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Summary Hepatocellular neoplasms can develop in multiple genetic metabolic disorders. While there
have been rare case reports, clinical and pathological characterizations have not been systematically
performed. We conducted a retrospective study in 9 patients with these rare genetic metabolic disor-
ders, including glycogen storage disease type 1, ornithine carbamyl transferase deficiency, hereditary
tyrosinemia type 1, and Navajo neurohepatopathy, who developed hepatocellular neoplasms. Our re-
sults show that steatosis is a common finding in both tumor (6/9 cases, 67%) and background liver pa-
renchyma (8/9 cases, 89%), underlying a possible role for steatosis in tumorigenesis in these genetic
metabolic disorders. Our findings also raise a consideration of underlying genetic metabolic disorder
when young patients with hepatocellular neoplasm show steatosis in both the tumor and background
liver.
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1. Introduction

The liver is the center for the metabolism of carbohy-
drates, fat, and proteins. Hepatocytes are involved in mul-
tiple vital metabolic processes including glycogenesis,
glycogenolysis, gluconeogenesis, fatty acid oxidation, lipid
synthesis, urea cycle, and protein synthesis, among others.
Hepatocellular adenoma (HCA) is a benign liver tumor
which can be seen in patients with exposure to estrogen or
anabolic androgen and, rarely, in patients with glycogen
storage disease (GSD) [1] and ornithine carbamyl trans-
ferase deficiency (OCTD) [2]. The most common malig-
nancy in the liver is hepatocellular carcinoma (HCC). The
etiology of HCC is diverse. In adults, cirrhosis, hepatitis B
virus (HBV) infection, hepatitis C virus (HCV) infection,
and nonalcoholic fatty liver disease are the common causes
for HCC [3]. In pediatric patients, in addition to viral in-
fections, multiple genetic metabolic disorders such as GSD,
hereditary tyrosinemia (HT), and Navajo neurohepatopathy
(NNH) can also lead to HCC [4,5]. We aimed to charac-
terize the clinical and pathologic features of HCA and
HCCs arising in GSD, OCTD, HT, and NNH to better
understand these neoplasms arising in these conditions.
2. Material and methods

The study was approved by institutional review boards.
The computerized surgical pathology archives from 2000 to
2017 at four academic centers (University of Washington,
Yale University, Mayo Clinic at Rochester, and University
of California at San Francisco) were retrospectively
searched. Cases of hepatocellular neoplasms arising in
genetic metabolic disorders were identified. All patients’
medical records were reviewed. Demographic data and
clinical history were collected. The surgical procedures
were noted, and the pathology reports were reviewed. All
available hematoxylin and eosin (H&E) and immunohis-
tochemical study slides were rereviewed to confirm the
diagnosis. The degree of steatosis was evaluated based on
the methods of the Nonalcoholic Steatohepatitis Clinical
Research Network (NASH CRN) [6]. Patients with viral
hepatitis or excessive alcohol use were excluded. HCAwas
subclassified by immunohistochemistry as hepatocyte nu-
clear factor 1 alpha (HNF1A) inactivated (loss of staining
on liver fatty acid binding protein [LFABP] stain), beta-
catenin mutated (positive for beta-catenin nuclear stain or
diffuse glutamine synthetase stain), inflammatory (positive
for C-reactive protein [CRP] and/or serum amyloid A
[SAA] stains), or unclassified (no loss of LFABP staining
and negative for CRP, SAA, beta-catenin nuclear and
diffuse glutamine synthetase stains). Beta-catenin nuclear
and diffuse glutamine synthetase stains were used to look
for activated mutation of the beta-catenin pathway, which
increases risk for malignant transformation. HCC was
diagnosed based on multiple histological features,
including loss of normal reticulin staining in nonfatty re-
gions, thickened hepatocyte plates, vascular or stromal in-
vasion, or extensive pseudoglandular structures. When
morphological changes are equivocal, positive immunore-
activities of at least 2 of 3 markers (Glypican 3, glutamine
synthetase, and HSP70) are required for the diagnosis of
HCC.

3. Results

The main clinical and pathological features are sum-
marized in Table 1. A total of 9 cases of hepatocellular
neoplasms arising in genetic metabolic disorders were
identified. There is a moderate female predominance (6
patients, 67%). The age at presentation ranged from 5
months to 32 years.

