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Abstract

Background: Whether social determinants of health are associated with survival in the context of pediatric oncology–
targeted immunotherapy trials is not known. We examined the association between poverty and event-free survival (EFS)
and overall survival (OS) for children with high-risk neuroblastoma treated in targeted immunotherapy trials. Methods: We
conducted a retrospective cohort study of 371 children with high-risk neuroblastoma treated with GD2-targeted immunother-
apy in the Children’s Oncology Group trial ANBL0032 or ANBL0931 at a Pediatric Health Information System center from 2005
to 2014. Neighborhood poverty exposure was characterized a priori as living in a zip code with a median household income
within the lowest quartile for the cohort. Household poverty exposure was characterized a priori as sole coverage by public
insurance. Post hoc analyses examined the joint effect of neighborhood and household poverty using a common reference.
All statistical tests were 2-sided. Results: In multivariable Cox regressions adjusted for disease and treatment factors,
household poverty–exposed children experienced statistically significantly inferior EFS (hazard ratio [HR]¼1.90, 95%
confidence interval [CI]¼1.28 to 2.82, P ¼ .001) and OS (HR¼2.79, 95% CI¼1.63 to 4.79, P < .001) compared with unexposed
children. Neighborhood poverty was not independently associated with EFS or OS. In post hoc analyses exploring the joint
effect of neighborhood and household poverty, children with dual-poverty exposure (neighborhood poverty and household
poverty) experienced statistically significantly inferior EFS (HR¼2.21, 95% CI¼1.48 to 3.30, P < .001) and OS (HR¼3.70, 95%
CI¼2.08 to 6.59, P < .001) compared with the unexposed group. Conclusions: Poverty is independently associated with
increased risk of relapse and death among neuroblastoma patients treated with targeted immunotherapy. Incorporation of
social and environmental factors in future trials as health-care delivery intervention targets may increase the benefit of tar-
geted therapies.

Childhood cancer exemplifies the successes of modern medi-
cine—almost incurable 60 years ago, 80% of children diagnosed
today will survive at least 5 years (1,2). In the 21st century, a ma-
jority of children with cancer will be treated on a clinical trial if

one is available (2), an approach to care delivery that facilitates
evaluation of targeted therapies (3). Modern pediatric oncology
trials aim to identify children for whom current therapeutic
approaches are suboptimal (1), focusing on refining biological
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and response-based risk classification to improve outcomes (1).
Missing from this paradigm of discovery and care has been con-
sideration of nonbiological factors as outcome predictors or in-
tervention targets.

Social determinants of health, including poverty, contribute
substantially to health outcomes in the United States (4–6). It
has been postulated that disparities in access to innovative
therapies have the potential to increase preexisting disparate
outcomes (7). Whether targeted therapies equitably improve
survival outcomes for those patients who successfully access
them has not been investigated. We posit that pediatric oncol-
ogy provides an ideal population within which to investigate
the association of poverty and targeted therapy outcomes given
its high reliance on standardized clinical trial–based care deliv-
ery (2) that facilitates the ability to control for tumor biology
and treatment variables.

One in 5 US children with cancer lives in poverty (8, 9), and
childhood cancer remains a leading cause of death (10).
Population-based pediatric cancer studies have begun to parse
the relative contributions of socioeconomic status (SES) and bi-
ology and suggest that SES statistically significantly mediates
(11) previously described racial and ethnic survival disparities
(12–16). Such data are compelling but offer little insight into the
question of whether clinical trials of targeted therapy lead to
similar outcomes regardless of SES. Addressing this question is
essential to ensure that therapeutic advances translate into im-
proved health outcomes for all patients.

Neuroblastoma is the most common extracranial solid tu-
mor in childhood (10), and high-risk disease defined by clinical
factors and tumor biology is associated with relapse and poor
survival (10, 17, 18). In 2011, a Children’s Oncology Group (COG)
trial of targeted immunotherapy following intensive multi-
modality therapy for high-risk neuroblastoma (HR NBL) demon-
strated the most clinically significant event-free survival (EFS)
improvement in decades (19). This trial cohort provides a logical
population in which to explore the question of whether nonbio-
logical variables, such as poverty, add prognostic value beyond
known outcome predictors in the targeted immunotherapy trial
setting (20). We sought to identify the association between pov-
erty and EFS and overall survival (OS) for children with HR NBL
treated on COG-targeted immunotherapy trials.

