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ABSTRACT

One mechanism by which lymphoid malignancies resist standard apoptosis-intending (cytotoxic) treatments is genetic attenuation of the p53/p16-CDKN2A
apoptosis axis. Depletion of the epigenetic protein DNA methyltransferase 1 (DNMT1) using the deoxycytidine analog decitabine is a validated approach
to cytoreduce malignancy independent of p53/p16. In vivo decitabine activity, however, is restricted by rapid catabolism by cytidine deaminase (CDA). We,
therefore, combined decitabine with the CDA-inhibitor tetrahydrouridine and conducted a pilot clinical trial in patients with relapsed lymphoid malignan-
cies: the doses of tetrahydrouridine/decitabine used (~10/0.2 mg/kg orally (PO) 2x/week) were selected for the molecular pharmacodynamic objective
of non-cytotoxic, S-phase dependent, DNMT1-depletion, guided by previous Phase 1 studies. Patients with relapsed/refractory B- or T-cell malignancies
(n=7) were treated for up to 18 weeks. Neutropenia without concurrent thrombocytopenia is an expected toxicity of DNMT1-depletion and occurred
in all patients (Grade 3/4). Subjective and objective clinical improvements occurred in 4 of 7 patients, but these responses were lost upon treatment
interruptions and reductions to manage neutropenia. We thus performed parallel experiments in a preclinical in vivo model of lymphoma to identify reg-
imen refinements that might sustain DNMT1-targeting in malignant cells but limit neutropenia. We found that timed-alternation of decitabine with the
related molecule 5-azacytidine, and combination with inhibitors of CDA and de novo pyrimidine synthesis could leverage feedback responses of pyrim-
idine metabolism to substantially increase lymphoma cytoreduction but with less neutropenia. In sum, regimen innovations beyond incorporation of a
CDA-inhibitor are needed to sustain decitabine DNMT1-targeting and efficacy against chemo-resistant lymphoid malignancy. Such potential solutions were

explored in preclinical in vivo studies.

© 2020 Elsevier Inc. All rights reserved.

Introduction

Chemotherapeutic agents that induce apoptosis confer favorable
clinical outcomes for many patients with lymphoid malignancies.
However, once such patients develop relapsed or refractory dis-
ease, outcomes are generally poor and require intensive manuev-
ers, such as stem cell transplantation. Salvage treatments for this
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patient population should address mechanisms of resistance to ini-
tial treatment. One mechanism-of-resistance is inactivation of the
master regulators of apoptosis, p16/CDKN2A and TP53 [1-8], by mu-
tation, deletion or epigenetics that confers resistance to multiple
lines of therapy that share apoptosis (cytotoxicity) as a common
final pathway of action (reviewed in [9-14]). Treatments that do
not require the p53/p16-CDKN2A apoptosis-axis are hence needed.

DNA methyltransferase 1 (DNMT1) is an enzyme that transfers
methyl groups to specific cytosine nucleotides of genomic DNA,
an epigenetic modification linked with gene repression. DNMT1
is recruited to the DNA replication fork during cell S-phase, to
recapitulate onto the newly synthesized DNA strand the methy-
lation pattern of the parental strand, maintaining this repression
mark through cell division. Additionally, DNMT1 is recruited by
sequence-specific DNA-binding proteins (transcription factors) as a
coregulator (corepressor), to in this way dynamically mediate gene
repression vs activation [15-17]. DNMT1 can be depleted from
dividing cells using the deoxycytidine analog decitabine or cyti-
dine analog 5-azacytidine. Depletion of DNMT1 has been validated
in pre-clinical studies of resistant/relapsed T and B-cell malig-
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nancies [18-28] as being capable of activating maturation-related
programs (eg, p27/CDKN1B) [18,29] that terminate malignant
cell replication via a p53/p16-independent pathway (reviewed in
[30]). Both deoxycytidine and 5-azacytidine are prodrugs that, in
order to deplete DNMT1, must be processed through pyrimidine
metabolism into a deoxycytidine triphosphate analog which is
incorporated into the newly synthesized DNA strand during S-
phase. Rate-limiting decitabine and 5-azacytidine processing are
deoxycytidine kinase (DCK) and uridine cytidine kinase 2 (UCK2)
respectively. Hematopoietic malignancies highly express DCK and
UCK2, encouraging several prior applications of these agents to
myeloid and lymphoid neoplasms [31,32].

