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Abstract

Up to 85% of adult cancer survivors and 99% of adult survivors of childhood cancer live with an accumulation of chronic
conditions, frailty, and/or cognitive impairments resulting from cancer and its treatment. Thus, survivors often show an
accelerated development of multiple geriatric syndromes and need therapeutic interventions. To advance progress in this
area, the National Cancer Institute convened the second of 2 think tanks under the auspices of the Cancer and Accelerated
Aging: Advancing Research for Healthy Survivors initiative. Experts assembled to share evidence of promising strategies to
prevent, slow, or reverse the aging consequences of cancer and its treatment. The meeting identified research and resource
needs, including geroscience-guided clinical trials; comprehensive assessments of functional, cognitive, and psychosocial
vulnerabilities to assess and predict age-related outcomes; preclinical and clinical research to determine the optimal dosing
for behavioral (eg, diet, exercise) and pharmacologic (eg, senolytic) therapies; health-care delivery research to evaluate the ef-
ficacy of integrated cancer care delivery models; optimization of intervention implementation, delivery, and uptake; and pa-
tient and provider education on cancer and treatment-related late and long-term adverse effects. Addressing these needs
will expand knowledge of aging-related consequences of cancer and cancer treatment and inform strategies to promote
healthy aging of cancer survivors.

The rapidly aging US population coupled with improved cancer
survival rates has led to predictions of unprecedented growth in
the number of cancer survivors over the next decade (1–3).
Unfortunately, many modalities used to cure or control cancer
damage healthy tissue, leading to unintended consequences

that appear to accelerate (eg, altered aging trajectory with a
faster rate of functional decline) or accentuate the aging process
(eg, paralleled “normal” aging trajectory with weakened reserve)
(Figure 1) (4). Clinical observations supported by phenotypic, ge-
nomic, and molecular data (4–13) suggest that cancer survivors
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treated with adjuvant therapies are at risk for early onset of
multimorbidity commonly seen in older patients. Estimates in-
dicate that up to 85% of adult cancer survivors (14) and 99% of
adult survivors of childhood cancer (15) live with cancer- and
treatment-related comorbidities, including frailty, sarcopenia,
cognitive impairment, and/or subsequent neoplasms (8,15–22).
Adult cancer survivors report engaging in healthy behaviors at
levels similar to adults with no history of cancer (23) and are
more likely to adhere to physical activity recommendations
(24). However, there are limited data on how physical activity
and other strategies mitigate age-related conditions for cancer
survivors.

Strategies to Prevent or Mitigate Cancer- and
Treatment-Associated Aging

Aging involves multifaceted, interdependent biological pro-
cesses that can be altered by cancer and its treatments (25,26).
The Geroscience Hypothesis postulates that many age-related
conditions can be slowed or delayed by targeting drivers, or
hallmarks, of aging (eg, genomic instability, stem cell exhaus-
tion, cellular senescence, inflammation, mitochondrial dys-
function, and epigenetic alterations) (26–28). Given the
complementarity of hallmarks that undergird aging, cancer,
and cancer treatments (26,27,29), geroscience-guided interven-
tions might delay or avert the age-related conditions observed
in cancer survivors (30).

To consider emerging strategies that might prevent, miti-
gate, or reverse cancer- and treatment-related aging conse-
quences, the National Cancer Institute (NCI) convened the
second of two think tanks (4) under the Cancer and Accelerated
Aging: Advancing Research for Healthy Survivors initiative. The
think tank considered strategies that have demonstrated effi-
cacy in clinical trials or showed preclinical promise to avert or
alleviate age-related outcomes. Emphasis was placed on thera-
pies linked to age-related conditions or underlying aging pro-
cesses (hallmarks of aging) that could be potential targets for
interventions. This report summarizes strategies identified dur-
ing the think tank that have the potential to address the long-
term effects of cancer and cancer treatment, and highlights
novel opportunities to establish efficacy and expand the evi-
dence base.

Exercise Therapy Strategies

Exercise is a relatively safe, cost-effective treatment strategy
with demonstrated efficacy to reduce morbidity and mortality
and preserve functional capacity (31–36). Robust evidence now
indicates that routine physical activity attenuates many hall-
marks of aging (37). In mice, modest exercise can suppress cer-
tain cellular senescent phenotypes, even in animals fed a high-
fat diet, which accelerates many age-related pathologies (38).
However, exercise is not currently considered a standard of care
therapy for cancer survivors. In 2018, the Physical Activity
Guidelines Advisory Committee and American College of Sports
Medicine published separate reports endorsing exercise to im-
prove cancer-related health outcomes (39–42). Given the pleio-
tropic nature of exercise, there is ample opportunity to
ameliorate aging phenotypes (25) by initiating exercise therapy
across the cancer diagnosis, treatment, and survivorship
continuum.