Methods

Data Sources

COG is a National Cancer Institute–supported clinical trials co-
operative group conducting pediatric trials in North America,
Europe, Australia, and New Zealand (2, 21). The COG ANBL0032
phase III clinical trial enrolled HR NBL patients beginning in
October 2001 (19). Participation required at least a partial re-
sponse (PR) to multi-agent induction chemotherapy and pri-
mary tumor resection. Participants must have additionally
received consolidation therapy with autologous stem cell trans-
plantation (ASCT) and external beam radiotherapy without dis-
ease progression. Patients were randomly assigned to receive 6
months of standard of care isotretinoin or isotretinoin plus tar-
geted immunotherapy with the monoclonal antibody dinutuxi-
mab (19). Isotretinoin was administered orally in the outpatient
setting. Dinutuximab and cytokines were given intravenously
and subcutaneously during 5 inpatient cycles. Children

randomly assigned to immunotherapy experienced statistically
significantly improved EFS and randomization was stopped
early (19), with all patients enrolled after 2009 assigned to im-
munotherapy. The ANBL0931 trial was designed to support US
Food and Drug Administration registration of dinutuximab
through collection of detailed safety and toxicity data at a lim-
ited number of participating centers (22). Eligibility criteria and
the regimen administered were identical to those of the
ANBL0032 immunotherapy arm (19, 22). Tumor biology data
were collected for patients concurrently enrolled in the COG bi-
ology study ANBL00B1. For this analysis, ANBL0032 and
ANBL0931 provided data on patient characteristics, tumor his-
tology and biology, and disease outcome.

Insurance and zip code–linked US Census data were pro-
vided by the Pediatric Health Information System (PHIS) data-
base, which includes administrative data from 45 US pediatric
hospitals (23).

ANBL0032/0931 were approved by COG institutions’ local re-
view boards. Patients provided written informed consent and
assent for trial enrollment and future research use of data. PHIS
data are deidentified and considered exempt from human sub-
jects research review.

Cohort

The study population was derived from a previously published
cohort created by a data merge of patients enrolled in either
ANBL0032 or ANBL0931 and treated at a PHIS center from 2005
to 2014 (24). The analytic cohort (Figure 1) included children ran-
domly assigned or directly assigned to receipt of immunother-
apy with available poverty exposure measures as detailed
below. Children randomly assigned to isotretinoin alone were
excluded. To minimize heterogeneity, the cohort was restricted
to patients with available end-induction disease status and re-
ceipt of a single ASCT, resulting in an analytic cohort of 371
patients.

Poverty

Poverty was the primary exposure of interest and was charac-
terized a priori at both the neighborhood level and household
level. Neighborhood poverty was assigned by linkage of a child’s
residential zip code at first trial-associated PHIS encounter to
2010 US Census median annual household income (25). Patients
living in a zip code with a median household income within the
lowest quartile for the cohort (median income �$35 916) were
considered neighborhood poverty exposed (26). Household pov-
erty was assigned based on insurance at first trial-associated
PHIS encounter and dichotomized as sole coverage by public in-
surance (Medicaid or Children’s Health Insurance Program
[CHIP]) vs private or other (including commercial, dual commer-
cial and public [eg, as a secondary insurer], military, and other
insurers). Children with public insurance only were identified a
priori as household poverty exposed (27, 28). Exploratory analy-
ses examining the joint effect of neighborhood and household
poverty using a common reference were performed post hoc.

Outcome

EFS was defined as time from ANLB0032/ANBL0931 study enroll-
ment until first occurrence of relapse, progressive disease,
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secondary malignancy or death, or until last contact if no event
occurred. OS was defined as time from study enrollment until
death or last contact (19).

Covariates

Demographics
ANBL0032/ANBL0931 patient characteristics were provided by
COG and include age at trial enrollment (<18 months or
�18 months, based on known clinical risk criteria) (17), sex, eth-
nicity (Hispanic or non-Hispanic), and race (White, Black, other).

Tumor Biology and Treatment Variables
Tumor biology variables and staging were collected during the
COG ANBL00B1 biology study if patients were enrolled (19).
Staging was performed using the International Neuroblastoma
Staging System (INSS) criteria in use at the time that ANBL0032
opened (29, 30). INSS staging was categorized as stage IIB, III, IV,
IVS, or unknown and dichotomized in statistical models (stage IV
or all other). Tumor MYCN status was categorized as amplified,
nonamplified, or unknown. Tumor histology was categorized as
favorable, unfavorable, or unknown per the International
Neuroblastoma Pathology Classification system (31).

Treatment and disease response variables were provided by COG
as collected on ANBL0032/ANBL0931. These include end-induction
disease response before ASCT (complete response, very good PR
[VGPR], or PR), trial (ANBL0032 or ANBL0931), and days from ASCT to
trial enrollment, treating hospital, and treatment era (before or after
2009 publication of ANBL0032 immunotherapy outcomes).

