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Abstract: Human immunodeficiency virus (HIV) is
currently considered a risk factor for cardiovascular
disease (CVD). With the advent of antiretroviral treat-
ment and prevention, HIV-related morbidity and mor-
tality rates have decreased significantly. Prolonged life
expectancy heralded higher prevalence of diseases of
aging, including CVD-associated morbidity and mor-
tality, having an earlier onset in people living with
HIV (PLHIV) compared to their noninfected counter-
parts. Several epigenetic biomarkers are now available
as predictors of health and disease, with DNA methyla-
tion being one of the most widely studied. Epigenetic
biomarkers are changes in gene expression without
alterations to the intrinsic DNA sequence, with the
potential to predict risk of future CVD, as well as the
outcome and response to therapy among PLHIV. We
sought to review the available literature referencing
epigenetic markers to determine underlying biome-
chanism predisposing high-risk PLHIV to CVD, eluci-
dating areas of possible intervention. (Curr Probl
Cardiol 2021;46:100615.)
Introduction

I
n 2018, the World Health Organization (WHO) declared that

37.9 million people globally were living with HIV/AIDS,

3.5 million of whom live in the Americas.1 Most recent CDC

report from 2018 disclosed that HIV prevalence in the United States was
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near 1.1 million.2 Since 2010, AIDS-associated mortality worldwide

decreased by 33%.3 This significant decline in mortality, likely related to

a reduction in opportunistic infections and acquired immunodeficiency

syndrome(AIDS)-defining cancer, is correlated with increased accessibil-

ity to antiretroviral therapy (ART), earlier diagnosis, and improvement in

medication profiles.3-5 However, age-related comorbidities, including car-

diovascular disease (CVD), have also been attributed to these trends.6-8

Although genetic factors attribute to CVD risk, a large proportion may be

accounted for by an interaction of genomic and nongenomic processes.

In the recent decade, evidence has emerged on the potential role of epi-

genetic changes and its association with CVD risk. Epigenetics is defined

as the study of chemical modifications of intrinsic and extrinsic factors of

the genetic code regulating gene expression.9 Epigenetic markers can

also predict chronological age. Among people living with HIV (PLHIV),

the predicted epigenetic age is greater than chronological age, suggesting

accelerated aging within this population, and correlating to a collectively

heightened CVD risk group.6 We posit that a basic understanding of epi-

genetics is vital among cardiologists, as the 3 types of epigenetic markers:

DNAm, post-translational histone modifications, and non-coding RNA

(ncRNA) function are mediators of CVD pathogenesis and progression.
Epigenetic Modifications
One of the most studied epigenetic markers is DNA methylation

(DNAm), which involves changes in the DNA that are influenced by envi-

ronmental factors. This process is mainly cause by enzymes called DNA

methyltransferases (DNMTs). Most DNAm is essential for regulation of

key processes, including genomic imprinting and suppression of transcrip-

tion. Recently, global DNAm is regarded as a new marker of “biological

age” correlating with telomere length.10 The principle of DNA hyperme-

thylation is related to a loss of gene expression and subsequent dysregula-

tion accounting for various diseases, such as CVD.11-14 Therefore, DNAm

is not only an indicator of accelerated aging, but may serve as a potential

mediator of factors on subclinical CVD pathophysiology. For example,

multiple studies reviewed the relationship between aging and CVD, and

found, age causes an increase in DNAm, as well as an increase of cardiac

disorders.6,15-17 DNA hypermethylation is independently associated with

other CVD pathophysiology promoting inflammation, adiposity, and glyce-

mic dysregulation. This includes atherosclerosis, hypertension (HTN), and

diabetes mellitus.12,18-20
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Another epigenetic change is post-translational histone modifications

(PTHM) that alter histone interactions with DNA and other nuclear pro-

teins, thus, repressing or activating gene transcription.21 Increased histone

acetylation is linked to atherosclerosis pathogenesis as well as chronic

inflammatory states observed in obese patients.22 Similarly, to DNAm,

PTHM are also associated with HTN and DM.21,23 Circulating histone in

serum could be used for evaluation of CVD.24,25

Lastly, ncRNA are a heterogenous group of functional RNA that is

transcribed from non�protein-coding DNA.26 Different subtypes of

ncRNA were associated with different CVD. Among others conditions,

microRNAs are associated with atherosclerosis and HTN.27,28 Long

ncRNAs were found to be related with aging and hypertrophic cardiomy-

opathy.29,30 Due to the very low level of these molecules in the body flu-

ids, quantitative polymerase chain reaction would allow amplification to

detectable levels and serve as a novel biomarker to identify biomechan-

isms of aging predisposing PLHIV to CVD.31
Epigenetic Markers and HIV
HIV is one of the most studied viruses over the last two decades.32 The

pathogenesis of HIV infection is mainly related to dysregulation of the

immune system affecting CD4+ and CD8+ T cells, and it can be divided

into 3 chronological phases: primary or acute HIV infection, chronic asymp-

tomatic HIV infection, and late stage or symptomatic HIV infection.33,34

During early phases of HIV-infection, more specifically HIV-1, the host

cells recognize viral particles, adapting with epigenetic pattern changes to

avoid potential invasion.35 However, the virus itself may also change its

epigenetic structures to facilitate integration and further replication.36 An

example of epigenetic changes in the early phase (first 36 hours, time for

HIV-1 to replicate once) of infection, is the increase of DNMTs shortly

after HIV-1 infects a cell. This increase of methylation causes silencing of

different genes at an early stage in the disease of the host cells, suggesting

that even with recent contact among the host cells, HIV-1 changes the

defense mechanisms of the host to attempt viral latency.37 Other genes are

related to transcriptional silencing, so HIV-1 infection may cause epige-

netic modulations in host cells that may lead these cells to transcriptional

repression with important functional consequences.38

After the acute infection of HIV, the virus integrates into the host cells

via epigenetic processes, including DNAm, to establish a period of

latency. Epigenetic suppression of the genomic sequence plays a role in

mitigating detection of HIV by the immune system.39,40
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In addition, chronic infection and progression to AIDS are linked with