Exercise Prehabilitation
“Window of opportunity” trials are used to test new drugs dur-
ing the “window” between a cancer diagnosis and initiation of
standard treatment (43,44). This trial design can be used to eval-
uate “prehabilitation,” or short-term exercise or nutrition ther-
apy before cancer surgery or receipt of adjuvant treatment, to
evaluate the impact on aging outcomes (45,46). Initial evidence
indicates that prehabilitation may modulate tumor biology and
can improve physiological function (eg, cardiorespiratory fit-
ness), lower postoperative complications, and support recovery
following therapy (47–50). During preoperative chemotherapy
(51), patients with pancreatic cancer participating in a pilot ex-
ercise intervention exhibited statistically significant tumor vas-
cular remodeling compared with controls (52). Randomization
of 40 patients with lung cancer undergoing lobectomy to aerobic
exercise or usual care for 3 weeks showed that exercise im-
proved cardiorespiratory fitness by 17% compared with the
usual care group (48). A meta-analysis investigating the effects
of preoperative exercise therapy in patients with lung cancer
showed that compared with usual care, exercise decreased hos-
pital stay and reduced the risk of postoperative complications
(49). Additional evidence is needed to establish efficacy for dif-
ferent exercise types, timing relative to treatment initiation,
and dosing in other cancers and pretreatment contexts (40–42).

Figure 1. Hypothesized trajectories of the aging consequences of cancer and cancer treatment (used with permission) (4).
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Exercise During Cancer Therapy
Growing evidence suggests that exercise during chemotherapy
may prevent functional decline by protecting cardiovascular
health and maintaining the integrity and function of lean mus-
cle mass (53–55). A meta-analysis of randomized controlled tri-
als (RCTs) revealed that exercise during and after treatment
improved cardiorespiratory fitness compared with usual care in
patients with adult-onset cancers (53). Exercise during treat-
ment may also indirectly affect the aging consequences of can-
cer and cancer treatment by remodeling the tumor vasculature
and improving chemotherapy delivery and efficacy (53). In ani-
mal models, exercise modifies the tumor vasculature in pros-
tate (56,57), breast (58,59), pancreatic (60), melanoma (60), and
Ewing sarcoma tumors (61). For example, in murine Ewing sar-
coma, moderate aerobic exercise 5 d/wk led to statistically sig-
nificantly more delivery of doxorubicin to the tumor, but not
other organs, suggesting that exercise can increase chemother-
apy efficacy without increasing toxicity to healthy tissue (61).

Exercise may improve aging outcomes in combination with
other strategies. In the Exercise for Cancer Patients trial, non-
metastatic cancer patients receiving chemotherapy plus a 6-
week exercise intervention demonstrated improved perceived
cognitive function and less inflammation compared with
patients receiving chemotherapy alone (62,63). A different
Exercise for Cancer Patients intervention trial is currently evalu-
ating aerobic and resistance exercise with or without low-dose
ibuprofen on cancer-related cognitive impairment (CRCI) during
chemotherapy in breast, gastrointestinal, and colorectal cancer
survivors (NCT01238120). Further research is needed to under-
stand the mechanisms that underlie the beneficial effects of ex-
ercise on health during treatment.

Studies have demonstrated that exercise is feasible and pro-
vides positive benefits in older patients receiving chemotherapy
and those with existing age-related conditions (64,65). A clinical
framework exists to provide tailored exercise prescriptions for
breast cancer patients with complex health profiles undergoing
chemotherapy (eg, comorbidities, adverse treatment effects, ex-
ercise restrictions) (66). Although refinement is needed to ad-
dress personal and environmental factors (eg, pain, fatigue,
patient preference, attainability, cost), the framework provides
a useful foundation to address the inherent complexity of per-
sonalized cancer care.

