributing to the association between depressive symp-
toms and cardiovascular events.**’" (4) Poor treatment compliance:
Drug nonadherence for secondary prevention of CHD may be 1 rea-
son for poor cardiovascular outcomes in comorbid patients.’”’”
Depression was associated with poor adherence to aspirin therapy
among patients with recent ACS, while treatment of depressive symp-
toms improved medication compliance.”* These unhealthy behaviors
and lifestyles may also increase the frequency and severity of tradi-
tional CHD high-risk factors such as obesity, metabollc syndrome,
diabetes, hypercholesterolemia, and hypertension.”

These potential mechanisms for CHD-depression comorbidity are
stronger inter-related, forming a complex pathogenic network that pro-
motes depression in CHD and enhances CDH risk among depressive
patients (Fig 1).”” However, the predominant mechanisms in specific con-
texts (eg, different clinical and demographic populations) are still unclear.
Such information is essential for treatment guidance and lifestyle man-
agement to improve prognosis. Much additional research is needed to
identify potential causal links between depression and CHD and to eluci-
date how these mechanisms interact.
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New Insights Into the Crosstalk Between CHD and
Depression

Gut Microbiota

Gut microbiota play important roles in adjusting metabolism, regulat-
ing immune responses, and fighting illness, and are critical for maintain-
ing the stability of the intestinal environment. These microbes can be
divided into beneficial probiotics such as the genera Bifidobacterium,
Lactobacillus, and Bacteroides, and opportunistic pathogens such as
Gram-negative aerobes, anaerobic pathogens, Clostridium difficile, and
Candida albicans. Recent studies have reported that the gut microbiota
profile is closely related to the occurrence and development of
Parkinson’s disease, inflammatory bowel disease, depression, metabolic
syndrome, and cardiovascular disease.”®”’® Given that gut microbiota
constitute 90% of the total number of cells in the human body and that
there are 3.3 million unique microbial genes in the human gut, 150 times
more than in the human genome, this “second genome” is believed to reg-
ulate numerous normal physiological processes and contribute to homeo-
static maintenance of the internal environment.’” '

The gut microbiota can affect the brain development and function
through release of metabolites such as valerate or by stimulating the pro-
duction of neuroactive substances from gastrointestinal endocrine cells.
The brain can in turn monitor and regulate the composition of the gut
microbiota via nerve, immune, and endocrine pathways, to either main-
tain the normal species profile or adjust the microbial profile according to
changes in the environment.”® However, this interactive “microbiota-gut-
brain axis” may also change the microbial environment and impact neural
activity and function with pathologic results, such as depression.*”*’
Indeed, clinical studies have confirmed that the composition and relative
abundance of gut phyla such as Bacteroidetes, Proteobacteria, Actino-
bacteria, and Firmicutes are altered in depression,}%'87 while basic
research studies have demonstrated that these changes alter central ner-
vous system function through inflammatory responses, HPA axis activity,
and neurotransmitter signaling, resulting in depression.***’ Accordingly,
directly changing the composition and function of the gut microbiota
such as through probiotic supplementation can improve depressed behav-
iors by restoring physiological cortisol levels, inflammatory factors, and
neurotransmitter regulation in the central nervous system.’””! Bravo et al
observed that the beneficial effects of probiotic supplementation were not
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found in vagotomized mice, identifying the vagus nerve as a major modu-
latory pathway linking gut bacteria to brain function.”

Currently, there is increasing interest in the relationship between gut
microbiota and cardiovascular diseases. A decline in gut microbial diver-
sity increases the incidence of diabetes, obesity, and metabolic syndrome,
all of which are risk factors for cardiovascular disease.”””* In addition,
gut microbiota directly contribute to coronary atherosclerosis.”””® Intesti-
nal bacteria can transform internal choline, phosphatidylcholine, and L-
carnitine into trimethylamine (TMA), which is then oxidized to trimethy-
lamino oxide (TMAO) in the liver.””?® High levels of TMAO enhance
platelet activity and thrombosis,”” which may in turn enhance atheroscle-
rosis and heart disease risks.”® Inhibition of TMAO production by adjust-
ing the gut microbiota profile is a promising strategy for the treatment of
atherosclerosis.'” Also, significant differences in the diversity and com-
position of gut microbiota have been found between CHD patients and
healthy controls, including decreases in the phyla Bacteroidetes and Pro-
teobacteria and increases in the phyla Firmicutes and Fusobacte-
ria."’"'°> Furthermore, blood Proteobacteria are strongly associated
with cardiovascular complications and may be an independent risk
marker for cardiovascular disease.'”® A risk prediction model for CHD
patients including only 47 intestinal microbes based on a metagenome-
wide association study of a Chinese population yielded a high degree of
specificity and selectivity (area under receiver operating curve up to
0.86).”

