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Summary A large number of fibroblast foci (FF) predict mortality in idiopathic pulmonary fibrosis
(IPF). Other prognostic histological markers have not been identified. Artificial intelligence (AI) offers
a possibility to quantitate possible prognostic histological features in IPF. We aimed to test the use of
AI in IPF lung tissue samples by quantitating FF, interstitial mononuclear inflammation, and intra-
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nishIPF study from the Sigrid Jusélius Foundation, the Helsinki University Hospital funds, the Nummela Sanatorium

The other authors declare that they have no duality of interest. The funding sources of the study had no role in study

erpretation of the data, or writing of the report. The corresponding author had full access to all the data in the study

sion to submit for publication.

ation Laboratory, Pulmonary Diseases, B410b, Haartman Institute, Haartmaninkatu 3, FI-00290, Helsinki, Finland.

sinki.fi (K. Mäkelä).
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alveolar macrophages with a deep convolutional neural network (CNN). Lung tissue samples of 71 pa-
tients with IPF from the FinnishIPF registry were analyzed by an AI model developed in the Aiforia�
platform. The model was trained to detect tissue, air spaces, FF, interstitial mononuclear inflammation,
and intra-alveolar macrophages with 20 samples. For survival analysis, cut-point values for high and
low values of histological parameters were determined with maximally selected rank statistics. Sur-
vival was analyzed using the Kaplan-Meier method. A large area of FF predicted poor prognosis in
IPF (p Z 0.01). High numbers of interstitial mononuclear inflammatory cells and intra-alveolar mac-
rophages were associated with prolonged survival (pZ 0.01 and pZ 0.01, respectively). Of lung func-
tion values, low diffusing capacity for carbon monoxide was connected to a high density of FF
(p Z 0.03) and a high forced vital capacity of predicted was associated with a high intra-alveolar
macrophage density (pZ 0.03). The deep CNN detected histological features that are difficult to quan-
titate manually. Interstitial mononuclear inflammation and intra-alveolar macrophages were novel
prognostic histological biomarkers in IPF. Evaluating histological features with AI provides novel in-
formation on the prognostic estimation of IPF.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Despite the recent update of the histological criteria of
idiopathic pulmonary fibrosis (IPF) [1], few prognostic
histological factors have been identified thus far. Fibroblast
foci (FF) are key histological features in IPF, which man-
ifests histologically as the usual interstitial pneumonia
(UIP) pattern. High numbers of FF have been associated
with worse outcomes for patients with IPF in several
studies [2e7], but some controversial results have also been
published [8e11].

Previously, inflammatory cells such as T lymphocytes
and intra-alveolar macrophages were considered essential
for the pathogenesis of IPF [12]. Currently, repetitive
alveolar injury and fibrotic repair of damaged tissue are
suggested to be hallmarks of IPF pathogenesis, whereas
inflammation has been considered an epiphenomenon [13].
Mild inflammation can exist in the UIP pattern, but it is
deemed an atypical feature [1]. The evidence for inflam-
mation in IPF pathogenesis is, however, controversial [13].
We have previously noted that abundant interstitial
inflammation is a common finding in lung tissue samples of
carefully re-evaluated patients with IPF [14]. In addition,
interobserver variation is substantial in the detection of
inflammatory cells [14,15]. Besides interstitial inflamma-
tion, intra-alveolar macrophages have been detected in IPF
samples [9,16], but very little is known of their clinical or
biological significance. Quantitating inflammatory cells
manually from lung tissue samples is time consuming,
inaccurate, and subject to intraobserver and interobserver
variation, providing an explanation for the scant histolog-
ical studies on inflammation in IPF.

The development of artificial intelligence (AI) enables
new approaches to image analysis. AI models have been
shown to recognize histological UIP pattern by using
genomic data from lung biopsies [17e19]. Radiological
findings can also be quantitated using automated image
analysis and have been associated with pulmonary function,
survival, and response to antifibrotic medication [20e22].
In a manner comparable to radiologists, an AI model can
classify fibrotic lung diseases according to high-resolution
computed tomography images [23]. AI models have been
used in the histology of experimental mouse models of
pulmonary fibrosis [24e26]. To our knowledge, histologi-
cal features of IPF samples have not been previously
studied using automated image analysis. Before developing
diagnostic AI models for the UIP pattern, the ability of AI
to identify specific histological features should be tested.