The results of these early phase clinical trials in lymphoid ma-
lignancies have been mostly disappointing, with response rates
generally <10% [33-39], except in angioimmunoblastic T-cell lym-
phoma [40], a rare subtype of T-cell malignancy. This disconnect
between preclinical and clinical results could reflect another as-
pect of decitabine and 5-azacytidine metabolism: rapid catabolism
in vivo, into uridine counterparts that do not deplete DNMT1, by
the pyrimidine metabolism enzyme cytidine deaminase (CDA). CDA
is highly expressed in liver, gastrointestinal and reticuloendothelial
tissue such as the spleen, and shortens the half-life of decitabine
and 5-azacytidine in vivo to approximately 10 minutes compared
to 12 hours in vitro [41,42]. Severely abbreviated plasma half-lives
are problematic as DNMT1-depletion by decitabine/5-azacytidine is
S-phase, and hence exposure-time, dependent. High CDA expres-
sion in intestines and liver limit decitabine and 5-azacytidine oral
bioavailability [43]. CDA, less expressed in rodents than in pri-
mates, furthers the disconnect between pre-clinical and clinical
data [44,45].

We therefore conducted a pilot clinical trial of oral decitabine
combined with an inhibitor of CDA, tetrahydrouridine (THU), to
treat relapsed T- and B-cell malignancies, a first such evaluation.
Doses of decitabine ingested orally were ~20% of doses approved
for intravenous infusion to treat myeloid malignancies, and chosen
to produce a decitabine concentration-time profile when combined
with oral THU -low Cpax, ~2 hour plasma ty,- ideal for noncyto-
toxic DNMT1-depletion, as demonstrated in a prior Phase 1 evalu-
ation [43,46,47]. Several patients with relapses after several lines
of standard therapy benefitted subjectively and objectively from
this treatment, but these benefits were lost upon decitabine dose
holidays and reductions to manage treatment-induced neutropenia.
We therefore also conducted parallel preclinical studies of alterna-
tive decitabine and 5-azacytidine schedules to leverage interactions
with pyrimidine metabolism [48], and identified candidate, clini-
cally relevant solutions to increase tumor responses and decrease
neutropenia.

Methods
Study design

This was a single-arm, open-label, pilot/proof-of-concept clini-
cal trial of oral decitabine/THU in patients with T- and B-cell ma-
lignancies that had progressed on one or more lines of systemic
therapy. This overall design was not altered during the course of
the study.

Patient population

This clinical trial was conducted under an Investigational New
Drug number from the US FDA, reviewed and approved by the
Cleveland Clinic Institutional Review Boards, and funded via phi-
lanthropy to Cleveland Clinic including from the Leukemia and
Lymphoma Society. Written informed consent was obtained prior
to treatment in all patients, and all research was conducted within

the principles expressed by the Declaration of Helsinki. The study
was registered on clinicaltrials.gov: NCT02846935. The treatment
population was adult (>18 years of age) patients with histolog-
ically confirmed refractory/relapsed lymphoid malignancies, with
progression of disease on one or more prior lines of systemic ther-
apy, measurable disease per response evaluation criteria in solid
tumors and ECOG performance status 0-2.

Interventions

Decitabine and THU drug substance were synthesized by Ash
Stevens (Detroit, Michigan) and drug product was formulated by
KP Pharmaceutical Technologies (Bloomington, IN). Drugs were dis-
pensed in plastic bottles at 4°C. Bottles were opened after equi-
libration to room temperature. An oral THU dose of ~10 mg/kg
was ingested 60 minutes before oral decitabine ~0.2 mg/kg twice a
week on consecutive days. THU was supplied as 250 mg/capsules,
and decitabine as 5 mg/capsules. Patients weighing 40 to 60 kilo-
grams (kg) were given 2 capsules of each drug, 61 to 80 kg 3 cap-
sules of each drug and 81 kg or higher 4 capsules of each drug.
Patients were instructed to take the decitabine capsules ~60 min-
utes after taking the THU capsules, to generate sufficient time for
the intended biological effect of THU of systemic CDA-inhibition.
The rationale for the regimen design is shown figuratively (Fig. 1).