The aforementioned studies have established strong associations
between gut microbiota, such as Bacteroidetes, Proteobacteria, and Fir-
micutes, and the development of depression and CHD. It is therefore
likely that gut microbiota contribute to the comorbid condition (Fig 2).
Our tea mare undertaking the preliminary research. Improving CHD,
depression, and comorbid CHD-depression outcomes by manipulating
the gut microbiota profile warrants further study.

Endocrine Signaling

Whole-body homeostasis is maintained by interactions among 3 major
regulatory systems, nerve, endocrine, and immune, and CHD and depres-
sion result from imbalances among these homeostatic systems. In the past
few decades, the definition of the endocrine system has expanded beyond
the traditional endocrine glands and extracellular cells that secrete hor-
mones (thyroid, pituitary, adrenal, etc.) to include other organs such as
the liver (which secretes hepatokines-like fetuin-A, insulin-like growth
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factor (IGF), and others), the heart (which secretes cardiokines-like brain
natriuretic peptide and fibroblast growth factor 21 [FGF21]), and skeletal
muscle (which secretes mytokines-like irisin and follistatin-like 1).'%*'%°
These secreted substances regulate the growth, metabolism, and function
of the source organ through paracrine and autocrine pathways, and regu-
late distant organs or tissues through blood circulation as canonical endo-
crine factors. As endocrine factors, these substances also contribute to the
pathogenesis of certain systemic diseases.'””"'"* Many of these substan-
ces demonstrate a lack of source specificity; for instance FGF21 is syn-
thesized and secreted by the liver, skeletal muscle, and heart. The
possible pathophysiological significance of these endocrine substances in
comorbidity CHD-depression is described below.

IGF-1 is a single-chain polypeptide with a molecular structure similar
to insulin. It is synthesized by the liver, kidney, and skeletal muscle, then
secreted into the circulation. Expression of IGF-1 is regulated by growth
hormone.'” IGF-1 functions mainly through IGF binding proteins and
the IGF-1 receptor (IGF-1R), both of which are widely expressed in dif-
ferent organs and tissues including the cardiovascular system. Therefore,
IGF-1 participates in a variety of physiological and pathologic processes
in the heart through endocrine, autocrine, or paracrine pathways.''*'"!
According to several reports, specific IGF-1R and IGF binding proteins
alleles are strong risk factors for arteriosclerosis and ischemic heart dis-
ease,’'>'"” while IGF-1 is an effective protective factor against
CHD.''*'"> Alternatively, excessively high or low serum IGF-I levels
increase the risk of CHD in older men."'* In addition to peripheral effects,
circulating IGF-1 was found to pass through the rat blood-brain barrier
and bind to brain IGF-1Rs,"'®!"” which are mainly distributed in the
olfactory bulb and hippocampus. Furthermore, IGF-1 secretion is abnor-
mally low in patients with depression,''® and individuals with lower cog-
nitive ability are more likely to suffer from depression if they have lower
levels of IGF-1.""%-12°

FGF21 is synthesized by the liver, kidneys, and cardiomyocytes, and
then secreted into the circulation.'”' FGF21 specifically binds FGFR,
which in turn activates the coreceptor S-klotho, forming a stable FGF21/
B-Klotho/FGFR complex that activates the extracellular regulated protein
kinases signaling pathway.'> The expression of FGF21 in various organs
is significantly affected by g-Klotho, while B-Klotho exhibits tissue-spe-
cific expression in the liver, heart, and nervous system. FGF21 has been
shown to protect vascular endothelial cells and slow down the progression
of cardiovascular disease.'”>'** It can also inhibit accumulation of reac-
tive oxygen species and ensuing oxidative stress by inducing the
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expression of antioxidant genes such as Ucp3, Ucp2, and Sod2.'*" In
addition, FGF21 contributes to the regulation of lipid metabolism and
anti-inflammatory responses, thereby improving atherosclerosis and
reducing myocardial ischemia-reperfusion injury.'* Intriguingly, Liu et
al demonstrated a significant negative association between FGF21 levels
and Beck Depression Inventory scores in male subjects, suggesting that
FGF21 functions to prevent depression.'*® However, Chang et al reported
that central and peripheral FGF21 may play opposing roles in patients
with major depression, as metabolic disorders caused by high peripheral
FGF21 levels were associated with resistance to AD treatment in patients
with bipolar disorder.'?’