Five patients had GSD type 1, with a male to female
ratio of 1:4, and age ranged from 3 to 32 years. Among
these five patients, three developed HCA, all multiple (3 to
>15 tumor nodules). Two developed HCC, one was solitary
and one was multiple (16 tumor nodules) (Table 2) (Figs. 1
and 2). Interestingly, the only male patient with GSD type 1
had multiple (>15) HCAs of the inflammatory subtype.
The sizes of HCAs ranged from 0.2 to 4.5 cm and HCCs
ranged from 0.7 to 9 cm. HCAs arising in the two patients
with GSD were of the inflammatory subtype. The other was
of the unclassified subtype of HCA. Both patients with
GSD þ HCC had well-differentiated HCCs.

One female patient had OCTD, who developed a 2-cm
HCA, which was classified as the b-catenineactivated
subtype [2].

None of the aforementioned six patients had cirrhosis,
although three of the patients with GSD þ HCA had
bridging fibrosis.

Among the remaining three patients, two had HT (5
months old and 2 years old, respectively, both boys) and
one had NNH (a 9-year-old girl). They all developed
multiple well-differentiated HCCs (>5 in the patients with
tyrosinemia and 2 in the patient with NNH) in a back-
ground of cirrhosis (Fig. 3).

Most patients (N Z 6, 67%) had mild to severe steatosis
in the tumors. In fact, steatohepatitic variant HCCs were
observed in the patient with GSD þ multiple HCCs. The
background liver showed mild to severe steatosis in the
majority of patients (N Z 8, 89%). Most patients N Z (8,
89%) received liver transplantation. All were alive without
tumor recurrence at 3-year follow-up.

4. Discussion

Multiple genetic metabolic disorders can have liver tu-
mors as one of the complications. We studied patients who
developed HCA or HCC in a background of glycogen
storage disease, Cheng et al. [6] ornithine transcarbamylase
deficiency, tyrosinemia, or Navajo neurohepatopathy; and
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characterized the clinical features and pathology of liver
tumors and background liver in these patients. Although
these four genetic disorders affect different metabolic
pathways in the liver, most of the patients showed macro-
vesicular steatosis in both the tumor tissue and the back-
ground liver parenchyma, suggesting a common finding for
steatosis in these patients.

GSD is caused by abnormalities in glycogenesis or
glycogenolysis. Depending on the affected enzymes, GSD
can be divided into more than 10 types [7]. The most
common form of GSD is type I, also known as von Gierke
disease, which is an autosomal recessive disorder resulting
from mutations in G6PC or SLC37A4 genes. Mutations of
these two genes cause hypoglycemia and abnormal accu-
mulation of glycogen in organs and eventually liver and
kidney failure. Mutations also lead to hyperlipidemia due to
excess glucose-6-phosphate shunting into alternative path-
ways [8]. HCA is a common complication in GSD type I,
with prevalence between 22 and 75%, and 10% risk of
malignant transformation into HCC [9].

In patients with GSD, hypoglycemia triggers oxidation
of fatty acid in peripheral tissue to provide energy, which
consequently increases the plasma free fatty acid (FFA)
concentration. FFAs are then taken up by the liver and used
for triglyceride synthesis, leading to increased fat deposi-
tion within hepatocytes and eventually steatosis [10]. One
of the current hypotheses is that fat accumulation inhibits
AMP-activated protein kinase (AMPK) pathway. AMPK
can repress STAT3 and NFkB pathways. The STAT3
pathway is important for inflammatory responses, and the
NFkB pathway is tumorigenic when overexpressing. Inhi-
bition of AMPK may lead to overactivation of STAT3 and
NFkB pathways; and eventually result in the formation of
HCA or carcinoma. There are multiple studies supporting
this hypothesis. For example, in a mouse model of GSD
type 1a, when hypoglycemia was corrected by introducing
G6Pase through adenovirus-associated vector, the mice
showed increased activity of AMPK pathway and absence
of hepatic tumors [11]. A different mouse model showed
that liver-specific activation of AMPK pathway could
decrease hepatic steatosis [12]. In addition, cell line studies
showed that activating AMPK pathway by metformin could
reduce the risk of hepatocarcinogenesis [13].