For patients with rapidly progressive disease that might benefit
from a more intense period of initial therapy, the treatment pro-
tocol allowed an induction phase in which drugs were taken for
5 consecutive days (eg, Monday-Friday) in week 1, to be repeated
in week 2 if no grade 3 or higher hematologic toxicities occurred.
From week 3 onward, drugs were ingested on 2 consecutive days
at the same doses, if no grade 3 or higher hematologic toxicities
were noted.

Biological mechanisms predict that neutropenia will be prob-
lematic, so dose reductions for this were built into the protocol
from the beginning: neutrophils <0.5 x 10°/L would trigger an in-
terruption of study drug until recovery of neutrophil counts to
>1.0 x 109/L then resumption at a reduced dose (reduction by 1
in the number of capsules of each drug ingested).

Outcomes

The primary end-point was tumor objective response [49]. Sec-
ondary end-points included tolerability and safety assessment by
toxicity characterization using CTCAE v4.

Sample size

The study planned to enroll patients with 3 separate bio-
logic/histologic subsets of lymphoid malignancy: (1) T-cell lym-
phoma, (2) Aggressive B-cell lymphoma, (3) Indolent B-cell lym-
phoma. The study was terminated after enrolling and treating 3
patients with T-cell lymphoma, 4 with aggressive B-cell lymphoma,
and 0 patients with indolent B-cell lymphoma (n=7). All 7 treated
patients were analyzed with their data reported here.

Clinical pathology tests

Blood counts and blood chemistries were standard clinical
pathology tests through the CLIA-certified Clinical Pathology Lab-
oratory at the at the Cleveland Clinic.
Preclinical in vivo studies of resistant T-cell malignancy

All experiments were approved by the Cleveland Clinic IACUC

and followed approved procedures. A xenotransplant model of pe-
ripheral T-cell malignancy was derived from a patient with mycosis
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Fig. 1. Rationale for this treatment regimen for relapsed lymphoid malignancy.

fungoides/Sezary’s disease relapsed after romidepsin, photophere-
sis, and mogamulizumab. These cells were subcutaneously injected
into the right and left flanks of 6- to 8-week-old immunocom-
promised NSG mice (0.1 x 106 cells per injection). Mice were ran-
domized to the treatment groups, and tumor volume was assessed
by caliper measurement twice weekly throughout the study us-
ing the equation: volume (mm3)=Ilong (mm) x wide [2] (mm)/2.
Mice were treated with (1) subcutaneous vehicle 2 x/week; (2) in-
traperitoneal romidepsin 1 mg/kg on day 1, 4, 12, 17; (3) intraperi-
toneal leflunomide 20 mg/kg on day 1 and day 4 of each week;
(4) intraperitoneal THU 10 mg/kg and subcutaneous decitabine 0.1
mg/kg on day 2 of each week together with THU and subcutaneous
5-azacytidine 1 mg/kg on day 5 of each week; (5) a combina-
tion of leflunomide and THU/decitabine/5-azacytidine. Mice body
weights were recorded weekly and weight percentage during treat-
ment was calculated as 100 x weight/initial weight. Animals were
closely monitored and euthanized for signs of toxicity or distress
(as defined in the Animal Protocol) or tumor volume >1000 mm?3.
Euthanasia was by CO, inhalation followed by cervical dislocation.

Statistics

Preliminary efficacy signal was to be evaluated in 3 cohorts
with differing biology: indolent B-cell lymphoma/CLL; aggressive
B-cell lymphoma and T cell lymphoma, with the null hypothe-
sis that the overall response rate is 5% or less versus the alter-
native that the response rate is 30% or greater. With 12 patients
per biologic subset enrolled in this Proof of Concept trial, with al-
pha=0.05 and power of 80%, if 3 or fewer individuals of the 12 pa-
tients entered achieve an objective response, the treatment would

not be considered promising for further study (planned sample
size n =36, actual sample size n=7 [indolent B-cell lymphoma/CLL
n=0; aggressive B-cell lymphoma n=4; T cell lymphoma n=3).
Patient and disease characteristics are summarized descriptively
and graphical displays show data for individual patients. Distribu-
tions of dose and time on treatment are also described. All statis-
tical tests are 2-sided.