We hypothesize that automated image analysis can
count both interstitial and intra-alveolar inflammatory cells
in IPF lung tissue and that the numbers of inflammatory
cells have a prognostic value in IPF. We also aimed to test
the previous association between FF and prognosis of pa-
tients with IPF using the automated image analysis. Our
approach was to pilot an AI model with a small data set and
test its generalizability in slides that were not included in
the training data set. Using lung tissue samples of thor-
oughly characterized patients from the FinnishIPF registry
patients [27], we developed the AI model with a deep
convolutional neural network (CNN) in the Aiforia� plat-
form (Aiforia Technologies, Helsinki, Finland). Of the data
produced by the AI model, we analyzed the prognostic
significance of FF, interstitial mononuclear inflammation,
and intra-alveolar macrophages.

2. Materials and methods

2.1. Study population

The study population originated from the FinnishIPF
registry, which is a prospective, multicentre study of pa-
tients with IPF [27]. Respiratory medicine specialists or
multidisciplinary teams have re-evaluated diagnoses ac-
cording to the 2011 international diagnostic guidelines for
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Table 1 Patient characteristics.

Mean � SD or % n

Age at diagnosis (years) 61.5 � 10.4 71
Age at sample collection (years) 62.3 � 10.0 71
Age at death (years) 70.5 � 8.2 37
Age at transplantation (years) 56.8 � 8.3 17
Deaths (%) 52.1 37
Lung transplant recipients (%) 23.9 17
Follow-up time (months) 72.5 � 42.7 71
Sex
Male (%) 69.0 49
Female (%) 31.0 22

Smoking at diagnosis
Never (%) 36.6 26
Ex-smoker (%) 47.9 34
Current smoker (%) 15.5 11
Pack-years of smoking 22.3 � 12.4 40
BMI (kg/m2) 29.1 � 4.8 66

FVC% 75.6 � 16.7 66
DLCO% 56.3 � 16.0 67
6MWT (m) 424.7 � 170.5 17

The values were not available for all patients, and they were from the

time of diagnosis. For follow-up time, death or lung transplantation

was used as an endpoint event. Follow-up time for patients having no

endpoints was defined as the time interval between IPF diagnosis date

and 29 April 2019. Six-minute walk test (6MWT) was performed

without extra oxygen. BMI, body mass index; FVC%, forced vital

capacity of predicted; DLCO%, diffusing capacity for carbon mon-

oxide of predicted; 6MWT, 6-min walk test.
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IPF [27,28]. Participants have given written informed
consent, and the study has been reviewed and approved by
the Ethics Committees of the Finnish University Hospitals.
In January 2017, all patients with hematoxylin and eosin
(HE)estained histopathological samples from all five uni-
versity hospital districts were collected, resulting in 71 pa-
tients with IPF. The most representative slide revealing
typical histopathological features for UIP was selected for
each patient; of the 71 representative samples of patients,
62 were surgical lung biopsies (SLB, 87.3%), six explant
samples (8.5%), and three autopsy samples (4.2%). Patient
characteristics are shown in Table 1. This study included
slides of the patients that have been analyzed in our pre-
vious studies by the 2011 IPF diagnostic criteria [14,28,29].
All available lung tissue samples of 60 patients of this study
have been previously thoroughly analyzed by four pathol-
ogists [14]. The other eleven cases were collected after the
study [14]; however, pathologists have evaluated all avail-
able lung tissue samples in the clinical setting. For 60
cases, the most representative slide was chosen by a
consensus of two pathologists [14]. For the rest of the
cases, K.M. selected the most representative slide.
2.2. Automated image analysis with the AI model

All slides were digitally scanned with bright field using
Pannoramic 250 Flash II (3DHistech, Budapest, Hungary)
at 40� magnification, 0.12 mm/pixel resolution, and 40X/
0.95 NA objective. The scanned whole-slide images were
uploaded to Aiforia� image management and analysis
platform (Aiforia Technologies, Helsinki, Finland) and then
analyzed with an AI model developed with a deep CNN
and supervised learning. The AI model development fol-
lowed the previously described workflow [30,31]. In short,
after uploading the whole-slide digital images of the
scanned histological slides to Aiforia� platform, K.M.
reviewed all images and chose 20 images (28.2%, N Z 71)
for the AI model development. In the 20 images, K.M.
manually annotated representative morphological areas in
the images that were used for training the AI model. Ex-
amples of training areas and target feature annotations are
shown in Appendix 1. In practice, K.M. freely panned and
zoomed the whole-slide image and chose the representative
areas of morphological features, where the training areas
and feature labels were manually drawn. After each
training round, the AI model results were evaluated visu-
ally, old annotations were edited, and new annotations were
created. After that, a new training round was performed.
After five rounds of adding and modifying the annotations,
the final AI model was trained with 10 000 iterations. All
71 images were then analyzed with the final AI model.