HNF1Aeinactivated HCA (HCA-H) subtype usually
shows steatosis. Other subtypes of HCA can show steatosis
but are not as often. The HCA-H subtype has biallelic
mutation in HNF1A gene with consequent loss of expres-
sion of LFABP [14]. In our study, the HCAs in patients
with GSD did not show loss of LFABP. Instead, they
showed either increase of inflammatory proteins (inflam-
matory subtype) or no specific changes (unclassified sub-
type). Hence, although the HCAs in patients with GSD in
our study showed steatosis, the steatosis was likely caused
by a different mechanism than loss of LFABP. The mo-
lecular feature of the inflammatory subtype of HCA is the
activation of JAK/STAT pathway [14]. It is possible that the



Table 2 Pathological features of hepatocellular tumors arising in patients with glycogen storage disease type I.

Case # Tumor Tumor steatosis
(NASH CRN)

Background liver
steatosis
(NASH CRN)

Cirrhosis

Type Number Size (cm)

1 Well-differentiated HCCs 16 0.7e9 2 3 N
2 Well-differentiated HCC 1 9 0 1 N
3 HCAs, inflammatory subtype 3 1, 3, 4 2 2 N
4 HCAs, inflammatory subtype >15 0.2e2 2 1 N
5 HCAs, unclassified subtype 6 1.3e4.5 2 2 N

NASH CRN, Nonalcoholic Fatty Liver Disease Clinical Research Network; HCA, hepatocellular adenoma; HCC, hepatocellular carcinoma.

96 L. Cheng et al.
formation of the inflammatory subtype of HCA is due to the
inhibition of AMPK. The other two of our patients with
GSD had HCCs. It is not clear whether their HCCs are de
novo or transformed from HCAs.

Ornithine transcarbamylase (OTC) is a mitochondrial
enzyme that converts carbamoyl phosphate and ornithine
into citrulline [15]. Mutations in OTC gene lead to OTCD,
which is an X-linked recessive disorder of urea cycle. Pa-
tients with OTCD present with hyperammonemia and
consequent multiple organ damages including liver. HCAs
and HCCs are very rare in patients with OTCD [2,16].
A

C

Fig. 1 Explanted liver from a patient with glycogen storage disease typ
liver shows a 1.3 cm hepatocellular adenoma (arrow). B, Micrograph o
arteries, and absence of portal tracts. Marked intratumoral steatosis are
steatosis (H&E stained, �100).
Although there is no published study showing a direct
relationship between OTCD and liver tumorigenesis, the
enzyme downstream of OTC in urea cycle is arginino-
succinate synthetase (ASS). ASS ligates citrulline to
aspartate and hydrolyzes ATP into AMP, which increases
the AMP/ATP ratio and consequently activates AMPK
pathway [17]. When urea production is increased, the sig-
nals going through ASS are increased; hence, AMPK
pathway is upregulated [17]. On the contrary, deficiency of
ASS causes hyperammonemia, a similar condition to
OTCD. The excess of ammonia decreases the activity of
B

e 1 contains multiple hepatocellular adenomas. A, One slice of the
f the hepatocellular adenoma shows bland architecture, unpaired
seen (H&E stained, �100). C, Background liver shows moderate



A

B

C D

Fig. 2 Explanted liver from a patient with glycogen storage disease type 1 contains multiple hepatocellular carcinomas. A, One slice of
the liver shows two hepatocellular carcinomas. B, Micrograph of the hepatocellular carcinoma shows altered architecture, marked intra-
tumoral steatosis, unpaired arteries, inflammation, thick collagen fibers, and lack of portal tracts (H&E stained, �100). C, Higher
magnification shows features of steatohepatitic variant of hepatocellular carcinoma, including intratumoral steatosis, inflammation, and
many ballooned cells, most containing Mallory-Denk bodies (H&E stained, �200). D, Background liver shows marked steatosis (H&E
stained, �200).
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AMPK and fatty acid oxidation and leads to accumulation
of fat within hepatocytes [18]. It may be plausible that
OTCD leads to steatosis by decreasing the signals going
through ASS, which subsequently inhibits the AMPK
pathway. The downstream targets such as STAT3 and
NFkB pathways lose the negative control from AMPK,
which may result in tumorigenesis. Further studies are
warranted to fully understand the mechanisms.