Exercise Postcancer Therapy
Several observational studies indicate that exercise after first-
line therapy lowers the long-term risk of morbidity, including
cardiovascular disease (CVD) and CRCI (67) and mortality (53,68–
70). Given that cancer survivors have a higher risk of death due
to CVD than the general population (71), such findings further
highlight the importance of exercise. For instance, compared
with self-reported nonadherence to national exercise guidelines
(�9 metabolic equivalent of task-h/wk) (72), adherence was as-
sociated with a 23% (73) and 51% (69) lower risk of cardiovascu-
lar events among survivors of breast cancer and Hodgkin
lymphoma, respectively. Moreover, in 15 450 adult survivors of
childhood cancer (median follow-up of 10 years), exercising at
least 3 metabolic equivalent of task-h/wk was associated with a
19% (P¼ .026) and 11% (P¼ .17) reduction in all-cause and
health-related mortality, respectively, and a 39% (P¼ .026) re-
duction in recurrence or progression (70). Together, findings
from observational studies indicate that exercise may mitigate
treatment-related morbidity and mortality. Prospective trials
are needed to determine the direct exercise-induced effects.

Evidence from RCTs indicate that exercise improves cardiore-
spiratory fitness posttherapy (53); however, there is insufficient
evidence regarding other markers of cardiovascular health (eg,
blood pressure, insulin sensitivity) (47).

Diet and Nutrition Strategies

Diet and nutrition have been shown to influence cancer risk,
progression, and treatment response through shared aging
pathways (74). Suboptimal nutrition, as well as overnutrition,
detrimentally affects metabolic function and changes aging pro-
cesses by altering adipokine regulation, interfering with normal
immune function, and promoting systemic inflammation, insu-
lin resistance, and dysbiosis (75–78). Decades of nonprimate an-
imal studies suggest that caloric restriction delays tumor
progression and prolongs overall lifespan (79). Rodent models
show that different regimens of caloric restriction (eg, intermit-
tent fasting) can slow cancer, CVD, diabetes, and neurodegener-
ative disorders (80–82). Long-term human studies suggest that
caloric restriction can slow biological aging (83). Thus, diet and
nutrition may alter both aging and cancer outcomes. However,
because sarcopenia and sarcopenic obesity can cooccur with
cancer and cancer treatment, there is concern about how diet
and nutritional approaches are recommended for cancer
patients and survivors (84–86). Moreover, less is known about
the relationship between diet and nutrition, aging outcomes,
and the long-term effects of cancer and cancer treatment. In the
following section, we discuss diet and nutrition strategies
linked to age-related outcomes in a cancer context.

Diet and Nutrition Prehabilitation
Modulating diet before cancer therapy may reduce treatment
toxicity and improve survival (87–91). Preclinical studies indi-
cate that fasting decreases chemotherapy toxicity (92) and sen-
sitizes a wide variety of cancer cell types to chemotherapy,
radiotherapy, kinase inhibitors, and metabolic drugs without af-
fecting healthy cells (93–101). For instance, mice fasted for 48
hours before treatment with cisplatin and doxorubicin survived
longer than mice given a standard diet (102). To date, a few
small human trials have shown that fasting diets are safe, re-
duce toxicity, and increase the efficacy of anticancer therapies
(89,91). In a randomized crossover trial of 34 patients with gyne-
cological cancer, patients who fasted for 36 hours before and
24 hours after three chemotherapy treatments (350 kcal maxi-
mum daily calorie intake) demonstrated better chemotherapy
tolerance, higher quality of life (QOL), and less fatigue than
patients on a eucaloric Mediterranean diet (103). A prehabilita-
tion exercise and nutrition optimization (dietary assessment,
whey protein supplementation, nutrition therapy) RCT in
patients with gastric cancer showed improved function before
and after surgery compared with controls (104). In ancillary
analyses of the Women’s Health Initiative trial (n¼ 48 835 post-
menopausal women without breast cancer from 1993 to 1998),
participants assigned to the dietary modification arm (ie,
reduced-fat diet with increased fruit, vegetable, and whole-
grain consumption) experienced lower mortality after breast
cancer (88) and increased overall survival compared with the
usual diet arm (87). In two window-of-opportunity trials, one
conducted in 40 men with prostate cancer and another in 32
women with breast cancer, presurgical caloric restriction was
found to have no impact on Ki67 tumor proliferation rates in
breast tumors (105), whereas in prostate cancer, a weight loss of
roughly 0.65 kg/wk increased (rather than decreased) tumor

C
O

M
M

EN
T

A
R

Y

114 | JNCI J Natl Cancer Inst, 2021, Vol. 113, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/113/2/112/5827003 by guest on 18 M

arch 2021



proliferation compared with a weight loss of approximately 0.34
kg/wk (106). Larger trials are needed to determine the impact of
pretreatment diet and nutrition on reducing chemotherapy tox-
icity and long-term outcomes (90,107,108).