For training the model, we chose the most representative
20 slides (28.2%, N Z 71). By choosing only part of the
slides as training data, we wanted to test if the AI model
could be able to analyze slides that it has not previously
encountered (51/71, 71.8%). Focusing on the sufficient
level of variation and the quality of the training annotations
with the iterative workflow of the model enabled the
training of the AI model with a small training data set. We
aimed at diverse training data; therefore, we chose slides
representing the morphologic variation, different qualities,
and staining intensities and from different laboratories. In
the training data, we also included slides with artefacts, for
example, blur, tissue folds, dust, and pathologist’s color
markers. We trained the AI model to separate artefacts from
the wanted histological features. We included explants
(nZ 4) and autopsy samples (nZ 2) for testing lung tissue
recognition, but for the quantitative analysis of FF, inter-
stitial mononuclear inflammation, and intra-alveolar mac-
rophages, we focused on SLBs (n Z 14).

We aimed to teach the AI model to recognize lung tis-
sue, air spaces, FF, interstitial mononuclear inflammation,
and intra-alveolar macrophages (Fig. 1). The receptive field
size (field of view) of the CNN and the surface areas of the
training annotations are shown in Table 2. As part of the



Fig. 1 Fibroblast foci (green mask), interstitial mononuclear inflammatory cells (blue mask), and intra-alveolar macrophages (orange
mask) recognized by the artificial intelligence model. Black arrows point to examples of fibroblast foci, white arrows to interstitial
mononuclear inflammatory cells, and black arrowheads to intra-alveolar macrophages. The scale bar in the first picture is 200 mm, in the
second picture 100 mm, and in the third picture 50 mm. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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supervised learning, we annotated manually training areas
of each feature (Appendix 1). The annotations created the
model’s ground truth, that is, the data of which the model
learned to identify the target features. To avoid annotations
conflicting with each other, we decided that only K.M.
made all of the annotations. In the creation of the ground
truth, K.M. consulted M.I.M., a pathologist experienced in
pulmonary pathology, and H.-K.S., a veterinary pathologist
experienced in the use of Aiforia�. The annotations were
based purely on morphology. Consistency was the key
element in the training of the AI model. We accepted only
high-quality and high-confidence features as training data
and let the model decide on borderline cases. For forming
the ground truth, the model was taught target features by
characteristic examples but also by numerous annotations
that did not represent the feature. In training features with a
characteristic morphology, we followed definitions of each
feature described in Table 2. During the development of the
model, we noticed that teaching the difference between the
classical definition of FF and intraluminal fibrosis/
organizing pneumonia (OP) was difficult. As FF and OP
have quite a similar morphology, conflicting training, that
is, similar features marking two different things, led to the
malfunction of the model. As OP was a rare feature in our
training data [14], teaching the difference with a sufficient
amount of examples was not an option. Therefore, we
accepted OP-like features as FF, as this enabled us the
better function of the model. We also trained the AI model
to exclude features that resembled our target features; for
example, the model was trained that the loose fibrosis
around the vessels, perivascular fibrosis, was not FF. After
each iteration of the training, we visually evaluated the
ability of the AI model to recognize wanted features from
the training areas. Based on our observations on the visual
results after each iteration of the training, we improved the
training data by correcting annotation errors made earlier.
We also expanded the training data by annotating features
the model had not learned yet based on the visual feedback.
K.M. reviewed the training results and improved the an-
notations with H.-K.S.



Table 2 The definition, the field size, and the sum of the
surface area of training annotations of each histological feature
taught to the artificial intelligence model.

Definition Field
size
(mm)

Training
data
(mm2)

Lung tissue The complete tissue area
on the slide, including
both the interstitium and
the air spaces.

1000 836

Interstitium The lung parenchyma
without air spaces.