All patients enrolled into the study are included in the analyses.

Results
Patient flow and characteristics

Seven patients were screened, eligible, and enrolled at Cleve-
land Clinic with the first patient starting study drug in May, 2017
and the last patient receiving the last dose of study drug in Jan,
2018. All patients received the intervention (Fig. 1). Results from all
patients were analyzed. There were 4 males and 3 females. Their
median age was 70 years (range 63-80) (Table). Four had aggres-
sive B-cell malignancies and 3 had peripheral T-cell malignancies
(Table). All patients had disease that had relapsed after a median
of 4 lines of prior therapy (range 2-9) (Table). All patients had
substantial baseline subjective and objective evidence of disease,
at nodal and/or extranodal sites, and elevated baseline LDH levels
(Table).

Adverse events
The only adverse event definitely attributed to study treatment

was neutropenia: grade 3 or 4 neutropenia occurred in all 7 pa-
tients (Fig. 3).
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Baseline characteristics of study patients.

f Age, Dx Disease Prior treatments’ Clinical baseline Best clinical response LDH (baseline/ Oral decitabine
sex status Subjective Subjective best) dose mpk
2x[wk (+THU)
Objective Objective
1 63M HL, DLBCL 8th Relapse  ABVD; Brentuximab; R/ICE;  Fatigue; SOB at rest All symptoms worse 267/ Wk 1-3: 0.2
ASCT (Bu/Cy/VP); (needing 3 L/min (terminal respiratory Not done
R/Gemcitabine; supplemental 0,); failure)
R/Vinorelbine; Ibrutinib; Cough
IMGN529
Lymphadenopathy - Not done
Multi-Level; Lung
Nodules/Cavitary Mass;
Adrenal Mass;
Intra-Medullary Disease
2 70M PTCL 3rd Relapse  Brentuximab; ASCT Fatigue; Painful axillary  Fatigue decreased; 237/181 Wk 1-6: 0.2
(Bu/Cy/VP); CHOP lymphadenopathy Axillary Wk 7-10: None
pain/lymphadenopathy Wk 11-18: 0.15
resolved
Lymphadenonpathy - Lymphadenopathy -
Multi-Level/Axillary resolved/decreased/stable
Necrosis;
3 76FM DLBCL 4th Relapse  R/CHOP; Ibrutinib; Fatigue; Night Sweats; All symptoms worse 217172 Wk 1-4: 0.2
R/Bendamustine; SOBOE; Anorexia; Wk 5-6: None
Lenalidomide Weight Loss Wk 7: 0.1
Lymphadenopathy - Lymphadenopathy/Lung
Mediastinal; Lung Noodules - progressed
Nodules/Cavitary Mass;
4 69FM AITL 2nd Brentuximab; ASCT Fatigue; SOB (needing All symptoms resolved  261/188 Wk 1-6: 0.17
Relapse (Bu/Cy/VP) regular Wk 7-8: None
thoracocentesis); Night Wk 9-12: 0.09
Sweats; Abdominal
Distension
Lymphadenopathy - Lymphadenopathy -
Multi-Level; Lung decreased|/stable;
Nodules; Pericardial/L Pleural
Pleural/Pericardial Effusions - decreased;
Effusions; R Pleural Effusion -
Splenomegaly progressed;
Splenomegaly -
decreased
5 68M PTCL 5th Relapse  CHOP/IT MTX; HD MTX; Fatigue; SOBOE; Fevers; Baseline symptoms 296/156 Wk 1-2: 0.21
Brentuximab; Pralatrexate;  Night Sweats; Early continued + painful 5X/wk
Romidepsin Satiety; CN palsy herpes simplex oral Wk 3-4: 0.21
lesions
Lymphadenopathy — Lymphadenopathy -
Multi-Level; Lung Resolved
Nodules; Portal Vein retroperitonaeal,
Thrombosis/ Stable/Resolved
Ascites/Splenomegaly lung/mediastinal;
Portal vein thrombosis
and splenomegaly
persistent/worse
6 80FM Marginal 9th Relapse R/ (5 courses); Radiation (3 Mass in R thigh; R All symptoms same, 215/176 Wk 1-4: 0.22
Zone, courses); R/Bendamustine lower extremity edema  new L thigh mass Wk 5-8: None
DLBCL
R thigh mass R thigh mass - stable;
New L thigh mass
7 74M DLBCL 4th Relapse  Radiation/R/Bendamustine; Painful cutaneous Symptoms resolved 421/351 Wk 1-6: 0.22
Radiation; Ibrutinib; nodules lower Wk 7-8: None
R/Lenalidomide extremities Wk 9: 0.15
Wk 10: None
Cutaneous/fascial Cutaneous/fascial
masses lower masses resolved; New
extremities L inguinal
lymphadenopathy