Statistical Analysis

Patient demographics, tumor, and treatment characteristics
were summarized for the overall cohort, by neighborhood pov-
erty, and by household poverty using descriptive statistics.
Association of characteristics between poverty groups was eval-
uated with v2 and Wilcoxon rank sum tests for categorical and
continuous variables, respectively. OS and EFS curves were plot-
ted using Kaplan-Meier methods, and 2-year OS and EFS were
estimated with 95% confidence intervals (CIs) where standard
errors were calculated based on the Greenwood formula. EFS
and OS were evaluated at 2 years to allow comparison with pre-
viously published ANBL0032 outcome data (19). Associations be-
tween poverty exposures (and covariates) and survival
outcomes were evaluated with univariate Cox proportional haz-
ard (PH) models. Those covariates associated with both expo-
sure and outcome (based on P < .1 or a large enough effect size)
were considered confounders and were retained in multivari-
able Cox models; tumor MYCN status was a priori specified for
inclusion in models based on clinical pertinence. In addition,
the final multivariable models included robust variance esti-
mates (32) to account for potential hospital clustering, because
treating hospital was considered a potential confounder but
could not be adjusted for due to small numbers of patients per
site.

We performed post hoc analyses exploring the independent
and joint effects of neighborhood poverty and household pov-
erty by creating a 4-category combined exposure variable with a
common reference: dual-exposed neighborhood and household
poverty, single-exposed neighborhood poverty, single-exposed

Eligible Cohort (N=405) 

Excluded to minimize heterogeneity (N=34)
¨ Unknown end-induction disease status (N=14)
¨ Received 0 or 2 ASCT (N=20)

Final Analytic Cohort (N=371)Analytic Cohort

ANBL0032/ANBL0931 merged PHIS 
Cohort 

Assessed for eligibility (N=474)

Ineligible (N=69)
¨ Randomized to non-immunotherapy (N=31)
¨ Unavailable ZIP code (N=38)

Existing Merged 
COG/PHIS Cohort

Figure 1. Consort diagram of cohort creation. ASCT ¼ autologous stem cell transplantation.
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household poverty, and dual-unexposed (reference group).
Kaplan-Meier curve and multivariable Cox models were con-
structed. In all Cox models, PH assumptions were tested using
Schoenfeld residuals and adding interaction terms between
time and predictors (33, 34). All analyses were performed using
SAS (version 9.2, SAS Institute, Inc, Cary, NC), and a 2-sided P
less than .05 was considered statistically significant.

We performed a series of sensitivity analyses to assess the
robustness of our primary analysis of poverty exposures and
outcome (Supplementary Tables 1–5 available online). First, we
performed a sensitivity analysis restricting the cohort to those
treated post-2009 immunotherapy data publication to address
potential heterogeneity in patient characteristics (N¼ 342).
Second, we performed a sensitivity analysis censoring every pa-
tient at 2 years to address the differential length of follow-up
between poverty exposure categories (N¼ 371). Third, to assess
for selection bias due to exclusion of patients with missing end-
induction disease status, we repeated analyses including these
patients as either PR or VGPR (N¼ 385). Lastly, to address the
large number of patients with unknown stage, we repeated
analyses recategorizing unknown stage to stage IV based on
clinical expectations (N¼ 385).

Results

Characteristics of Study Patients

The analytic cohort was comprised of 371 children (Table 1).
Among survivors, median duration of follow-up was 1.97 years
(interquartile range¼ 0.52-3.18 years). Ninety-three children
(25.1%) lived in neighborhood poverty (median household in-
come �$35 916, approximately 150% of the federal poverty level
for a family of 4 in 2010) (35); 35.3% of children lived in house-
hold poverty as measured by US public insurance (Medicaid or
CHIP) (Table 1). A total of 52 children (14.0%) were exposed to
both household and neighborhood poverty, and 199 (53.6%)
were exposed to neither. There were no statistically significant
differences in INSS stage, end-induction disease response, tu-
mor histology, tumor MYCN amplification status, or time from
ASCT to trial enrollment by neighborhood or household poverty
(Table 1). Children living in neighborhood poverty dispropor-
tionately lived in household poverty (55.9%), and children in
household poverty were disproportionately Black (19.1%) and
Hispanic (26.0%) (Table 1).

Associations Between Household and Neighborhood
Poverty and Disease Outcome

In univariate analyses, household poverty–exposed children ex-
perienced statistically significantly inferior EFS compared with
unexposed children (2-year EFS ¼ 50.9% vs 75.7%; hazard ratio
[HR] ¼ 2.11, 95% CI¼ 1.41 to 3.15). OS was statistically signifi-
cantly inferior for household poverty–exposed children vs unex-
posed children (2-year OS ¼ 74.4% vs 90.9%, HR¼ 3.08, 95%
CI¼ 1.76 to 5.39) and for neighborhood poverty–exposed chil-
dren vs unexposed children (78.8% vs 87.7%, HR¼ 1.72, 95%
CI¼ 0.96 to 3.09).

