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Abstract

Background: Gastric and gastro-esophageal junction cancers (GCs) frequently recur after resection, but markers to predict
recurrence risk are missing. T-cell infiltrates have been validated as prognostic markers in other cancer types, but not in GC
because of methodological limitations of past studies. We aimed to define and validate the prognostic role of major T-cell
subtypes in GC by objective computational quantification. Methods: Surgically resected chemotherapy-naı̈ve GCs were split
into discovery (n¼327) and validation (n¼147) cohorts. CD8 (cytotoxic), CD45RO (memory), and FOXP3 (regulatory) T-cell
densities were measured through multicolor immunofluorescence and computational image analysis. Cancer-specific sur-
vival (CSS) was assessed. All statistical tests were two-sided. Results: CD45RO-cell and FOXP3-cell densities statistically sig-
nificantly predicted CSS in both cohorts. Stage, CD45RO-cell, and FOXP3-cell densities were independent predictors of CSS in
multivariable analysis; mismatch repair (MMR) and Epstein–Barr virus (EBV) status were not statistically significant.
Combining CD45RO-cell and FOXP3-cell densities into the Stomach Cancer Immune Score showed highly statistically signifi-
cant (all P� .002) CSS differences (0.9 years median CSS to not reached). T-cell infiltrates were highest in EBV-positive GCs and
similar in MMR-deficient and MMR-proficient GCs. Conclusion: The validation of CD45RO-cell and FOXP3-cell densities as
prognostic markers in GC may guide personalized follow-up or (neo)adjuvant treatment strategies. Only those 20% of GCs
with the highest T-cell infiltrates showed particularly good CSS, suggesting that a small subgroup of GCs is highly immuno-
genic. The potential for T-cell densities to predict immunotherapy responses should be assessed. The association of high
FOXP3-cell densities with longer CSS warrants studies into the biology of regulatory T cells in GC.

Gastric and gastro-esophageal junction cancers (GCs) are the
third most common cause of cancer-related death worldwide
(1). Even localized GCs that are treated aggressively with surgery
and perioperative chemotherapy recur in approximately 50% of
cases (2). Tumor staging is the only prognostic tool in routine
clinical use for resectable GCs (3). These tumors are

morphologically heterogenous with diffuse to intestinal types
and well to poorly differentiated phenotypes, but these offer
limited prognostic information (4,5). Molecular characterization
identified 4 distinct GC subtypes (6). The most common chro-
mosomally instable GCs often harbor driver gene amplifica-
tions, followed by genomically stable GCs with often diffuse-
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type growth patterns. Microsatellite instable and/or DNA mis-
match repair deficient (MMRd) GCs, harboring high mutation
loads, and Epstein–Barr virus positive (EBVþ) GCs are less com-
mon and had a better prognosis than chromosomally instable
and genomically stable GCs in some series (7).

In colorectal cancer (CRC), tumor-infiltrating lymphocytes
have been validated as prognostic markers, independent of
stage and microsatellite instable status (8–10). The so-called
immunoscore systematically grades T-cell infiltrates in CRCs,
which can for example be used to personalize adjuvant treat-
ment or follow-up strategies.

The prognostic relevance of immune cell infiltrates is less
clear in GC. Meta-analyses found associations of high cytotoxic
(CD8), helper (CD4), and memory (CD45RO) T-cell infiltrates
with better survival (11,12). However, the survival differences
between high vs low infiltrate GCs were generally modest. The
role of regulatory (FOXP3) T cells, which are considered immu-
nosuppressive, remains unclear with some studies showing an
association with longer and others with shorter survival (13).

Immune infiltrates in GC have not been validated as prog-
nostic biomarkers for clinical use because of small cohort sizes
in most studies, the use of poorly reproducible manual and
semiquantitative T-cell counting, and the lack of validation
cohorts (11–13). Moreover, patients in most studies had been
treated with a range of different (neo)adjuvant therapies, and
whether T-cell infiltrates are truly prognostic in early stage GCs
or predictive of (neo)adjuvant treatment success remains un-
known. Furthermore, studies were predominated by Asian
patients whose tumors can differ from Western patients in their
immunological profile (14). This questions the relevance to
Western populations.