Irisin is a peroxisome proliferator-activated receptor gamma coactiva-
tor 1-o (PGC-1a)-dependent mytokine. In skeletal muscle cells, PGC-1«
activates the transcription of fibronectin type III domain-containing pro-
tein 5 (FNDCS5), which is processed by proteolytic enzymes to form the
secreted protein fragment irisin.'”® In addition to skeletal muscle, cardio-
myocytes, adipose tissue, brain, and other tissues can also express
FNDCS5 and secrete irisin, with highest relative expression in cardiomyo-
cytes.'” Recent clinical studies have identified a close relationship
between irisin and cardiovascular disease. Aydin et al found that serum
levels of irisin in AMI patients were significantly lower than in healthy
individuals. Conversely, irisin levels were negatively correlated with car-
diac troponin I and creatinine kinase-MB, suggesting serum irisin as a
potential diagnostic biomarker for AMI"*" Kuloglu et al drew the same
conclusions.'”" Irisin also appears to link exercise to brain health.'*” The
improved cognitive function associated with exercise is related to the
increased expression of brain-derived neurotrophic factor (BDNF)
induced by irisin. In turn, BDNF regulates adult neurogenesis, synapse
formation, and synaptic plasticity, all processes associated with cognition
and disrupted in depression.'”” PGC-la regulates the expression of the
gene encoding FNDCS5 in mouse cortical neurons by increasing transcrip-
tion factor ERRa activity. Increased FNDC5 then promotes the expres-
sion of BDNF in hippocampus.'?”"'** Therefore, exercise can exert an
AD effect through the irisin-BDNF axis, and this signaling pathway is
affected by exercise intensity.'*”

Collectively, these results provide strong evidence that dysregulation
of the endocrine factors IGF-1, FGF21, and irisin all contribute to the
pathogenesis of CHD and depression. In other words, CHD and depres-
sion share common endocrine mechanisms. These circulating endocrine
substances are delivered throughout the body, forming a complex regula-
tory network among different organs and organ systems, thereby

14 Curr Probl Cardiol, March 2021



contributing to multiple disease processes. However, there is still a lack
of systematic and comprehensive research on the specific contributions of
these factors to individual diseases.

MicroRNAs

MicroRNAs (miRNAs) are a class of eukaryotic small noncoding
RNAs with a length of about 22 nucleotides that regulate the expression
of genes at the post-transcriptional level. Studies over the past decade
have implicated various miRNAs in the regulation of development, pro-
liferation, differentiation, and apoptosis among other processes.'*® Since
the first report in 1993,"*” more than 2000 distinct miRNAs have been
identified, which collectively may regulate nearly 30% of all human
genes.'”° In addition to regulation of genes in the miRNA-expressing
cell, microRNAs are released into plasma, interstitial fluids, and cerebro-
spinal fluid."*® These circulating miRNAs not only participate in normal
physiological processes, but also in the pathogenesis of diabetes, cardio-
vascular diseases, tumors, and psychiatric disorders.'*’