80 35

Air spaces Areas inside bronchi,
bronchioles, alveolar
spaces, and honeycombing
cysts.

80 17

Fibroblast foci Myxoid, pale-staining
subepithelial loose fibrosis
also including intraluminal
foci. Loose fibrosis away
from alveolar areas and
perivascular fibrosis were
excluded.

20 1.6

Interstitial
mononuclear
inflammatory
cells

Small cells with round,
dark nuclei and scant
cytoplasm assumed to be
lymphocytes or plasma
cells. Lymphocytes and
plasma cells inside
fibroblast foci were also
counted. Interstitial
inflammatory cells
morphologically
resembling neutrophils,
eosinophils, macrophages,
fibrocytes, or myocytes
were not counted.

20 0.03

Intra-alveolar
macrophages

Macrophages inside air
spaces, including
macrophages with both
fine and coarse
haemosiderin pigment,
giant cells, and foamy
macrophages. Intra-
alveolar cells that were
morphologically more
suitable for red cells,
lymphocytes, neutrophils,
eosinophils, or epithelial
cells were excluded.

10 0.07
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The model consisted of four layers, each being an in-
dependent neural network, that were chained as an analysis
pipeline. The first layer marked the lung tissue, and the
second one separated air spaces from the interstitium. In the
interstitium, the third layer recognized FF and interstitial
mononuclear inflammation. In the air spaces, the fourth
layer recognized intra-alveolar macrophages. The layer-
based structure of the model enabled us to set the optimal
field of view for each layer, based on the feature
morphology. The total area of all whole-slide images in the
training data set was 16 960 mm2. Training areas covered
4.9% of that area in the layer of tissue, 0.3% in the layer of
the interstitium and alveolar spaces, 0.06% in the layer of
FF and interstitial mononuclear inflammatory cells, and
0.01% in the layer of intra-alveolar macrophages. As we
had considerable variation represented in the training data
and aimed to avoid the creation of conflicting data, we used
only a minimal digital augmentation of the training data:
size scaling between �1 and 1.01%, 1% aspect ratio
change, 1% shear distortion, luminance change between �1
and 1%, contrast change between �1 and 1.01%, 1% white
balance change, and noise level of 0 units.

After the development of the AI model, we analyzed all
71 samples with the AI model. The AI model produced data
of the surface areas and counts of every histological
feature. The area of each feature was quantified as a per-
centage in relation to the whole tissue area (area%), and the
density of each feature was determined by dividing the
counts by whole tissue area.
2.3. Validation of the AI model

Previous studies have demonstrated the prognostic value
of FF [2e7] and the quantitation of FF using image anal-
ysis software [4,5,7]. Hence, we compared the FF detection
by the AI model to the pathologist’s manual annotations of
FF in 30 validation areas. Of 71 slides included in the
analysis, 51 were held out as a validation set and excluded
from the training data. From these, we randomly selected
an internal validation set of 30 slides. Of each selected
slide, we identified areas that consisted of at least one FF. A
rectangular area was created around the FF and surrounding
tissue so that at least half of the area was tissue adjacent to
FF. Blinded to the results analyzed by the AI model, a
pathologist experienced in pulmonary pathology annotated
FF in the validation areas. The pathologist’s annotations
that formed the ground truth were compared to the model’s
analysis results both statistically and visually. False posi-
tive, false negative, error, precision, sensitivity, and F1
score values were calculated for all 30 validation regions.
For the values of false positive, false negative, and error, the
model’s analysis results per total area of all pathologist’s
annotations in 30 validation areas were calculated. Error
was the sum of false positive and false negative. Precision
was calculated as the model’s analysis result area found
within the pathologist’s annotation area per total area of the
model’s analysis result area in a single validation area.
Sensitivity was calculated as the pathologist’s annotation
area found by the model’s analysis per total area of pa-
thologist’s annotation in a single validation area. F1 score
represented the harmonic mean of precision and sensitivity.



Table 3 Minimum, maximum, median, and cut-point values of the areas and counts of fibroblast foci, interstitial mononuclear in-
flammatory cells, intra-alveolar macrophages, and air spaces and fibroblast focus/interstitial mononuclear inflammatory cell index values.