Immunotherapy with PD1/PDL1 inhibitors showed
responses in approximately 10%–15% of GCs (15–18). Defining
biomarkers that predict who will benefit is critical to avoid un-
necessary toxicities and costs. PDL1-positive GCs had higher re-
sponse rates, but PDL1-negative tumors also responded (15), so
better predictive biomarkers are a major need. T-cell infiltrates
correlated with response to checkpoint inhibitors in other can-
cer types (19). Developing computational approaches for the ob-
jective quantification of T-cell subtypes in GC and defining their
relevance as markers of immunogenicity should not only lead
to new prognostic tools but also may support the development
of predictive immunotherapy biomarkers.

We used multicolor immunofluorescence staining and com-
putational image analysis to objectively quantify T cells in 474
GCs resected from Western patients who did not receive (neo)-
adjuvant therapy. Splitting cases into discovery and validation
cohorts allowed us to identify and subsequently validate T-cell
subtypes that associate with cancer-specific survival (CSS) and
finally investigate associations with DNA mismatch repair
(MMR) and Epstein–Barr virus (EBV) molecular subtypes.

Materials and Methods

Patients and Samples

The use of archival tissue specimens and of clinicopathological
data for research had been approved by the Leeds Research
Ethics Committee (CA01/122); the need for patient consent was
waived by the ethics committee. At the Leeds Teaching
Hospital, 0.6 mm cores from archival formalin-fixed and paraf-
fin-embedded (FFPE) GCs resected between 1985 and 2004 had
been embedded into tissue microarrays (TMAs). EBV and MMR

status had been assessed by RNA in situ hybridization and im-
munohistochemistry (20).

Multicolor Immunofluorescence Staining

Multicolor immunofluorescence staining of one slide per TMA block
was performed with the Opal tumor-infiltrating lymphocyte kit
(PerkinElmer, Waltham, Massachusetts) using CD8, CD4, CD45RO,
FOXP3, and pan-cytokeratin antibodies and 40,6-diamidino-2-phe-
nylindole (DAPI) (Supplementary Table 1, available online).

Computational Image Analysis

Slides were scanned with a PerkinElmer Vectra using a 20x ob-
jective to detect emission at 520nm, 570nm, 670nm, 620nm and
690nm wavelengths (CD4, CD8, CD45RO, FOXP3 and pan-cyto-
keratin, respectively; Supplementary Table 2, available online).
Signals were unmixed and images exported with PerkinElmer
InForm. A pathologist reviewed all 1903 cores to exclude dam-
aged cores and regions with nonmalignant epithelium. Cell
quantification was performed on tagged image file format (TIFF)
images with the HALO Highplex 3.0 software (Indica Labs,
Albuquerque, New Mexico). Following fluorescence image ac-
quisition, slides were hematoxylin and eosin stained and
scanned on a Hamamatsu slide scanner with a 40x objective.

Validation of Computational Cell Quantification

Tissue cores were identified and their surface area quantified
with the HALO random forest classifier function. Two patholo-
gists defined thresholds in the HALO software for the computa-
tional detection of DAPI stained nuclei, FOXP3 cells based on
Opal620 fluorophore nuclear detection area setting, and CD4
cells, CD8 cells, and CD45RO cells based on cytoplasmic and nu-
clear detection area settings with Opal520, 570, and 650 fluoro-
phores, respectively (Settings: Supplementary Table 3, available
online). For validation, a pathologist who was blinded to the
computational counts manually annotated all cells stained with
a T-cell marker using the HALO annotation function.