ABVD = Doxorubicin, Bleomycin, Vinblastine, Dacarbazine; AITL=Angioimmunoblastic T-cell Lymphoma; ASCT = Autologous Stem Cell Transplant; Bu/Cy/VP =Busulphan,
Cyclosphosphamide and Etoposide transplant conditioning; CHOP = Cyclophosphamide, Doxorubicin, Vincristine, Prednisone; DLBCL=Diffuse Large B-cell Lymphoma;
ECOG PS=ECOG Performance Score (scale from 0 to 4; 0=best, with no impairments; 4=bedridden); HD =High Dose; HL=Hodgkin’s Lymphoma; IT = Intra-thecal;
MTX = Methotrexate; PTCL = Peripheral T-cell Lymphoma; R/=Rituximab.

* Prior therapy includes radiation if given separately from chemotherapy; NL=normal; NA =not available); PET and/or CT imaging.

T Prior Rx = number of prior lines of therapy.
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Fig. 2. In most patients, oral THU/decitabine induced neutropenia but not thrombocytopenia, expected with noncytotoxic DNMT1-depletion in bone marrow; initial responses
observed in some patients were lost with treatment interruptions/dose-reductions used to manage neutropenia. Mpk=mg/kg of oral decitabine dose (oral decitabine was
ingested ~1 hour after ~10 mpk oral THU); PD = progressive disease; *Table summarizes disease status and clinical course.

Tumor burden and other efficacy parameters

Objective decreases in tumor burden (Table), together with sub-
jective clinical improvements (decrease in baseline symptoms), oc-
curred in 4 of 7 patients (Table, Figs. 2, 3). These responses oc-
curred in patients with both relapsed B- and T-cell malignancies
(Table, Fig. 2). These objective and subjective improvements were
lost with treatment holds and dose-reductions used to manage
neutropenia (Table, Fig. 2). An expected indicator of systemic non-
cytotoxic DNMT1-depletion is a decrease in neutrophil counts with
relatively preserved or increased platelet counts and hemoglobin
[9,50-52]: this peripheral blood count pattern was observed in

6 of 7 patients (Fig. 2). The exception was patient 1, who had
rapidly progressive pancytopenia during the first 3 weeks of ther-
apy likely because of refractory, rapidly progressing diffuse large B-
cell lymphoma (Fig. 2). Per protocol, the neutropenia (neutrophils
<0.5x 10°/L) was managed by treatment holds followed by re-
sumption of therapy at a lower dose, resulting in recovery of neu-
trophil counts (Fig. 2).

The study was terminated after treatment of 7 patients,
when the investigating team judged that the regimen should
be redesigned to manage treatment-induced neutropenia with-
out reducing dose below the minimum biologically effective
dose.
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Pt 004 Baseline

Pt 004 Week 8

Fig. 3. Example of serial CT-scan results: Patient 004 had disseminated angioimmunoblastic T-cell lymphoma relapsed after first-line Brentuximab vedotin and second-
line autologous stem cell transplantation with busulphan/cyclophosphamide/etoposide conditioning. Yellow arrows indicate improvements with THU/decitabine treatment in
pericardial/pleural effusions (top, middle panels), periaortic lymphadenopathy (top, bottom panels) and splenomegaly (bottom panel).