Minimum (% or 1/
mm2)

Maximum (% or 1/
mm2)

Median (% or 1/
mm2)

Cut-point value (% or 1/
mm2)

FF area (mm2) 0.05 (0.1 , 10�3) 29.5 (69.5 , 10�3) 3.0 (8.5 , 10�3) 4.3 (11.3 , 10�3)
FF count 733 (2) 114,110 (238) 21,355 (66) 31,240 (78)
Interstitial mononuclear inflammatory cell area

(mm2)
0.06 (0.3 , 10�3) 23.6 (73.9 , 10�3) 2.3 (7.7 , 10�3) 1.4 (3.2 , 10�3)

Interstitial mononuclear inflammatory cell
count

3544 (20) 329,567 (640) 79,131 (253) 64,515 (115)

Intra-alveolar macrophage area (mm2) 0.05 (0.1 , 10�3) 32.3 (95.4 , 10�3) 1.3 (5.0 , 10�3) 0.7 (2.6 , 10�3)
Intra-alveolar macrophage count 2736 (7) 233,392 (454) 37,498 (127) 18,385 (49)
Air space area (mm2) 11.9 (5.5) 287.3 (58.2) 97.5 (33.0) 73.3 (23.6)
FF/interstitial mononuclear inflammatory cell

index value
0.03 14.9 1.2 1.4

For areas, percentages (%) of tissue area are expressed in brackets, and for counts, densities (1/mm2) are expressed in brackets. Cut-point values for high

and low values were determined with maximally selected rank statistics. FF, fibroblast foci.
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For validation areas, visual confusion matrix data are
available in Appendix 2.

In previous studies, AI models have been shown to
recognize inflammatory cells in cancer tissue samples
[32e37]. We evaluated the performance of the AI model on
inflammatory cell recognition visually.

We tested the reproducibility of the AI model’s results
by running the AI model three times in a subanalysis of five
slides and compared the results of three separate analyses
with each other.
2.4. Statistical analysis

We used IBM SPSS Statistics for Windows, version 25.0
(IBM Corp., Armonk, NY, USA). For determining whether
the data were normally distributed, we used Kolmogorov-
Smirnov and Shapiro-Wilk tests. For correlations, Spear-
man’s correlations were used. For normally distributed
data, a t-test was used in the comparison of two groups. For
survival analysis, cut-point values for air spaces, FF,
interstitial mononuclear inflammatory cells, and intra-
alveolar macrophages were determined with maximally
selected rank statistics [38]. For cut-point values, the R
package maxstat, version 0.7e25 [39], in R software for
Windows, version 3.5.3 (R Foundation for Statistical
Computing, Vienna, Austria), was used. Survival was
analyzed using the Kaplan-Meier method, and the log-rank
test determined its significance. Survival was defined as the
time between IPF diagnosis date and the date of an
endpoint event, which was defined as death or lung trans-
plantation. For patients alive without lung transplantation at
the end of the follow-up, the follow-up time was defined as
the time between IPF diagnosis date and 29 April 2019.
Two-sided p-values � 0.05 were considered statistically
significant.
3. Results

3.1. Observations on the training of the AI model

In the training of the AI model, the correct recognition
of air spaces was challenging in the samples that had large
cystic cavities resembling the background of the slide. We
solved the problem by increasing the field of view of the
neural network. Training the model to detect inflammatory
cells in both the interstitium and the air spaces was a
relatively simple task, whereas FF, being more complex
structures, required more training data (Table 2) due to the
large variance of the HE staining intensity between slides.
Although we had taught the model to separate loose fibrosis
from FF, the model also recognized smaller areas of FF-like
spots as FF.

3.2. Histological features and survival

For cut-point values used in the survival analysis, refer
Table 3. First, we aimed to validate previous results of the
number and area of FF and patient survival in our model. A
high area% of FF (30/71) and a high density of FF (29/71)
were associated with shortened survival (pZ 0.01, Fig. 2A,
and p Z 0.02, respectively). Second, we analyzed the
number of interstitial mononuclear inflammatory cells. A
high area% of interstitial mononuclear inflammatory cells
(60/71) and a high interstitial mononuclear inflammatory
cell density (62/71) were associated with prolonged sur-
vival (p Z 0.01, Fig. 2B, and p Z 0.04, respectively). A
high area% of intra-alveolar macrophages (51/71) was
associated with better survival than low intra-alveolar
macrophage values (p Z 0.01, Fig. 2C). To evaluate the
relationship of FF and interstitial mononuclear inflamma-
tory cells in individual samples, the area of FF was divided
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Fig. 2 Kaplan-Meier survival estimates for patients with idiopathic pulmonary fibrosis according to the areas of fibroblast foci (FF) (A),
interstitial mononuclear inflammation (B), intra-alveolar macrophages (C), and FF/interstitial mononuclear inflammatory cell index values
(D). The surface areas of each feature were adjusted to the whole tissue surface areas.
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by the area of interstitial mononuclear inflammatory cells
to create an FF/interstitial mononuclear inflammatory cell
index value. A high index value (30/71) was associated
with shorter survival (pZ 0.001, Fig. 2D). The results were
similar when only SLBs (n Z 62) were taken into account.