In multivariable analysis, household poverty–exposed chil-
dren experienced statistically significantly inferior EFS com-
pared with unexposed children (HR¼ 1.90, 95% CI¼ 1.28 to 2.82,
P ¼ .001) after adjusting for disease- and treatment-related
covariates (Table 2). OS was also statistically significantly

inferior in household poverty–exposed children (HR¼ 2.79, 95%
CI¼ 1.63 to 4.79, P < .001) (Table 2; Figure 2).

No other covariates maintained statistical significance with
EFS in the multivariable model. End-induction disease status
remained associated with OS; children with VGPR experienced
inferior OS (HR¼ 1.89, 95% CI¼ 1.004 to 3.56, P ¼ .49) vs those
with complete response. The magnitude of the hazard ratios for
neighborhood poverty, Hispanic ethnicity, unknown INSS stage,
and end-induction disease response remained relatively
unchanged from univariate analyses, suggesting that reduced
power may have limited detection of independent effects for
these variables.

Exploratory Analysis of the Joint Effect of Neighborhood
Level and Household Level Poverty on Outcomes

In post hoc exploratory analyses of the joint effect of neighbor-
hood and household poverty exposures, statistically significant
differences in EFS and OS were observed across the 4 exposure
levels (log-rank P ¼ .005 for EFS, P < .001 for OS; Figure 3). Two-
year EFS was 76.5% (95% CI¼ 68.9% to 82.4%) for no poverty,
70.9% (95% CI¼ 52.5% to 83.3%) for single-neighborhood poverty,
52.1% (95% CI¼ 37.7% to 64.7%) for single-household poverty,
and 54.5% (95% CI¼ 36.2% to 69.5%) for dual poverty, suggesting
that household poverty exposure was associated with inferior
EFS regardless of neighborhood poverty exposure. Two-year OS
was 90.1% (95% CI¼ 83.8% to 94.0%) for no poverty, 94.3% (95%
CI¼ 79.0% to 98.5%) for single-neighborhood poverty, 81.2% (95%
CI¼ 67.6% to 89.6%) for single-household poverty, and 64.3%
(95% CI¼ 45.0% to 78.3%) for dual-poverty, suggesting that the
association of household poverty exposure and OS was stronger
for patients concomitantly exposed to neighborhood poverty.

In multivariable analyses, EFS was statistically significantly
inferior in dual poverty–exposed children (HR¼ 2.21, 95%
CI¼ 1.48 to 3.30, P < .001) and single-household poverty–ex-
posed children (HR¼ 1.88, 95% CI¼ 1.21 to 2.91, P ¼ .005) com-
pared with the unexposed group (Table 3). OS was inferior in
dual poverty–exposed children (HR¼ 3.7, 95% CI¼ 2.08 to 6.59, P
< .001). There was a trend toward inferior OS in single-
household poverty–exposed children compared with the unex-
posed group that did not reach statistical significance
(HR¼ 1.98, 95% CI¼ 0.93 to 4.21, P ¼ .08; Table 3). Schoenfeld
residuals and testing interaction terms between time and pre-
dictors suggest no evidence of PH assumption violations.

Sensitivity Analyses

Results of the associations between poverty exposures and dis-
ease outcomes remained consistent with the primary study
analyses in all sensitivity analyses (Supplementary Tables 1–5
available online).

Discussion

Poverty is independently associated with EFS and OS in a para-
digmatic population of children receiving clinical trial–delivered
targeted immunotherapy for cancer. Children exposed to
household poverty as measured by public insurance experi-
enced a 90% increased risk of an event and a 179% increased
risk of death at 2 years compared with unexposed children, and
this difference in risk was not explained by disease or treatment
response characteristics. Post hoc multivariable analyses dem-
onstrated that dual household and neighborhood poverty
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exposure conferred a striking 270% increased risk of death at 2
years compared with no poverty exposure, with a correspond-
ing 22% absolute difference in 2-year EFS and 26% absolute dif-
ference in 2-year OS. This magnitude of effect is similar to that
observed with key therapeutic interventions over the past sev-
eral decades.