The fluorescent FOXP3 staining was also validated against a
clinically established chromogenic stain (antigen retrieval in
CC1, anti-FOXP3 staining with clone 236 A-E7 [eBioscience, San
Diego, California] at 1:50 dilution) and scanned on a
Hamamatsu slide scanner. Cells were quantified using QuPath
(21) (Settings: Supplementary Table 4, available online).

Statistical Analysis

The Spearman rank test was used to measure correlation. CSS was
calculated from surgery to GC-related death and analyzed with the
Kaplan–Meier method and the log-rank test. Follow-up was calcu-
lated for patients alive at last follow-up. A Cox regression analysis
with stepwise selection was used for multivariable analyses.
Statistical test details are provided in the figures. P values are 2-
tailed, and P < .05 was considered statistically significant. Statistical
tests were performed with R 3.6.1, SPSS 25, or Graphpad Prism.
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Results

Clinical Characteristics of the Discovery and Validation
Cohorts

FFPE samples from 503 resected GCs from the Leeds Teaching
Hospital had been embedded in 14 TMA blocks. Each GC was
represented by a minimum of 2 cores from the area of highest
tumor cell density.

This cohort was split approximately 2 to 1 into a discovery co-
hort (n¼ 349, the younger tissue samples) and a validation cohort
(n¼ 154, older tissue samples). Splitting by tissue age allowed to
assess and control for a potential decline of antigenicity over time
(22). Patient age, sex, and tumor stage were balanced between the
cohorts (Table 1). EBVþ, MMRd, and intestinal-type tumors were
more common in the validation cohort. This may be because of
changes in GC biology over the last decades (23) and random vari-
ation when analyzing small subgroups. Eight cases that received

Figure 1. Immune staining and computational analysis workflow.

Table 1. Clinical and pathological characteristics of the discovery and validation cohorts

Variables Discovery cohort (n¼ 341) Validation cohort (n¼ 154) Pa

Median year of resection 1997 1992
Median age (range), y 72.0 (29.4–90.0) 70.5 (33.8–90.5) .30
Sex

Male 63.3% (216) 66.2% (102)
Female 36.1% (123) 33.8% (52) .59

pT (UICC TNM 7th edition)
pT1 8.8% (30) 5.8% (9)
pT2 7.9% (27) 10.4% (16)
pT3 28.4% (97) 36.4% (56)
pT4 54.8% (187) 47.4% (73) .30

pN (UICC TNM 7th edition)
pN0 25.9% (88) 25.3% (39)
pN1 to pN3b 74.1% (252) 74.7% (115) .79

pM (UICC TNM 7th edition)
pM0/Mx 97.4% (332) 95.5% (147)
pM1 2.6% (9) 4.5% (7) .40

Stage (UICC TNM 7th edition)
I 12.6% (43) 9.1% (14)
II 24.4% (83) 28.6% (44)
III 60.3% (205) 57.8% (89)
IV 2.6% (9) 4.5% (7) .69

Lauren classification
Intestinal 56.0% (191) 75.2% (115)
Diffuse 27.3% (93) 13.7% (21)
Mixed 16.4% (56) 11.1% (17) <.001

MMR status
Proficient 91.7% (299) 84.4% (130)
Deficient 8.3% (27) 15.6% (24) .02
No MMR data available 4.3% (15) 0.0% (0)

EBV status
Negative 97.5% (306) 92.2% (141)
Positive 2.5% (8) 7.8% (12) .02
No EBV data available 7.7% (27) 0.6% (1)

aTwo-sided, v2 tests. EBV ¼ Epstein–Barr virus; MMR ¼ mismatch repair; TNM ¼ Tumour, Regional Lymph Node and Metastasis Classification of Malignant Tumours;

UICC ¼ Union for International Cancer Control.
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chemotherapy were excluded, leaving only GCs treated with sur-
gery alone. CSS was available for 327 cases in the discovery cohort
(median follow-up 6.6years) and for 147 in the validation cohort
(median follow-up 7.3 years). These constituted the final analysis
groups. CSS was lower in the discovery cohort than in the valida-
tion cohort (Supplementary Figure 1, available online). Consistent
with recently published data for Western patients (24), survival of
MMRd and MMR proficient (MMRp) GC cases was similar

(Supplementary Figure 2, available online), and EBVþ cases had a
better survival (7). The higher proportion of EBVþ GCs may there-
fore contribute to the better survival of the validation cohort.