The expression levels of multiple miRNAs change during cardiovascu-
lar diseases such as atherosclerosis, MI, and heart failure. Moreover, miR-
NAs related to various risk factors have been shown to contribute to CHD
development.'*”'*" For instance, abnormal lipid metabolism is one of the
most important independent risk factors for CHD. The accumulation of
cholesterol in the arterial wall gradually reduces the elasticity of blood
vessels, further promoting inflammation and thrombosis. MicroRNAs
regulate lipid metabolism-related gene expression, which is reported to
affect the development of lipid metabolism-related diseases, including
atherosclerosis.'**"'** Nearly 100 miRNAs that participate in lipid metab-
olism have been identified. Through gene-expression profiling, Tsai et al
suggested that miRNA-122 could reduce the expression of genes involved
in triacylglycerol metabolism in liver via an adenosine monophosphate-
dependent protein kinase pathway.'*” Similarly, Hiopoulos et al con-
firmed that overexpression of miRNA-122 could inhibit cholesterol bio-
synthesis. Moreover, the related gene transcription products, including
acyl-CoA carboxylase 1, were reduced to 25%-70% of their initial levels,
thereby to degrade blood lipids.'*® External factors affecting lipid metab-
olism can also cause changes in related miRNAs. The expression levels
of interferon regulatory factor-1 and miRNA-126 were increased in
serum of animals on a high-fat diet, which further raised the level of vas-
cular cell adhesion molecule 1, thereby enhancing the adhesion of leuko-
cytes to endothelium and promoting the occurrence and development of
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CHD.'*" In addition, miRNAs associated with smooth muscle cells, mac-
rophages, and endothelial cells contribute to the pathogenesis of athero-
sclerosis.'*® Cordes et al demonstrated that miRNA-143 and miRNA-145
regulate expression of the transcription factor EIK-1 and the cell cycle
inhibitor KFL-4, while further experiments in vitro found that these 2
miRNAs inhibited the proliferation of smooth muscle cells and promoted
cell differentiation.'*’ Intravascular macrophages can phagocytize lipids
and form foam cells, an important event in the progression of atheroscle-
rosis. A study by Tian et al revealed that YYI/HDAC2/4 complex nega-
tively regulated the expression of miRNA-155 to suppress oxidized low-
density lipoprotein-induced foam cell formation. More importantly, the
lipid-loading capacity of macrophages and the formation of atheroscle-
rotic plaques were significantly reducing by anti-miRNA-155."" In addi-
tion, endovascular blood flow shear stress can induce the expression of
endothelial miRNA-92a and miRNA-21, and miRNA-21 upregulates
endothelial nitric oxide synthase and reduces endothelial cell
apoptosis.'”’

Recent studies suggest that circulating miRNAs may be novel bio-
markers for cardiovascular diseases. More than 200 miRNAs have been
detected in the heart, of which about 20 are considered potential diagnos-
tic markers for AMI. These miRNAs are specifically expressed in the
myocardium, and can be released into the peripheral blood circulation
during AMI, thereby prompting myocardial damage.'”>'>* When CHD
patients are in the stable state, the serum levels of these miRNAs are in
the normal range. When atherosclerotic plaques are unstable, however,
miRNAs in the plaque cells or infarcted myocardium will be released
into the blood, resulting in substantial changes to the profile of circulating
miRNAs."”*'>* Moreover, recent research has demonstrated that miR-
NAs are closely related to plaque stability. Bazan et al reported that the
acute decline of miRNA-221/222 levels was accompanied by plaque rup-
ture.'”” Leistner et al used optical coherence tomography to evaluate the
coronary atherosclerotic plaque burden in 52 CHD patients, and simulta-
neously measured the serum concentrations of miRNAs. Results revealed
that plaque burden was closely related to the serum levels of miRNA-
126-3p (P=0.04), miRNA-145-5p (P=0.01), miRNA-155-5p (P <
0.01), and miRNA-29b-3p (P =0.02)."°

Dysfunctional miRNA regulation has also been observed in depres-
sion."””'"® MicroRNAs may be involved in the pathophysiological pro-
cesses of depression through HPA axis hyperactivity, 5-HT signaling,
and BDNF signaling among other pathways. Hyperfunction of the HPA
axis and decreased expression of glucocorticoid receptors are 2 of the
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most widely observed pathogenic changes in depression. Cellular studies
suggest that miRNA-124 may play an important role in regulating GR
expression and thus HPA functional state.'”” MicroRNA-16 exerts AD
activity by inhibiting the expression of the 5-HT transporter, thereby
reducing the reuptake of 5-HT at the synaptic cleft and promoting 5-HT
signaling.'®'°” In addition, it has been reported that some miRNAs,
such as miRNA-30a-5p and miRNA-195 in the prefrontal cortex and
miRNA-206 in the temporal cortex, specifically inhibit the expression of
BDNF.'®"'%° In addition, BDNF also regulates the expression of miR-
NAs. In cultured rat cerebral cortical neurons, BDNF selectively upregu-
lated the expression of miRNA-132 through activation of the mitogen-
activated protein kinase (MAPK)/extracellular regulated protein kinases
signaling pathway, resulting in axonal growth and increased numbers of
dendritic spines, suggesting that miR-132 may regulate BDNF-mediated
neural plasticity.'°®'® Given the important role of BDNF in the patho-
genesis of depression, dysregulation of miRNAs associated with BDNF
may also be strongly related to depression.