Methods of integrating G-CSF supportive care into noncytotoxic
DNMTT1-depleting therapy

In contrast to chemotherapy, the bone marrow can have pre-
served or increased cellularity with noncytotoxic decitabine ther-
apy [50,51,53,54]. However, these DNMT1-depleted hematopoietic
precursors have decreased ability to switch from default erythroid-
megakaryocyte progenitor fate trajectories to granulo-monocytic
fates [50,51,53,54] (Fig. 4A). Although G-CSF administration after
chemotherapy pulses is standard medical practice, this approach
may not be optimal for this different kind of neutropenia [53].
Thus, in mice, we compared administering G-CSF after, or be-
fore, THU/decitabine administered for 3 consecutive days per week
for 7 weeks (Fig. 4B). G-CSF administration before THU/decitabine
was better at preserving peripheral blood neutrophil counts (Fig.
4C). We also examined bone marrow neutrophil content: this
was also higher with G-CSF administration before instead of after
THU/decitabine (Fig. 4D, E).

Preclinical evaluation of other regimen changes to increase antitumor
effects but decrease neutropenia

We previously showed that resistance to decitabine and 5-
azacytidine originates from feedback responses of the pyrim-
idine metabolism network to nucleotide perturbations [48].

Based on these observations, we evaluated in a patient-derived
xenograft model of treatment-resistant peripheral T-cell malig-
nancy (Sezary/Mycosis Fungoides) a regimen designed to overcome
resistance emerging from metabolism [48] (Fig. 5A): decitabine
was alternated with 5-azacytidine ~96 hours apart, and an in-
hibitor of de novo pyrimidine synthesis 2x/week (leflunomide to
inhibit dihydroorotate dehydrogenase), in addition to the CDA-
inhibitor, were incorporated into therapy [48] (Fig. 5B). This regi-
men substantially and significantly decreased tumor locally (sub-
cutaneous tumor mass) and systemically (peripheral blood and
bone marrow human CD3+ cells) compared to romidepsin (his-
tone deacetylase inhibitor) as a standard therapy control. The de
novo pyrimidine synthesis inhibitor by itself also showed mini-
mal efficacy (time-to-distress ~25 days vs 20 days with vehicle),
but clearly synergized with the THU/decitabine/5-azacytidine (al-
most doubling time-to-distress, to ~75 days vs ~40 days with
THU/decitabine/5-azacytidine alone) (Fig. 5C-E). The absence of
significant neutropenia, in addition to tumor restriction, enabled
long-term administration of the treatment (75 days) in this in vivo
experiment (Fig. 5C-E).

Discussion

Noncytotoxic DNMT1-depletion by decitabine or 5-azacytidine
is scientifically validated to terminate proliferation of p53/p16-
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Fig. 4. Noncytotoxic DNMT1-depletion decreases neutrophils but preserves or increases platelets and hemoglobin; this modality of therapy, distinct from chemotherapy, may
benefit from granulocyte-colony stimulating factor (G-CSF) administration before, rather than after, therapy. (A) Earliest hematopoietic precursors have master transcription
factor expression patterns that favor erythroid-megakaryocyte progenitor (EMK) production. Reprogramming to granulocyte-monocyte progenitors (GMP) requires DNMT1 to
turn-off baseline stem cell or EMK master transcription factor circuits. Thus, after decitabine, bone marrow, although cellular, is relatively resistant to G-CSF reprogramming
toward GMP. G-CSF before decitabine, however, can more efficiently redirect to GMP. (B) Experiment schema. To evaluate these principles in vivo, mice were treated with
THU/decitabine (THU/Dec) with G-CSF administered after or before. (C) THU/Dec decreased neutrophils but platelets and hemoglobin were preserved or increased; G-CSF
administered before appeared more effective at preserving neutrophil counts. Peripheral blood counts at week 7 by Hemavet. (D) Bone marrow flow cytometry at week 7 to
measure proportions of granulocytes and monocytes. (E) Bone marrow flow cytometry data (bone marrow granulocyte percentage) quantified in all the treated mice.