Diet and Nutrition Strategies During Therapy
Studies of whey protein supplementation have recently gained
attention as a strategy to improve health (109), including physi-
cal performance in frail older adults (110–112) and cancer
patients (112–116). Trials of colorectal, lung, and advanced can-
cer patients reported that whey protein supplementation
improves lean body mass, sarcopenia, muscle strength, and
functional capacity and prevents chemotherapy toxicity (113–
115). Currently, an RCT is examining a multimodal program
that includes whey protein supplementation, exercise, and psy-
chological treatment during neoadjuvant chemotherapy on sev-
eral outcomes, including postoperative morbidity, disease-free
survival, overall survival, and functional reserve in patients
with esophageal and gastric cancers (117). However, high-
protein diets increase insulin-like growth factor 1 (IGF-1) levels
in both mice and humans, and mouse studies indicate that
high-protein intake and elevated IGF-1 sensitize normal cells to
chemotherapy toxicity and enhance the progression of different
tumor types (118). Thus, the effects of protein supplementation
on lean body mass and sarcopenia must be weighed against the
well-established role of proteins in increasing IGF-1 and other
progrowth signaling pathways, which could increase tumor
growth and inhibit apoptosis in cancer cells.

Diet and Nutrition Strategies Postcancer Therapy
Observations regarding the relationship between posttreatment
diet and nutrition and survival suggest that higher dietary in-
take of isoflavone, the major phytoestrogen in soy, correlates
with a reduced risk of all-cause mortality in breast cancer survi-
vors (119). Adherence to Mediterranean and Nordic diets post-
treatment correlates with better overall survival among long-
term colorectal cancer survivors (120). Next-generation diet and
nutrition studies will likely be multi-component, exploring dif-
ferent dietary patterns among patients and survivors. The
Reach-Out to Enhance Wellness trial was a two-arm, wait-list
controlled, single-blinded, cross-over study conducted in 641
older, overweight or obese, long-term survivors of breast, pros-
tate, or colorectal cancer. The intervention showed statistically
significantly improved diet quality, physical activity, weight
loss, and the trajectory of functional decline (121,122). At pre-
sent, the breast cancer weight loss trial, a phase III trial of
women recently diagnosed with stage II-III, HER2-negative
breast cancer with a body mass index of at least 27 kg/m2, is
evaluating the impact of weight loss after cancer diagnosis
through caloric restriction and exercise on the risk of cancer re-
currence and mortality. If effective, this intervention has the po-
tential to make weight loss programs a standard part of breast
cancer treatment (36,123). Future studies should include aging
outcomes and consider multi-behavior approaches to address
the complex disease profiles and needs of cancer survivors,
who often have differing levels of baseline health, health behav-
iors, and function (124).

Opportunities to Expand the Evidence Base

The think tank aimed to discuss modalities that could be imple-
mented in clinical settings in the near term. Further, we

highlight promising areas that, in the longer term, will provide
a better understanding of aging outcomes in cancer survivors
and the mechanisms that contribute to cancer- and treatment-
associated aging to guide the development of novel interven-
tions. Several opportunities to expand the evidence base were
noted (Boxes 1-3).

Considerations for Preclinical Research

Accelerated-aging mouse models can elucidate processes that
drive aging phenotypes and provide opportunities for rapidly
testing novel interventions (125,126). Studying cancer in aged
rodents to model the aging consequences of cancer and treat-
ment was discussed (Box 1). Additionally, animals other than
mice may more closely mimic human aging or provide insights
into mammalian aging processes that are more relevant to
humans. For example, the bat has evolved transcriptomic signa-
tures known to promote longevity, and its lifespan is longer
than other mammals (127).