The studies cited on miRNA changes in CHD and depression are in a
growing field implicating miRNA function and dysfunction in both sys-
temic and psychiatric diseases. It appears that miRNAs can indirectly pro-
mote or suppress CHD-depression comorbidity through modulation of
traditional risk pathways such as lipid metabolism and HPA axis hyperac-
tivity or through direct influences on CHD and depression-related signal-
ing pathways such as BDNF (Fig 3). Therefore, CHD and depression
appear to share some common pathologic mechanisms dependent on
miRNA regulation. While there is still no evidence for this in patients
with comorbidity CHD and depression using miRNA gene chip detection
and related methods, these studies have just begun. Thus, it is believed
that in the near future miRNAs will be directly implicated in CHD and
depression comorbidity and become valuable tools for research and possi-
bly also for therapy.

Suggestions for Therapeutic Strategies

Pharmacologic Strategies

The long-term health effects of ADs are debated. A meta-analysis by
Maslej et al showed that the risk of AD prescription was significantly
lower in patients with cardiovascular diseases than in the general popula-
tion,'®” whereas there is little evidence showing improvements of ADs in
the prognosis of cardiovascular disease after long-term follow-up. To
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FIG 3. MicroRNAs in comorbid CHD and depression. CHD, coronary heart disease; HPA axis,
hypothalamic-pituitary-adrenal axis.

reduce the cardiovascular adverse effects and help clinicians to make bet-
ter choices, ADs could be divided into 3 categories by clinical out-
comes'’": (1) safe agents that are capable of providing protective effects
on ventricular function and cardiac conduction system, such as selective
serotonin reuptake inhibitors (SSRIs)'’'; (2) neutral agents that fail to
show pharmacologic effects on the cardiovascular system, such as seroto-
nin-norepinephrine reuptake inhibitors; and (3) harmful agents that are a
category of ADs that have a deleterious impact on heart function, hemo-
dynamic stability, and HRV, such as tricyclic ADs and monoamine oxi-
dase inhibitors.

However, it is inappropriate to purely increase the dose of ADs or
combined use of ADs to alleviate depressive symptoms in patients with
CHD. When the symptoms are not alleviated satisfactorily, personality
disorders or lack of proper psychological interventions should be suffi-
ciently considered. Thus, the rational selection of ADs and the innovation
of alternative treatments are both clinically significant.
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Psychotherapy Strategies

Psychotherapy can arouse the patients’ initiative to alleviate the dis-
ease, including explanatory therapy, lifestyle modifications, cognitive
behavioral therapy (CBT), well-being therapy, etc. CBT focuses on
changing the patients’ thoughts, feelings, and behaviors to treat depres-
sion or other adverse symptoms, whereas well-being therapy can reduce
the occurrence of stress-related diseases by preventing unhealthy psycho-
logical behaviors and promote the recovery of diseases by improving
mental health and adjusting lifestyle.'’” In this regard, these strategies
support the patients to improve their lifestyles and self-management,
thereby improving the ability to cope with psychological distress.

Pharmacotherapy and psychotherapy both play important roles in the
treatment of depression in CHD (Fig 4), and the combination therapy of
both, such as the sequential integration of CBT and pharmacotherapy,
may be more effective.'’” Moreover, physical symptoms caused by CHD
also require traditional treatments, such as chemical drugs (clopidogrel,
aspirin, and isosorbide dinitrate, etc.), percutaneous coronary interven-
tion, and coronary artery bypass graft.'’* Interestingly, most interventions
for depression have not been found to be beneficial for reducing mortality
and cardiac events in patients with CHD, which even show negative ther-
apeutic consequences in some cases. Further studies on the role of phar-
macotherapy and psychotherapy in CHD patients with depression are
greatly required.

Summary

Comorbid depression in CHD and elevated cardiovascular disease risk
in depression are now widely recognized as substantial healthcare bur-
dens that worsen prognosis, increase medical expenditures, and reduce
patient quality of life. Moreover, there is substantial evidence that comor-
bidity results from shared pathomechanisms at system, cellular, and
genetic levels. Here, we review evidence for the involvement and interac-
tions among inflammation, unhealthy lifestyle factors, and HPA hyperac-
tivity among other factors in comorbid CHD and depression. In addition,
we discuss factors more recently implicated in CHD and depression
comorbidity, including the gut microbiome, novel endocrine substances,
and miRNAs. In clinical treatment, the specific contributions and inter-
ventional methods of AD therapy (including pharmacotherapy and psy-
chotherapy) are still underway. Currently, psychocardiology, which
regards mental and psychological factors as integral to the prevention and
treatment of heart disease, is advancing at a rapid pace. Given that the
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intervention of mental illness is conducive to cardiovascular diseases,
clinicians should pay closer attention to psychiatric comorbidities.
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