Poverty-related health outcome disparities are well docu-
mented outside the context of cancer-directed targeted therapy

(5, 36) and offer possible explanations for the inferior EFS ob-
served in household poverty–exposed children. First, child pov-
erty leads to negative health consequences (5, 37), which may
increase treatment-related complications and subsequent
delays or reductions in planned therapy. Alternatively, nonad-
herence to recommended therapy is a recognized risk factor for
cancer relapse (38–40) as well as morbidity and mortality in
other chronic diseases (41–45). Although a majority of trial

Table 1. Characteristics of study patients by neighborhood poverty and household poverty (N¼ 371)

Patient, disease and
treatment characteristics Overall

Neighborhood poverty Household poverty

Yes
Median household

income,
Q1 (�$35 916)

No
Median household

income,
Q2-Q4 (>$35 916) Pb Yes No Pb

Total 371 (100.0) 93 (25.1) 278 (74.9) 131 (35.3) 240 (64.7)
Length of follow-up, median (IQR), y 1.97 (0.52-3.18) 1.92 (0.53-2.66) 2.06 (0.51-3.42) .33 1.54 (0.38-2.58) 2.18 (0.71-3.48) .002
Race, No (%) .36 <.001

Black 38 (10.2) 12 (12.9) 26 (9.4) 25 (19.1) 13 (5.4)
White 276 (74.4) 64 (68.8) 212 (76.3) 77 (58.8) 199 (82.9)
Other 57 (15.4) 17 (18.3) 40 (14.4) 29 (22.1) 28 (11.7)

Ethnicity, No. (%) .01 <.001
Hispanic/Latino 56 (15.1) 22 (23.7) 34 (12.2) 34 (26.0) 22 (9.2)
Not Hispanic/Latino 315 (84.9) 71 (76.3) 244 (87.8) 97 (74.1) 218 (90.8)

Household poverty, No. (%) <.001 — —
Yes 131 (35.3) 52 (55.9) 79 (28.4) — —
No 240 (64.7) 41 (44.1) 199 (71.6) — —

Age, No. (%) .82 — — .69
<18 mo 29 (7.8) 8 (8.6) 21 (7.6) 9 (6.9) 20 (8.3)
�18 mo 342 (92.2) 85 (91.4) 257 (92.5) 122 (93.1) 220 (91.7)

Sex, No. (%) .40 .74
Male 221 (59.6) 59 (63.4) 162 (58.3) 80 (61.1) 141 (58.8)
Female 150 (40.4) 34 (36.6) 116 (41.7) 51 (38.9) 99 (41.3)

Trial, No. (%) .31 .02
ANBL0032 318 (85.7) 83 (89.3) 235 (84.5) 120 (91.6) 198 (82.5)
ANBL0931 53 (14.3) 10 (10.8) 43 (15.5) 11 (8.4) 42 (17.5)

Treatment post-2009,a No. (%) .15 .01
Yes 342 (92.2) 89 (95.7) 253 (91.0) 127 (97.0) 215 (89.6)
No 29 (7.8) 4 (4.3) 25 (9.0) 4 (3.1) 25 (10.4)

Days from SCT to trial
enrollment, median (IQR)

85 (77-96) 88 (79-98) 85 (76-96) .07 87 (78-98) 85 (76-95) .08

End-induction disease response, No. (%) .85 .46
CR 130 (35.0) 31 (33.3) 99 (35.6) 43 (32.8) 87 (36.3)
VGPR 123 (33.2) 33 (35.5) 90 (32.4) 41 (31.3) 82 (34.2)
PR 118 (31.8) 29 (31.2) 89 (32.0) 47 (35.9) 71 (29.6)

Tumor MYCN status, No. (%) .30 .40
Amplified 131 (35.3) 39 (41.9) 92 (33.1) 52 (39.7) 79 (32.9)
Not amplified 154 (41.5) 34 (36.6) 120 (43.2) 52 (39.7) 102 (42.5)
Unknown 86 (23.2) 20 (21.5) 66 (23.7) 27 (20.6) 59 (24.6)

Tumor histology, No. (%) .06 .73
Unfavorable 266 (71.7) 67 (72.0) 199 (71.6) 97 (74.1) 169 (70.4)
Favorable 11 (3.0) 6 (6.5) 5 (1.8) 4 (3.1) 7 (2.9)
Unknown 94 (25.3) 20 (21.5) 74 (26.6) 30 (22.9) 64 (26.7)

INSS stage, No. (%) .22 .79
IV 258 (69.5) 70 (75.3) 188 (67.6) 96 (73.3) 162 (67.5)
III 46 (12.4) 9 (9.7) 37 (13.3) 15 (11.5) 31 (12.9)
IIB 9 (2.4) 1 (1.1) 8 (2.9) 2 (1.5) 7 (2.9)
IVS 3 (0.8) 2 (2.2) 1 (0.4) 1 (0.8) 2 (0.8)
Unknown 55 (14.8) 11 (11.8) 44 (15.8) 17 (13.0) 38 (15.8)

aANBL0032 met early stopping rules in 2009 due to superior results associated with anti-GD2 immunotherapy. Thus all patients post-2009 received treatment recom-

mendations reflecting this information. CR ¼ complete response; IQR ¼ interquartile range; INSS ¼ International Neuroblastoma Staging System; PR ¼ partial response;

Q ¼ quartile; SCT ¼ stem cell transplantation; VGPR ¼ very good partial response.
bP values were from Wilcoxon rank sum tests for continuous variables and v2 tests for categorical variables. All P values were 2-sided.
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therapy was delivered in the inpatient setting, nonadherence to
oral isotretinoin may have contributed to the inferior EFS ob-
served. Finally, poverty-associated stress might affect innate
immune responses to immunotherapy (46–48). These hypothe-
ses are being investigated in ongoing work.