3.3. The connection between clinical parameters
and histological features

The area% of alveolar spaces was higher in SLBs than in
explant and autopsy samples (62/71, median of 33.0%,
range of 7.6%e58.2% vs 9/71, 24.7%, 5.5%e39.0%,
Mann-Whitney U test, p Z 0.04). Regarding the other
histological parameters, no significant differences between
sample types existed.

A high density of FF in the lung tissue associated with a
low diffusing capacity of predicted (DLCO%) at the time of
diagnosis compared with a low FF density (29/67, mean of
51.5% � 15.8% vs 38/67, 59.9% � 15.3%, t-test,
p Z 0.03). Patients with a high area% of intra-alveolar
macrophages in lung tissue samples had a higher forced
vital capacity of predicted (FVC%) at the time of diagnosis
than patients with a sample with a low intra-alveolar
macrophage area (46/66, mean of 78.6% � 16.8% vs 20/
66, 68.8% � 14.7%, t-test, p Z 0.03). The results were
similar when only SLBs (n Z 62) were taken into account.

All current smokers had a high density of intra-alveolar
macrophages (11/11, 100.0%) compared with ever-smokers
(24/34, 70.6%) and never-smokers (23/26, 88.5%, Fisher’s
exact test, p Z 0.06). FF or interstitial mononuclear in-
flammatory cell amounts did not correlate with smoking
status (p > 0.05).

3.4. Quantitated histological features

Refer Table 3 for minimum, maximum, and median
values of FF, interstitial mononuclear inflammatory cells,
and intra-alveolar macrophages.

3.5. Correlations between histological features

Refer Table 4 for correlations between the histological
features analyzed by the AI model.

3.6. Validation of the AI model

The 30 selected validation areas, the pathologist’s an-
notations of FF, and the results analyzed by the AI model



Table 4 Spearman’s correlation coefficients between the densities of fibroblast foci, interstitial mononuclear inflammation, and intra-
alveolar macrophages and alveolar space area in relation to the whole tissue area.

FF density (1/
mm2)

Interstitial mononuclear inflammation
density (1/mm2)

Intra-alveolar macrophage density
(1/mm2)

FF density (1/mm2) 0.460, p < 0.001 0.025, p Z 0.833
Mononuclear inflammation density

(1/mm2)
0.320, p Z 0.007

Alveolar space area (%) �0.413,
p < 0.001

�0.347, p Z 0.003 0.368, p Z 0.002

Densities were counted by the absolute count of the feature in relation to the whole tissue area. Alveolar space area was counted in relation to the whole

tissue. Correlations were similar when only surgical lung biopsies were taken into account. FF, fibroblast foci.

Table 5 The results of the confusion matrix for 30 selected
validation areas. The results of the artificial intelligence model
were compared against the annotations of a pathologist.

Validation
annotation
positive

Validation
annotation
negative

Total

AI model
result
positive

True positive
0.480 mm2

False positive
0.516 mm2

0.996 mm2

AI model
result
negatives

False negative
0.371 mm2

True negative
9.709 mm2

10.08 mm2

Total 0.851 mm2 10.225 mm2 11.076 mm2

AI, artificial intelligence.
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are shown in Appendix 3. The median area used in the
validation was 0.03 mm2 (range of 0.002e0.1 mm2). The
median values for false positive, false negative, error, pre-
cision, sensitivity, and F1 score were 1.4% (range of 0%e
6.7%), 1.0% (range of 0.1%e5.2%), 2.9% (range of 0.6%e
9.9%), 54.5% (range of 7.3%e98.2%), 65.2% (range of
7.0%e87.3%), and 55.7% (range of 7.4%e85.5%),
respectively. The results of the confusion matrix for all 30
validation areas are shown in Table 5. The visual confusion
matrix data of individual validation areas are shown in
Appendix 2. By a visual evaluation, the AI model’s per-
formance in most validation areas seemed acceptable,
although the model did not properly function in a minority
of the slides (Appendix 3). Most of the small cells with
round, dark nuclei and scant cytoplasm were recognized as
interstitial mononuclear inflammatory cells in all of the
validation areas (Appendix 3).