Box 1. Opportunities for preclinical research to expand the evi-
dence base for intervention studies targeting the aging conse-
quences of cancer and cancer treatment

• Explore alternative animal models that may more accu-
rately model cancer and therapy-induced aging in
humans (eg, bat, rat, pig, and dog models)

• Explore new experimental systems that allow modeling

and compound testing in human tissues, including hu-
man tissue explants and multi-cell organoids, micro-
fluidic devices, and bioengineered platforms

• Determine the appropriate time point(s) during the post-
cancer treatment aging trajectory to administer seno-
lytic drugs

• Develop models to predict patient-specific toxicity to

senolytic agents (ie, potential for cytokine storm if se-
nescent cell burden is inordinately high)

• Explore the molecular mechanisms governing different ex-
ercise outcomes desired (ie, maintenance of muscle
mass, vascular remodeling, or cardiovascular protection)

• Identify biomarkers to assess when sufficient exercise
has been performed to achieve the desired outcome(s)

• Explore the impact of calorie restriction and diets high
in fruits and vegetables on cancer biomarkers and can-
cer treatment outcomes

• Evaluate caloric restriction, fasting-mimicking diets, and
diet quality as strategies to reduce treatment toxicity,
reverse anticancer therapy resistance, and increase
cancer-free survival with conventional and newer tar-
geted cancer therapies

• Conduct basic and mechanistic research to discern how
diet and physical activity affect both cancer and aging
to determine optimal dose, intensity (rate), mode, and
duration

• Conduct preclinical and clinical studies to substantiate
biomarkers that identify those at risk for treatment in-
tolerance and accelerated aging as a consequence of
cancer treatment (eg, senescent cell burden as mea-

sured by CD3þ T cell p16INK4a expression)
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Box 2. Opportunities for clinical research to expand the evidence base for intervention studies on the aging consequences of cancer and
cancer treatment

Methodological considerations

• Conduct geroscience-guided clinical trials using biomarkers as intermediate endpoints to measure changes in underlying ag-
ing biology before sufficient accumulation of clinical events

• Consider collecting blood-based biomarkers for large observational and clinical trials (or other easily accessed biofluids)
• Include cancer survivors with heterogeneous chronological and biologic ages in randomized controlled trials
• Conduct longitudinal epidemiologic studies to identify subgroups of cancer survivors at risk for “accelerated aging” pheno-

types to inform evidence-based interventions
• Design multicomponent strategies to address the complex health profiles of cancer survivors
• Develop tailored interventions to accommodate cancer survivors with intercurrent comorbidities
• Conduct research to optimize intervention delivery and uptake among older cancer survivors
• Address barriers to enrollment of older populations into research studies, including poor health literacy, sensory deficits (eg,

poor vision or hearing), and transportation issues

Exercise therapy interventions

• Determine which mode(s) of exercise is most effective, and when, at what frequency, intensity, and duration
• Explore novel and home-based methods of encouraging and assessing exercise to promote long-term adherence (eg, wear-

able activity monitors and ALEXA-based interventions)
• Explore exercise during chemotherapy as a modality to prevent the aging consequences of cancer and cancer treatment
• Explore different exercise prescriptions to achieve specific outcomes. For example, maintenance of lean mass may be differ-

ent than another outcome, such as improved chemotherapy efficacy
• Investigate the effects of exercise on cardiovascular risk factors other than cardiorespiratory fitness
• Determine the long-term benefits of augmenting cardiorespiratory fitness before, during, and after therapy

Nutrition interventions

• Determine the magnitude of energy restriction that is optimal and maximally promotes cancer control and reduction in
common comorbidities while assuring optimal body composition and function

• Assess whether continued or intermittent caloric restriction or fasting regimens reduce rates of recurrence, subsequent neo-
plasms, frailty, and comorbidity

• Determine optimal macronutrient distribution of diets as well as the micronutrients and phytochemicals needed to improve
chemotherapy outcomes and overall survival

• Investigate whether weight loss interventions in obese patients improve chemotherapeutic response and posttreatment
survival

• Determine the level of protein intake needed to preserve muscle mass during and after chemotherapeutic treatment and

how diet and exercise regimens are best combined to enhance body composition and physical function
• Conduct multicomponent interventions to determine which combinations of interventions are most effective at preventing

and reversing cancer- and treatment-associated aging for different types and stages of cancer

Interventions for cancer-related cognitive impairment (CRCI)

• Determine whether cancer- and treatment-related cognitive changes are related to direct effects on the CNS or on peripheral
tissues

• Explore whether interventions should focus on specific cognitive problems or on multi-modal strategies that have system-
atic effects

• Identify risk factors for cognitive problems so that interventions can be developed and targeted to individuals at high risk
for CRCI