We observed a substantially greater poverty-associated dec-
rement in OS than in EFS. These data suggest that not only do

poor children experience excess relapse following targeted im-
munotherapy, but their access to life-prolonging relapse ther-
apy may also be inferior. Disparities in access to specialized
therapies—including invasive cardiac procedures, stem cell
transplant, and proton beam radiotherapy—are well docu-
mented (49–52). In neuroblastoma, the targeted radiopharma-
ceutical meta-iodo-benzylguanidine has a 35%-40% response

Table 2. EFS and OS adjusted for ethnicity, insurance, INSS stage, disease response, MYCN status, and hospital clustering (N¼ 371)

Characteristics

Univariate analyses of outcome Multivariable analyses of outcomea

EFS OS EFS OS

HR (95% CI) Pb HR (95% CI) Pb HR (95% CI) Pb HR (95% CI) Pb

Child or sociodemographic
characteristics

.36

Neighborhood poverty
No (Q2-4: >$35 916) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
Yes (Q1:�35 916) 1.38 (0.89 to 2.12) .15 1.72 (0.96 to 3.09) .07 1.16 (0.79 to 1.70) .46 1.25 (0.78 to 1.99)

Household poverty <.001
No 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
Yes 1.99 (1.34 to 2.96) <.001 3.08 (1.76 to 5.39) <.001 1.90 (1.28 to 2.82) .001 2.79 (1.63 to 4.79)

Race —c — — —
White 1.00 (Ref) 1.00 (Ref)
Black 1.09 (0.57 to 2.12) .79 1.32 (0.56 to 3.14) .56
Other 0.79 (0.43 to 1.46) .44 0.98 (0.44 to 2.20) .96

Ethnicity .09
Non-Hispanic 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
Hispanic 1.55 (0.94 to 2.56) .08 2.54 (1.37 to 4.72) .003 1.20 (0.79 to 1.82) .34 1.70 (0.92 to 3.14)

Age __ __ __ __
�18 mo 1.00 (Ref) .79 1.00 (Ref) .59
<18 mo 0.90 (0.42 to 1.94) 1.29 (0.51 to 3.24)

Sex, female 0.73 (0.48 to 1.09) .13 0.83 (0.48 to 1.46) .52 — — — —
Tumor and treatment

characteristics
Trial — — — —
ANBL0032 1.00 (Ref) 1.00 (Ref)
ANBL0931 0.82 (0.49 to 1.39) .47 1.01 (0.50 to 2.04) .97
Treatment post-2009 — — — —
Yes 1.00 (Ref) 1.00 (Ref)
No 1.11 (0.57 to 2.14) .76 1.16 (0.48 to 2.79) .74

Days from SCT to trial enrollment — — — —
INSS stage 1 (0.99 to 1.01) .43 0.99 (0.98 to 1.01) .38 .42.16
IIB/III/IVS 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
IV 2.00 (1.00 to 4.01) .049 2.23 (0.80 to 6.25) .13 1.53 (0.84 to 2.77) .17 1.53 (0.55 to 4.26)
Missing stage 2.66 (1.19 to 5.99) .02 3.29 (1.01 to 10.7) .048 2.20 (0.80 to 6.05) .13 3.07 (0.65 to 14.54)

Tumor MYCN .991.964
Not amplified 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
Amplified 0.76 (0.47 to 1.21) .24 0.94 (0.49 to 1.80) .85 0.77 (0.54 to 1.09) .14 1.00 (0.55 to 1.81)
Missing 1.17 (0.72 to 1.91) .52 1.49 (0.76 to 2.94) .25 0.96 (0.49 to 1.88) .91 1.02 (0.40 to 2.64)

Tumor histology —
Favorable 1.00 (Ref) 1.00 (Ref) — — —
Unfavorable 2.23 (0.31 to 16.02) .43 0.89 (0.12 to 6.51) .91
Missing 3.11 (0.42 to 22.79) .27 1.58 (0.21 to 11.90) .66

End-induction disease response .049.07
CR 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
VGPR 1.71 (1.03 to 2.83) .04 2.09 (0.98 to 4.47) .06 1.59 (0.95 to 2.66) .08 1.89 (1.004 to 3.56)