abnormal gene expression of proinflammatory cytokines, whether on ART

or not.41 Studies suggest a decrease of expression of cytokines in this stage,

more specifically IL-2 and INF-g, 2 very important molecules helping to

combat against infections, including HIV-1.42 Furthermore, the degree of

DNAm from patient infected with HIV-1, on treatment or not, during more

than 4 years, showed an increase in DNAm due to upregulation of DNMTs,

causing gene silencing, and affecting transcriptional process. This increase

in methylation is also associated with aging of lymphocyte T, and impacts

the T-cell-mediated immune response.43 These alterations of the immune

system cause an immunosuppressed state that lead to development of

AIDS as well as non AIDS-related comorbidities.
Epigenetic Markers and Cardiovascular Implications
CVD is the number one killer worldwide with aging as an important

risk factor.7,8 During the last decade, there is an increase of nonrelated

HIV/AIDS deaths, with CVD accounting for most cases.44 Furthermore,

HIV infection is considered as an independent risk factor for CVD.45

Existing evidence shows that PLHIV display an increase in DNAm since

the early stages of infection, yet exhibit longer life expectancies with the

advent of ART.46 Though the exact change in biological age among

PLHIV differs among studies, however, DNAm changes are still present

in this population. A cross-sectional study taking sample of 2 age-differ-

ent groups with one inclusion criteria of ART naive, determined an

increase of 14 years in PLHIV by using a model as prediction.47 How-

ever, another cross-sectional study taking sample of individuals with HIV

on ART found an increase of 4.9 years with their model.48 Variability in

years most likely related to the use of ART in the latter study compared

with the former. These findings suggest that extrinsic factors, including

medication compliance, have the potential to modify onset of age-related

conditions. Another prospective study compared DNAm biological age

between ART-naive HIV-positive and HIV-negative patients. After

7-11 years of follow-up, 80% of PLHIV who started ART demonstrated

an improvement in the DNAm biological age. However, the study sample

was very small, and it is uncertain if generalizations can be achieved.49

In search of an explanation of the progression and relationship between

HIV status and epigenetic age acceleration, multiple models posit HIV

infection as linked to senescent or exhausted T cell and age accelera-

tion.50 HIV alters T-lymphocyte function, but it is unclear yet whether or

not the virus itself also augments aging process. Therefore, an increase of
4 Curr Probl Cardiol, March 2021



aging by HIV in conjunction with the process of aging itself interfere with

the genome of the cells by affecting the methylation of the DNA, suggest-

ing a higher risk of cardiac disorders in this population.6,15,16 With each

year of “epigenetic age,” there is an associated elevation in CVD risk by

4%, despite adjusting for risk factors of blood pressure, dyslipidemia,

tobacco use, and body mass index.51 PLHIV in general exhibit acceler-

ated aging of approximately 5 years by epigenetic age, correlated by an

increase in mortality risk by 19%.48

Another association between HIV-infection, aging, and CVD is

chronic inflammatory state.52 The mechanism of inflammation is multi-

factorial; however, one important factor is DNA hypermethylation caus-

ing cell dysfunction and decreased cytokines, perpetuating the

proinflammatory state.53 These changes suggest that PWLH who start

treatment early can alter their risk of AIDS-related death, ultimately

linked back to the aging process. PLHIV have a prolonged exposure to

inflammation over their lifetime, elevating their risk of CVD.54

Conclusion
HIV infection not only causes a dysregulation of the immune system

but also epigenetic changes that predispose to other comorbidities such as

CVD. PLHIV are now living longer due to the decrease of HIV-related

conditions however, the increase of DNAm, and thus, biological age,

exacerbate the chronic inflammatory state within this population, signifi-

cantly elevating the risk of CVD. Additionally, the increase of the process

of DNAm in the host cells by HIV, insinuates a higher risk of earlier CVD

in PLHIV. Therefore, further studies should examine the association

between epigenetic markers of CVD in the context of HIV.

Future Perspectives
The search for a method to detect HIV even before seroconversion is

underway, with multiple molecules currently under study such as the

SETDB2 protein. If able to leverage this protein, it can serve as a poten-

tial early marker of HIV even before HIV-antigen is detectable in body

fluids and have significant clinical implications.55 Early treatment could

potentially decrease the rise of age-related conditions in HIV patients by

decreasing the effect of DNAm caused by the virus.56

Other studies are assessing prevention of early DNAm secondary to

HIV in the host.57,58 As potential targets for treatment, DNAm can act as

a biomarker during reactivation of latent HIV in the host cells, so it could

be recognized and eliminated by the immune system.59 ART cannot
Curr Probl Cardiol, March 2021 5



affect the cells where HIV-genome was integrated, due to changes in the

expression of DNA, caused by the virus.60 Some pharmacological agents

with action on DNAm attempted to reactivate the virus; however, results

were equivocal with only partial reactivation of the virus.61-63 If full reac-

tivation can be achieved, ART could lead to total eradication of the virus.

Lastly, the HIV virus causes an increase in DNAm, leading to a

decrease expression of cytokines, more specifically IL-2 and INF-g.
These findings have led investigators to work with these molecules for a

possible vaccine against HIV.42
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