In a subanalysis of five slides, the values of each fea-
ture’s measurements were consistent between three sepa-
rate analyses of the AI model (Appendix 4).
4. Discussion

We analyzed lung tissue samples of patients with IPF
using a deep CNN aiming to evaluate AI’s ability to find
histological features that could have a prognostic value. In
a well-characterized patient population with IPF and re-
evaluated diagnoses, the AI model identified potential
novel lung tissue biomarkers to estimate prognosis and
disease severity. Although the role of SLBs in the diagnosis
of IPF has decreased due to the evolution of radiology, SLB
is still recommended in unclear cases [1]. In addition to
diagnostic values, more prognostic information from SLBs
could be used with the use of AI.

4.1. Interstitial mononuclear inflammation and
survival

We found that low amounts of interstitial mononuclear
inflammation are associated with shorter survival of pa-
tients with IPF. The finding contradicts the current
perception of inflammatory cells having a minimal role in
the pathogenesis of IPF. Some evidence against our result
exists. A high amount of T lymphocytes has been associ-
ated with poor survival [40]. In the explant samples of
patients with a rapidly progressing form of IPF, all types of
inflammatory cells have been seen to increase [41]. In two
other larger patient cohorts, no such associations were re-
ported between interstitial lymphocytic inflammation and
survival [3,9]. Nicholson et al. [3] demonstrated an asso-
ciation between high interstitial mononuclear inflammation
and a decline in FVC%, whereas Collard et al. [9] showed
an association between high interstitial mononuclear
inflammation and improvement in FVC%. Regarding the
distribution of interstitial mononuclear inflammation, a
high inflammatory cell density has been seen in both areas
of dense fibrosis [40] and areas of loose fibrosis associated
with preserved alveolar epithelium [42]. In a recent study,
the genes associated with mononuclear cell migration were
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upregulated in the areas of the preserved alveolar epithe-
lium, whereas in the areas of dense fibrosis, a down-
regulation was noted [43]. Our novel finding indicates that
the use of AI in precise quantitation of interstitial inflam-
mation could have an impact on determining the prognosis
of patients with IPF.

4.2. FF, intraluminal fibrosis, and survival

We confirmed that a high amount of FF is a marker for
poor prognosis in patients with IPF [2e7]. The associa-
tion of FF with shorter survival, however, has not been
shown in all studies [8e11]. Our AI model also identified
intraluminal fibrosis/OP as FF. We accepted this due to
technical reasons, and in this study population, OP was a
rare finding [14]. The model also recognized FF-like
spots as FF. The field of view that was used in the AI
model’s FF and interstitial mononuclear inflammation
layer was much smaller in comparison with the visual
analysis of the human eye. This partly explains the
counting of FF-like spots toward the amount of FF and
reflects the difference in the visual analysis between the
human eye and AI. Methodological differences in the
counting of the OP-like pattern and other FF-like areas
toward the FF score could partly explain the controversial
results among studies. Similarly to our method, King
et al. [2] did not differentiate intraluminal fibrosis from
FF, whereas some studies without an association between
FF and survival deliberately excluded OP from the FF
score [9,10]. Although OP is not considered a typical
finding for UIP [1], it has been reported to exist in IPF
samples [9,14,44]. The acute exacerbation of IPF can
manifest histologically as OP or extensive FF super-
imposed on the UIP pattern [45]. Compared with the
samples from patients with cryptogenic OP, which is
characterized by reversible disease course, decreased
vascularity and apoptosis of intraluminal fibrosis have
been reported in the samples from patients with IPF
[46,47]. Both OP and FF have been associated with a
decline in FVC% at six-month follow-up [9]. In IPF
samples, the use of pirfenidone and nintedanib has been
reported to decrease OP compared with untreated patients
[48]. In SLBs of stable patients with IPF, minute lesions
of alveolar damage have been associated with later
mortality and acute exacerbations [49]. Nodular granula-
tion tissue and large FF coexisted with these lesions [49].
As our AI model also detected intraluminal fibrosis and
FF-like spots besides FF, our result could support the
theory of all fibrosing processes worsening the prognosis
of patients with IPF.