PR 1.65 (0.99 to 2.75) .06 2.47 (1.61 to 5.27) .002 1.48 (0.74 to 2.93) .27 2.27 (0.94 to 5.49)

aVariables included in multivariable model: neighborhood poverty, household poverty, ethnicity, INSS stage, tumor MYCN, end-induction disease response, and robust

variance estimates to account for potential hospital clustering. CI ¼ confidence interval; CR ¼ complete response; EFS ¼ event-free survival; HR ¼ hazard ratio; INSS ¼
International Neuroblastoma Staging System; OS ¼ overall survival; PR ¼ partial response; Q ¼ quartile; SCT ¼ stem cell transplantation; VGPR ¼ very good partial

response.
bP values were from Cox regression model and were 2-sided.
cEmpty cells reflect covariates not included in multivariable analyses as detailed in Methods.
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rate in relapsed or refractory neuroblastoma (53) but is only
available at specialized centers. It is possible that such salvage
therapy is out of reach for less-resourced families given the out-
of-pocket costs and work disruptions associated with travel as

well as the numerous challenges in obtaining insurance cover-
age for salvage therapies administered in other states.

There are important limitations to our data. We observed
poverty-associated outcome disparities in a highly selected

Figure 2. Survival among children with high-risk neuroblastoma receiving targeted immunotherapy on Children’s Oncology Group (COG) protocols ANBL0032 or

ANBL0931 at a Pediatric Health Information System (PHIS) center. Data are shown for Kaplan-Meier estimates of event-free survival (EFS) and overall survival (OS) for

overall cohort from time of trial enrollment. Trial enrollment occurred after completion of both induction and consolidation therapy A). Two-year estimates (95% confi-

dence interval [CI]): EFS ¼ 67.9% (95% CI¼61.9% to 73.2%); OS ¼ 85.5% (95% CI¼80.6% to 89.3%). B) Data for EFS and OS ¼ stratified by neighborhood poverty group. Two-

year estimates (95% CI): EFS no neighborhood poverty ¼ 70.0% (95% CI¼63.1% to 75.8%) vs neighborhood poverty ¼ 61.6% (95% CI¼48.5% to 72.3%), log rank test P¼ .15;

OS no neighborhood poverty ¼ 87.7% (95% CI¼82.2% to 91.6%) vs neighborhood poverty ¼ 78.8% (95% CI¼66.6% to 87.0%), log rank test P¼ .07. C) EFS and OS stratified

by household poverty group. Two-year estimates (95% CI): EFS no household poverty ¼ 75.7% (95% CI¼68.8% to 81.2%) vs household poverty ¼ 50.9% (95% CI¼ 39.4% to

61.3%), log rank test (P< .001); OS no household poverty ¼ 90.9% (95% CI¼ 85.6% to 94.3%) vs household poverty ¼ 74.4% (95% CI¼63.4% to 82.5), log rank test P < .001.
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cohort restricted to clinical trial–enrolled patients treated at
PHIS institutions and may have underestimated the true magni-
tude of disparities by focusing on a population of “best actors.”
ANBL0032 and ANBL0931 restricted enrollment to patients with
at least partial disease control following initial therapy. Thus,
our data do not reflect outcomes for trial-ineligible patients,
such as those who experienced inadequate disease control or
treatment-related toxicities early in therapy. Compared with

the previously published PHIS HR NBL population (23), our ana-
lytic cohort included fewer Black patients (8% vs 13%) and more
privately insured patients (52% vs 46%), potentially limiting our
ability to detect independent effects of race and ethnicity previ-
ously associated with higher risk of late-occurring events (15),
though not 2-year outcomes. We used public insurance as a
proxy for household poverty due to lack of parent-reported
household poverty data. Although most children qualify for

Figure 3. Survival by combined poverty status among children with high-risk neuroblastoma receiving targeted immunotherapy on Children’s Oncology Group (COG)

protocols ANBL0032 or ANBL0931 and treated at a Pediatric Health Information System (PHIS) center. Data are shown for Kaplan-Meier estimates of (A) event-free sur-

vival (EFS) from time of trial enrollment by combined neighborhood and household poverty, 2-year estimates: no poverty ¼ 76.5% (95% CI¼ 68.9% to 82.4%), single-

neighborhood poverty ¼ 70.9% (95% CI¼ 52.5% to 83.3%), single-household poverty ¼ 52.1% (95% CI¼37.7% to 64.7%), dual-poverty ¼ 54.5% (95% CI¼36.2% to 69.5%),

log-rank P value ¼ .005; and B) overall survival (OS) from time of trial enrollment by combined neighborhood and household poverty, 2-year estimates: no poverty ¼
90.1% (95% CI ¼ 83.8% to 94.0%), single-neighborhood poverty ¼ 94.3% (95% CI ¼ 79.0% to 98.5%), single-household poverty ¼ 81.2% (95% CI ¼ 67.6% to 89.6%), dual pov-

erty ¼ 64.3% (95% CI ¼ 45.0% to 78.3%), log rank test P less than .001. Trial enrollment occurred after completion of both induction and consolidation therapy.