null chemorefractory malignant cells (reviewed in [55]). Rapid
catabolism of decitabine and 5-azacytidine by CDA severely lim-
its their plasma half-lives and tissue distributions, and thereby
likely their ability to deplete DNMTT1 in tumor cells in vivo [44,45].
Therefore, in this pilot clinical trial in patients with multiply re-
lapsed B- and T-cell lymphoid malignancies, we combined oral
decitabine with the CDA-inhibitor THU. The doses of THU and
decitabine were selected for noncytotoxic DNMT1-targeting (low
decitabine Cpax, plasma half-life ~2 hours); this was guided by a
previous Phase 1 clinical trial that identified minimal biologically
active oral doses for this purpose [56]. Objective reductions in lym-
phoma tumor burden, together with subjective improvements in
symptoms, occurred in 4 of 7 patients, but these responses were
lost upon study drug interruptions and dose-reductions used to
manage neutropenia, a grade 3/4 side-effect observed in all pa-
tients.

Neutropenia is expected with cytotoxic chemotherapy, and high
concentrations/doses of decitabine have cytotoxic pancytopenia ef-
fects [48,57]. However, low doses/concentrations of decitabine that
deplete DNMT1 without cytotoxicity also cause neutropenia, via
shunting to other lineages rather than cell killing, redirecting cell
production fluxes to platelets, counts of which are thus preserved
or increased [50-53,57,58]. What is the mechanism? Previous work
provides clues. Hematopoietic lineage-trajectories are governed by
master transcription factors. Once DNMT1 is depleted, hematopoi-
etic precursors cannot “switch-off” baseline master transcription
factor settings, needed to transition to other lineage-fate trajecto-
ries [53]. Thus, noncytotoxic decitabine treatment of hematopoietic
stem cells expands hematopoietic stem cells (locks in the stem cell
program), even if growth factors for alternative lineage-fates, for
example, G-CSF, are subsequently added [51,53,59]. Priming toward
megakaryocytic fates is the earliest lineage-fate bias of hematopoi-
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Fig. 5. Local and disseminated CD3+ tumor burden, and time-to-distress, were most substantially improved by alternating decitabine (Dec) with 5-azacytidine (5Aza) and
combinations of this with inhibitors of CDA and de novo pyrimidine synthesis. (A) Resistance to Dec and 5Aza emerges from feedback responses of pyrimidine metabolism
to Dec/5Aza-induced nucleotide imbalances [48]. The evaluated regimen exploits anticipation of these responses to enhance DNMT1-targeting in malignant cells without
exacerbating neutropenia. (B) Experimental schema. The xenotransplant model of peripheral T-cell malignancy was derived from a patient with mycosis fungoides/Sezary’s
disease relapsed after romidepsin, photopheresis, and mogamulizumab. (C) Tumor volume. Mean + standard error. (D) Disseminated tumor burden measured by flow-
cytometry for human CD3+ cells in bone marrow, peripheral blood and spleen after euthanasia. Median + inter-quartile range. P-value 2-sided Mann-Whitney test. (E)
Time-to-distress. P-values Log-Rank test of THU-Dec/5Aza alone vs THU-Dec/5Aza + Leflunomide.

etic stem cells, documented by master transcription factor expres-
sion patterns, DNA methylation and lineage-tracking [54,60-62].
This default setting of normal hematopoiesis, locked-in by non-
cytotoxic DNMT1-depletion, may explain preserved or increased
platelet counts even as neutrophils/monocytes simultaneously de-
cline [50-53,57,58]. This neutropenia, distinct from that caused by
traditional cytotoxic chemotherapy, may require distinct manage-
ment approaches. In vivo in mice, pretreatment with G-CSF before
THU/decitabine was better at preserving neutrophil counts then G-
CSF administration afterwards. These observations are consistent

with prior in vitro studies in which G-CSF before, but not after,
decitabine was able to promote granulopoiesis [53,59].