4.3. Intra-alveolar macrophages and survival

Intra-alveolar macrophages are a common finding in
lung tissue samples, and they are known to have both
profibrotic and antifibrotic properties in fibrotic lungs [13].
In UIP samples, proliferative activity of intra-alveolar
macrophages has been higher relative to controls [50].
We observed that high amounts of intra-alveolar macro-
phages were associated with prolonged survival and higher
FVC% predicted at the time of diagnosis. The prognostic
effect of intra-alveolar macrophages has not been previ-
ously shown [3,9]. Recently, monocytes in the peripheral
blood, which are progenitor cells for intra-alveolar mac-
rophages, have been associated with poor outcomes for
patients with IPF [51]. One reason for sparse histological
studies on intra-alveolar macrophages in the lungs of pa-
tients with IPF could be the difficulty of differentiating
intra-alveolar macrophages from interstitial ones by
immunohistochemistry-based methods. The ability of our
model to separate alveolar spaces from the interstitium
could be especially useful in the evaluation of alveolar
pathology in IPF.

4.4. Strengths and limitations

The most significant benefit of our AI model was the
capability to accurately count the inflammatory cells in
both intra-alveolar spaces and the interstitium, which has
been practically impossible in manual methods. In the
subanalysis of five slides, the measurements made by the
AI model were consistent, which is a benefit in comparison
with manual methods that are often prone to intraobserver
variation. Technically, inflammatory cells were the easiest
feature to train for the AI model. In learning some features,
the model had occasional difficulties: especially in recog-
nition of air spaces, which is a simple task for the human
eye, and in recognition of FF. One explanation is that the
size and conformation of air spaces and FF are more var-
iable than those of inflammatory cells, creating a challenge
in the adjustment of the field size. Besides, the morphology
of FF is more variable and complex than that of inflam-
matory cells; FF is a structural element of lung tissue
composing of myofibroblasts, endothelial, epithelial, and
inflammatory cells, as well as abundant extracellular ma-
trix. Visually, the AI model functioned the best when
analyzing slides having a similar intensity of HE staining
than the training data. Before implementing AI across
different laboratories, taking into account all variations in
intensities of HE staining and artefacts of real-life slides is
also mandatory. Owing to the preliminary nature of the
study, we selected one representative slide for each patient
for digitization, which may cause a selection bias. The
small training set used in this study can lead to data over-
fitting, that is, the model functions well for training data but
underperforms with the data not included in the training.
Data overfitting is a common problem in the CNN and can
partly explain why the model did not recognize a minority
of FF. Data overfitting can often be managed with a bigger
training set. In this study, we had a limited number of
samples, and we chose to preserve an internal validation set
(51 samples out of 71) as large as possible. In addition,
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more extensive use of digital augmentation could help with
data overfitting. Our study also lacks an external validation
set, which is a significant limitation. Furthermore, a truly
generalizable AI model for diagnostic purposes would
require substantially larger data sets both for AI model
training and validation and several pathologists as vali-
dators. Creating an AI model suitable for clinical use,
however, was beyond the scope of our pilot study. Never-
theless, we believe that AI is an advantage in the analysis of
inflammation in the lung tissue and that the results of our
study gave a reason to assume that the amount of inflam-
matory cells has an impact on the prognosis of patients with
IPF. The routine use of AI in the histopathological analysis
of IPF samples, however, will require additional studies.

5. Conclusions

Even an AI model developed with a small sample size
can detect specific histological features in the IPF lung
tissue samples that it has not previously encountered. A low
amount of interstitial mononuclear inflammation and intra-
alveolar macrophages was associated with poor prognosis
in a study population with confirmed IPF diagnoses, a
finding supporting the theory that inflammation has a sig-
nificant role in IPF pathogenesis. The AI model confirmed
the connection between high FF amounts and poor prog-
nosis for patients with IPF. Automated image analysis
could provide new possibilities for investigating the re-
lationships of IPF histology and clinical parameters. In the
future, AI could be a novel tool for the pathologists in the
histological diagnosis of IPF and other interstitial lung
disorders.
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