Table 3. Post hoc analysis: EFS and OS according to combined neighborhood and household poverty exposure adjusting for ethnicity, disease
response, INSS stage, MYCN, and hospital clustering (N ¼ 371)

Child or sociodemographic characteristics

EFS OS

HR (95% CI) Pa HR (95% CI) Pa

Neighborhood or household
Unexposed poverty 1.00 (Ref) 1.00 (Ref)
Single neighborhood poverty 1.13 (0.53 to 2.40) .76 0.47 (0.1 to 2.24) .34
Single household poverty 1.88 (1.21 to 2.91) .005 1.98 (0.93 to 4.21) .08
Dual poverty exposed 2.21 (1.48 to 3.30) <.001 3.70 (2.08 to 6.59) <.001

Ethnicity
Non-Hispanic 1.00 (Ref) 1.00 (Ref)
Hispanic 1.20 (0.78 to 1.85) .41 1.76 (0.92 to 3.35) .09

End-induction disease response
CR 1.00 (Ref) 1.00 (Ref)
VGPR 1.59 (0.95 to 2.66) .08 1.91 (0.998 to 3.66) .05
PR 1.48 (0.74 to 2.93) .27 2.28 (0.94 to 5.54) .07

INSS stage
IIB/III/IVS 1.00 (Ref) 1.00 (Ref)
IV 1.53 (0.84 to 2.77) .16 1.53 (0.57 to 4.14) .40
Unknown 2.2 (0.82 to 5.94) .12 3.50 (0.75 to 16.32) .11

Tumor MYCN
Not amplified 1.00 (Ref) 1.00 (Ref)
Amplified 0.77 (0.54 to 1.11) .16 1.12 (0.60 to 2.10) .71
Unknown 0.96 (0.49 to 1.88) .89 0.912 (0.35 to 2.35) .85

aP values were from Cox regression model and were 2-sided. CI ¼ confidence interval; CR ¼ complete response; EFS ¼ event-free survival; HR ¼ hazard ratio; INSS ¼
International Neuroblastoma Staging System; OS ¼ overall survival; PR ¼ partial response; VGPR ¼ very good partial response.
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Medicaid or CHIP based on household income (54), a minority
qualify based on disability. We may have misclassified children
with public insurance from wealthier homes or those who had
private or other insurance but were nonetheless living in low-
income homes. We used zip code median household income
quartiles to identify neighborhood poverty, a measure limited
by its sample-dependent nature as well as the socioeconomic
heterogeneity inherent in a zip code’s large population (55). We
lacked data on other social determinants of health, including
language, literacy, education, and social supports that may me-
diate the observed disparities (56). Finally, our data are specific
to the United States and may not be generalizable to other
countries.

These limitations notwithstanding, our data identify striking
outcome disparities in the context of targeted immunotherapy
trials, suggesting a critical need for further investigation.
Intervening on poverty as a risk factor for relapse and death
requires identification of intervention targets—either modifi-
able poverty measures or mechanisms linking poverty and out-
come amenable to care delivery interventions. These gaps are
being investigated in ongoing studies that aim to identify mech-

anistic links using parent-reported poverty measures, including
both income and household material hardship (food, housing,
heat, and transportation insecurities) (5, 37, 57). Concurrently,
evaluations of interventions directly targeting household mate-
rial hardship are being conducted (58–61).

Poor children with HR NBL treated uniformly with targeted
immunotherapy are at increased risk of relapse and death com-
pared with their nonpoor counterparts. That poverty is inde-
pendently associated with inferior survival in the context of
targeted therapy even after adjustment for known biological
variables is sobering. Few advances in medicine have garnered
the enthusiasm of the medical community and generated as
much hope for improving outcomes as the application of tar-
geted therapies in cancer. Indeed, the use of targeted immuno-
therapy resulted in the single greatest improvement in survival
for children with HR NBL in decades (19). Poverty-associated
outcome disparities in this context highlight the stubborn real-
ity that increased understanding of tumor and host biology and
the development of rational therapeutics may be necessary, but
not sufficient, to achieve the cures we desire. Our data identify
new pathways for investigation and intervention in the clinical
trial context—namely the consideration of social and environ-
mental factors as outcome predictors. Transformative improve-
ments in outcome are most likely to be achieved if we expand
our conceptual model of discovery and intervention beyond bi-
ology to include social determinants of health outcomes.
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