• Determine the most appropriate outcome measures to assess CRCI in intervention trials (eg, self-report, neuropsychological,
imaging, etc)

• Identify the cognitive processes affected by cancer and its treatments
• Refine cognitive measures based on methods from cognitive neuroscience to identify the specific cognitive processes af-

fected, including processes that occur outside conscious awareness
• Conduct additional research to define both the biological mechanisms and cognitive processes affected to develop targeted

cognitive interventions
• Determine how stress and peripheral functional decline contribute to CRCI

Supportive care interventions

• Develop depression or dysthymia screening tools for use in adult cancer survivors
• Conduct caregiver research at the dyadic level

Senotherapeutic agents

• Determine the frequency and dosage of senolytic drugs (or combinations of drugs) for patients and evaluate how these fac-
tors differ depending on the patient’s risk of late and long-term effects
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Considerations for Clinical Research

Therapies Targeting Senescence
Although several age-related processes provide potential tar-
gets for interventions, meeting discussions focused on cellular
senescence. Cellular senescence is a cell fate that includes an ir-
reversible proliferative arrest (128–130). Senescent cells accu-
mulate in multiple tissues, and, interestingly, transplanting
small numbers of senescent cells into young animals induces
frailty and age-related disease (131,132). Senescent cells also de-
velop a proinflammatory senescence-associated secretory phe-
notype that can disrupt tissue and immune function and create
a permissive microenvironment for cancer growth (133).

Senescent cells are a promising target for aging interven-
tions because these cells do not divide and can be eliminated by
intermittent dosing using drugs with short half-lives
(128,131,134–138). The senescence-associated secretory pheno-
type is also modifiable: it can be up- or down-regulated by hor-
mones, pathogens, and drugs (136,139–141). Rapamycin, a
mammalian target of rapamycin inhibitor, is a promising agent
that has been implicated in both aging and senescence.
Rapamycin fed to older mice was shown to delay aging and ex-
tend lifespan (142). Preclinical studies have also shown that
rapamycin prevents cognitive decline, protects from skeletal
muscle decline (143), and counteracts age-related functional de-
cline in multiple tissues (143,144). In healthy older adults, a pilot

RCT showed that short-term rapamycin treatment was feasible
and safe (145).

Senolytics have also achieved success in recent preclinical
studies (131,146–148); notably, several senolytics are repurposed
cancer drugs (138,149). The first trial in humans, a pilot,
open-label study of dasatinib plus quercetin for idiopathic pul-
monary fibrosis, a progressive, fatal, senescence-driven disease,
was recently published (147). After 9 doses over 3 weeks, partici-
pants showed improved physical function 1 week later. If
shown to be safe and effective in larger trials, the hope is that
mammalian target of rapamycin inhibitors and senolytics can
be tested as preventatives of age-related conditions in cancer
populations. Research is needed to determine the safety and
efficacy of dosing intervals and systemic, as opposed to local,
administration (131).

Integrative Strategies
Cancer survivors experience greater psychosocial distress, de-
pression, and anxiety and worse QOL compared with the gen-
eral population (14,15,21). A range of integrative strategies has
been evaluated in recent years to improve QOL and reduce
treatment effects, including imagery (150,151), yoga, meditation,
mindfulness and similar approaches (151–155), music therapy
(156), early palliative care (157), cognitive behavioral therapy
(158), cognitive rehabilitation (159–161), transcranial direct cur-
rent stimulation (162,163), and psychotherapy (159,164). Most of
these interventions have not been studied with aging endpoints
in mind. Yoga and meditation are associated with slowed cellu-
lar senescence, as measured by DNA damage markers, reactive
oxygen species, interleukin-6, and telomere length (165,166),
and are associated with improved sleep and cognitive function
in patients with CRCI (167–170). Early palliative care correlates
with reduced mortality in lung cancer survivors (157). Other
strategies should be explored in relation to aging endpoints and
biological aging drivers.