HT is the abnormal accumulation of tyrosine and its
metabolic products in blood, caused by impairment of en-
zymes involved in the tyrosine breakdown. It can be
divided into three types, and all three types are autosomal
recessive disorders. HT type 1 is the most severe form,
caused by fumarylacetoacetate hydrolase (FAH) gene mu-
tations. Deficiency of FAH leads to accumulation of toxic
intermediate products. Patients present with symptoms
mainly involving the liver and kidney. Hepatomegaly, liver
cirrhosis, and HCC can be seen in infancy. The current
treatment for HT type 1 is use of nitisinone (NTBC) to
prevent tyrosine breakdown and diet restricted in tyrosine
and phenylalanine intake [19]. All patients with HT type 1
have increased risk of developing HCC. Treatment with
NTBC has markedly decreased the incidence of HCC in
those patients. The reported HCC frequency was 18%
before NTBC treatment was widely adopted, and <1% if
NTBC treatment started before 1 year old [20].

The two patients with HT in our study are both type 1, and
both presented with multiple well-differentiated HCCs in
early childhood. It has been reported that upregulation of p21
and mTOR pathways in tyrosinemia type 1 mouse model
contributed to the hepatic tumorigenesis [21]. Interestingly,
activating of AMPK pathway can inhibit mTOR pathway and
delay tumor development [22]. AMPK pathway not only in-
hibits mTOR pathway but also activates UNC51-like kinase
1 complex and stimulates the autophagy (self-eating), which
serves as the quality control process in the liver [23]. There-
fore, inhibition of the AMPK pathway seems to be a potential
explanation of the tumorigenesis in HT.

Both our patients with HT had cirrhotic background
liver, which is also a risk factor for developing HCC. It
is proposed that the inflammatory pathways including
NF-kB, STAT3, and c-Jun N-terminal kinase are the
missing links between cirrhosis and HCC [24]. Because
AMPK is upstream of these inflammatory pathways, it



A

B

Fig. 3 Explanted liver from a patient with hereditary tyrosine-
mia type 1 contains multiple well-differentiated hepatocellular
carcinoma and dysplastic nodules. A, One slice of the liver shows
a 1.4 cm hepatocellular carcinoma (arrow). B, Nontumor liver
shows cirrhosis and steatosis (H&E stained, �100).
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is possible that AMPK also plays a role in the devel-
opment of HCC in cirrhotic livers of other etiologies.

NNH is a rare autosomal recessive genetic disorder. It is
seen in the Navajo Indian population in the United States.
Depending on the clinical features, NNH can be divided
into 3 types [25]: Infantile NNH presents with jaundice and
failure to thrive shortly after birth and develops liver failure
and death within first 2 years of life. Childhood NNH has a
sudden onset of liver damage between 1 and 5 years of
age and shows rapid progression to liver failure within
months. Classic NNH presents mainly with progressive
neurological disorders, in addition to the gradually deteri-
orated liver function. Rare cases of HCC developed in
patients with NNH have been reported [5,26]. The patient
in our study has classic NNH. Mutations of MPV17 gene
have been identified in patients with NNH, which cause a
hepatocerebral form of mitochondrial DNA depletion [5].
MPV17 protein locates in the inner membrane of mito-
chondria and functions as a nonselective channel that
modulates membrane potential [27]. When mutated,
mitochondria homeostasis is disrupted and results in
mitochondrial DNA depletion. It is conceivable that
depletion of mitochondrial DNA can cause dysregulation of
metabolism in the liver and eventually liver tumors. One of
the treatment strategies for mitochondrial diseases is to
increase mitochondriogenesis by activating AMPK
pathway. Use of the AMPK agonist AICAR in mitochon-
drial disease mouse model has shown increased respiratory
chain activities and improvement of motor endurance.
Whether AICAR can delay or reverse the steatosis and
tumorigenesis in NNH remains to be investigated [28].

In conclusion, our study shows hepatocellular neoplasms
can arise in multiple congenital metabolic disorders. Close
clinical follow-up and surveillance in these patients may be
necessary. Steatosis in the tumor and background liver in
these patients is common, raising a consideration of un-
derlying genetic metabolic disorders in young patients with
hepatocellular neoplasms when steatosis in both the tumor
and background liver is seen. Dysregulation of fatty acid
oxidation and increased oxidative stress in hepatocytes may
lead to steatosis and subsequent tumorigenesis, with AMPK
pathway as one of the potential candidate connections and
targets in the cross-talk between metabolic processes and
cell proliferation regulations. Further studies are warranted
in patients with these genetic metabolic disorders for early
prevention and treatment of the liver neoplasms arising in
these patients.
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