The starting doses of THU/decitabine ingested orally (~10/0.2
mg/kg) were close to the minimum biologically effective doses
needed to target DNMT1, as shown in a prior Phase 1 clinical
trial [56]. This could explain why the dose-reductions used to
manage treatment-induced neutropenia correlated with loss of tu-
mor responses. Thus, in future clinical trials, alternative admin-
istration schedules, instead of dose-reductions, should be evalu-
ated as an approach to maintain therapeutic DNMT1-targeting but
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not exacerbate neutropenia. In designing administration schedules,
one key consideration is that DNMT1-depletion by decitabine is
S-phase (exposure-time) dependent. Thus, frequent disbursed ad-
ministration increases the possibilities of overlap between random
malignant S-phase entries and drug exposure windows and may
be more efficacious than pulse-cycled schedules of administration
used for cytotoxic chemotherapy (administration for a few consec-
utive days followed by extended multiweek intervals needed to re-
cover from toxicity) [48,58,63].

Another consideration is that malignant cells rapidly adapt
at a metabolic level to dampen decitabine or 5-azacytidine ef-
fect as pyrimidine synthesis compensates to achieve homeosta-
sis [48]. Specifically, decitabine and 5-azacytidine cause nucleotide
imbalances [48]. These trigger automatic metabolic compensations
that dampen the activity of subsequent doses, and culminate in
treatment-resistance [48]. To exploit these consistent and pre-
dictable metabolic responses, we alternated the deoxynucleotide
analog decitabine with the cytidine analog 5-azacytidine in a pre-
clinical in vivo model of mycosis fungoides/Sezary’s syndrome, and
incorporated into therapy an inhibitor of de novo pyrimidine syn-
thesis as well as THU [48]. These regimen modifications increased
tumor cytoreduction without exacerbating neutropenia: malignant
cells indefinitely replicate and thus have the opportunity to stabi-
lize metabolic adaptations for resistance, while normal hematopoi-
etic progenitors proliferate/terminally differentiate in successive
waves, each treatment naive. All the agents used in the pre-
clinical experiments are available for clinical evaluation as oral
drugs.

Although few patients were treated in this pilot clinical
trial, each was a case-study in conventional therapy resistance,
having nodal/extranodal disease relapsed after a spectrum of
standard treatments, including radiation, high dose chemother-
apy/autologous stem cell transplant, and antibody-drug conjugates.
It is noteworthy that objective and subjective responses occurred,
albeit transiently, to the oral DNMT1-targeting treatment. Re-
sponses in this setting, in patients with both B- or T-cell malig-
nancies, are consistent with scientific validation of DNMTT1 as a ge-
netics agnostic oncotherapy target. In three patients the lymphoma
was primary refractory to THU/decitabine, despite neutropenia in-
dicating DNMT1-targeting in the normal hematopoietic compart-
ment. To understand this primary resistance, the much wider clin-
ical experience with decitabine or 5-azacytidine to treat myeloid
malignancies (a standard therapy), can offer useful insights: clini-
cal resistance in the myeloid malignancies was by metabolic con-
figurations in malignant cells that were adverse to decitabine or
5-azacytidine processing into DNMT1-depleting triphosphate nu-
cleotides [48]. Since pyrimidine metabolism is an ancient, funda-
mental network, we suspect metabolism underlies primary resis-
tance also in lymphoma patients. The regimen modifications eval-
uated in the pre-clinical model of mycosis fungoides/Sezary’s dis-
ease are intended to address these mechanisms of resistance, with-
out exacerbating neutropenia.

DNMTT1 is one of few targets validated for salvage of p53/p16-
null, chemo/radiation-refractory malignancy, warranting clinical
evaluation of decitabine to deplete DNMT1, and rational efforts
to address its pharmacologic limitations. Here we addressed one
such limitation by combining decitabine with THU to inhibit CDA
that otherwise severely abbreviates its half-life and solid tissue
distribution. The combination of THU with decitabine was phar-
macodynamically active: all patients experienced the expected
systemic effect of noncytotoxic DNMT1-depletion of neutropenia
without thrombocytopenia. The dose reductions used to man-
age this side-effect, however, also correlated with loss of ob-
served responses. Further regimen refinements, to enable sustain-
able DNMT1-targeting in malignant cells, but simultaneously limit
neutropenia, are needed. Parallel preclinical in vivo experiments

were thus performed along these lines and suggest directions for
further clinical investigation.
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