Models of Clinical Research

Clinical trials guided by geroscience principles hold promise to
prevent, slow, or reverse the aging consequences of cancer and
its treatments by targeting multiple, interrelated aging pro-
cesses. The Targeting Aging with Metformin trial is a blueprint
for such trials, because this drug impacts multiple hallmarks of
aging and age-related disease outcomes. Additionally, this trial
will assess a consensus-based set of biomarkers associated with
aging (28). Intervention studies of aging outcomes (eg, frailty,
cognitive decline, comorbidities, death) need to use biomarkers
as intermediate endpoints to demonstrate modification of un-
derlying aging processes before sufficient accumulation of clini-
cal events, which may take years (171,172). Further, some
biomarkers, such as DNA methylation, may help identify or
evaluate promising anti-accelerated or anti-accentuated aging
interventions because epigenetic changes are plastic (173,174).
Although no standard set of aging biomarkers yet exists, those
measured in blood or other easily accessed biofluids (eg, urine,
saliva) are of particular interest because they can be measured
in large observational studies and clinical trials (76). The first
meeting of the Cancer and Accelerated Aging: Advancing
Research for Healthy Survivors initiative highlighted promising
biomeasures for studies on cancer and aging, including DNA
methylation- and physiology-based measures (4). Lifestyle fac-
tors, including smoking, alcohol use, and sedentary behavior,
should be explored as effect modifiers in clinical studies,

Box 3. Opportunities for clinical practice to expand the evidence
base for intervention studies on the age-related consequences of
cancer and cancer treatment

• Screen for broad health status at diagnosis and in rou-
tine follow-ups to determine health needs, identify
risks for adverse late and long-term effects, and pro-
vide appropriate prescription or referral into evidence-
based programs that prevent, manage, or reverse the
aging consequences of cancer and cancer treatment

• Explore the efficacy of combined prehabilitation and re-
habilitation programs

• Conduct larger pre- and rehabilitation trials to deter-
mine who benefits most (eg, types of cancer, treat-
ments, patient populations), whether intervention
inequities are generated, and if it is acceptable and ef-
ficacious to promote behavior change and self-man-
agement during diagnosis and treatment

• Incorporate a model of collaborative care using a multi-
disciplinary team of specialists

• Develop infrastructure to streamline communication be-
tween multidisciplinary teams of providers, patients,
and caregivers

• Evaluate the utility of a risk-stratified approach to triage
cancer survivors into specific programs or interven-
tions based on risk for late and long-term effects

• Efficiently collect patient-reported outcomes using an
infrastructure that easily synthesizes information to
identify problems, concerns, and the need for referral

• Educate clinicians, cancer survivors, and caregivers
about aging-related consequences of cancer and can-

cer treatment and strategies to prevent or mitigate
long-term effects

• Educate patients and survivors about the relationship
between body weight, cancer, and inflammation
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because they have been shown to contribute to an aging pheno-
type in cancer survivors (5,11,175–177) and can accelerate epige-
netic aging (178,179).

Considerations for Intervention Study Design

Measurement
Understanding the molecular mechanisms governing different
desired outcomes (eg, maintenance of muscle mass, cardiovas-
cular reserve, gait speed, cognitive function) and the therapies
needed to achieve each outcome may help identify biomarkers
that can be used to benchmark progress. Experts also discussed
the need to characterize the specific cognitive processes af-
fected by cancer and its treatments to improve assessment of
subtle domain-specific cognitive changes because traditional
neuropsychological measures were not designed to identify
subtle deficits in cognitive function (18,19). Measures based on
improved cognitive neuroscience and neuroimaging techniques
(180) hold promise to detect specific cognitive processes af-
fected, including those that occur outside conscious awareness.
With an increased understanding of the mechanisms underly-
ing cognitive deficits in cancer patients, several ongoing clinical
trials are now testing pharmacotherapeutic strategies that tar-
get mechanisms linked to aging processes, including increased
oxidative stress and depleted stem cell reserves (181,182).
Further research defining both the biological mechanisms and
cognitive processes affected is critical to develop targeted cogni-
tive interventions.

Intervention Design and Delivery
Experts discussed the need for optimal dosing of exercise and
nutritional modification to maximize patient benefit and mini-
mize toxicities. Exercise interventions should be designed to
clarify which mode of exercise is most effective and sustainable
for improving or recovering functional reserve in subgroups of
patients, at what timepoint, and at what frequency, intensity,
and duration (183). Diet and nutrition trials should consider nu-
tritional status as well as cancer- and treatment-induced
changes in nutrients and body composition (eg, lean mass) be-
fore determining the appropriate intervention. Given that mul-
tiple modalities may act synergistically, multicomponent
interventions should be further explored to determine which
combinations are most effective at preventing and reversing
cancer- and treatment-associated effects for different types and
stages of cancer. Studies of safety and adherence are also
needed because insufficient reporting diminishes study rigor
and can lead to erroneous conclusions about harm-to-benefit
ratios (49,53). The geriatric assessment (GA) should be used to
identify individuals with age-related conditions typically ex-
cluded from clinical trial participation (184).

Several challenges related to intervention delivery were dis-
cussed, including caregiver inclusion and burden, functional
and sensory deficits, pain, fatigue, cumulative disease burden,
and social determinants of health (eg, transportation issues,
low health literacy, insurance status, education). Potential solu-
tions include designing interventions that include caregivers
and/or integrate social engagement into study protocols, im-
proving usability of technology-driven interventions and activ-
ity monitoring, providing study participants with materials at
the appropriate reading level, and using telemedicine.

Considerations for Health-Care Delivery

The projected growth in the number of cancer survivors coupled
with clinician and caregiver shortages and a transition to value-
based care present imminent challenges and opportunities
(185,186). The aging consequences of cancer and cancer treat-
ments must be addressed within a health-care delivery frame-
work because the biobehavioral and psychosocial mechanisms
that influence aging are inherently multi-system and multi-
outcome in nature and, if left unabated, translate to more
healthcare resources and higher costs.

Health-care delivery could be improved by employing inno-
vative, integrated care models that address the complex needs
of cancer survivors through screening tools, early interventions,
coordinated care, and addressing the wider social determinants
of health (180). Given the increasing prevalence of multimorbid-
ity and risk of poor psychosocial well-being for cancer survivors,
a screening tool that identifies health vulnerabilities associated
with compromised aging trajectories could be implemented at
diagnosis and collected longitudinally. Although there is con-
siderable variability in the data collected, the GA provides a ho-
listic evaluation of the physical, cognitive, affective, social,
financial, environmental, and spiritual components that influ-
ence aging trajectories (187). The GA utilized by Hurria et al.
demonstrated feasibility in clinical settings and is predictive of
cancer treatment toxicity and survival (188,189). Such a tool
could be implemented into routine clinical practice to identify
baseline and emerging vulnerabilities and address them with
appropriate prescriptions or referrals (187,190).

Referring survivors into evidence-based interventions based
on current health needs and risk of cancer-related aging conse-
quences should be explored to offer the “right care at the right
time” (personalized medicine) (185,186). Prehabilitation inter-
ventions that include exercise, diet and nutrition, and mental
health services could be used to prevent or reduce the risk of ad-
verse events and treatment toxicity, facilitate recovery, and im-
prove treatment tolerance (45,191). Prehabilitation
interventions were shown to improve physical capacity (192–
194), and reduce morbidity (195), complications (193), health-
care costs (196), hospital length of stay (196,197), and readmis-
sions (196). Some evidence suggests that combined prehabilita-
tion and rehabilitation interventions improve gait speed and
physical function better than prehabilitation alone (45). Larger
prehabilitation or rehabilitation trials are needed to determine
who benefits most (eg, which cancer types, treatments, and pa-
tient populations), whether intervention inequities occur, and if
it is efficacious to promote behavior and self-management
strategies during diagnosis and treatment when survivors may
not be in an ideal psychological state (198). Self-management
strategies, clinician training, and appropriate resources are
needed to educate survivors about cancer- and treatment-
associated aging throughout the care continuum (17,199).

Improved communication among specialties is needed to
ensure seamless integration of care (199). Patient navigation
programs will be essential to help survivors traverse frag-
mented care systems (16). Infrastructure is needed to improve
communication between specialist teams and cancer survivors.
Secure communication through online patient portals may be
useful to share care plans, survey patient-reported outcomes,
and provide links to eligible programs and services based on pa-
tient symptoms and needs. Improving these aspects of care will
create a more patient-centric health-care system that may
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assuage late and long-term effects by identifying early symp-
toms and preventing progression to age-related outcomes.

With a higher number of cancer survivors living longer and
aging into older adulthood, evidence-based strategies must be
developed and implemented to prevent and mitigate the aging
consequences of cancer and cancer treatment. This report sum-
marized expert-informed deliberations of promising strategies
to consider for implementation into clinical settings and high-
lights gaps in our understanding of approaches that avert or
ameliorate age-related outcomes. Addressing these research
gaps will facilitate the development of novel evidence-based
strategies to enhance healthy aging for all cancer survivors.
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