Multicolor Immunofluorescence Staining

Each cohort was batch stained for CD8 (cytotoxic), CD4 (helper),
CD45RO (memory), and FOXP3 (regulatory) T cells and pan-
cytokeratin (epithelial cells) (workflow: Figure 1).

Figure 2. Correlation of pathologist and computational immune cell quantification. A) Correlation of CD8 cells, CD45RO cells, and FOXP3 cells counted independently

by 2 pathologists (n¼ 20 cores). B) Correlation of computational quantification with counts by a pathologist in the discovery cohort (n¼ 40). C) Correlation of computa-

tional quantification with counts by a pathologist in the validation cohort (n¼40). The grey 45-degree line indicates where identical counts lie; where computational

counts were greater than manual counts, the data points are above the line, and where computational counts were lower than manual counts, the data points are be-

low. The Spearman correlation coefficient and P values are shown. All tests were two-sided.
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Training and Validation of the Computational Image
Analysis

Following scanning with an automated microscope, 2 patholo-
gists defined the threshold settings for computational cell de-
tection. Autofluorescence of elastin fibers and nonspecific
staining led to high false-positive numbers in the CD4 channel.
A threshold for reliable CD4-cell detection could therefore not
be defined, and these were not included in the analysis. CD8
and CD45RO stains showed specific membranous staining of
cells identifiable as lymphocytes on subsequent hematoxylin
and eosin staining of the same slides. FOXP3 showed dim to in-
tense levels of nuclear staining. All threshold settings were opti-
mized to avoid false-positive detection.

For each marker, stained cells were also counted in 20 ran-
domly chosen cores independently by 2 pathologists. Manual
counts from both pathologists showed a high correlation
(Spearman r¼ 0.858–0.968; all P < .001), demonstrating that the
densities of these cells can be reproducibly determined
(Figure 2A). A pathologist who was blinded to the computational

analysis results subsequently counted cells in 40 cores of each
cohort. Comparison with the cell counts from the optimized
computational quantification showed a high correlation
(Spearman r¼ 0.845–0.986; all P values < .001; Figure 2, B and C).
Computational quantification had a tendency to underestimate
cell numbers (apparent in Figure 2, B and C, where data points
deviate below the 45-degree line, which indicates perfect agree-
ment), particularly when there were few immune cells per core
and more pronounced for FOXP3 cells and CD45RO cells than for
CD8 cells. However, the high Spearman correlation coefficient
shows that this does not substantially impair the ranking of
samples relative to each other. This validated the computa-
tional cell quantification.

CD8-cell, CD45RO-cell, and FOXP3-cell densities per square
millimeter were calculated for each core, and the average den-
sity across all cores per GC case was used for analysis. All im-
mune cell types showed higher densities in the discovery
cohort compared with the validation cohort (Supplementary
Figure 3, available online). This could be a consequence of the
higher tissue age in the validation cohort (Table 1), which can

Figure 3. Kaplan–Meier analysis of cancer-specific survival by CD8-cell, CD45RO-cell, and FOXP3-cell density in the discovery cohort. A) Cancer-specific survival for

each of the 5 equal-sized groups. B) Cancer-specific survival for the 3 density groups. Dashed lines indicate the median survival time for individual groups. P values

were calculated with a log-rank test. All tests were two-sided.
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impair antigen stability or of batch effects of multicolor immu-
nofluorescence staining.

Correlation of T-Cell Densities With Cancer-Specific
Survival in the Discovery Cohort

The discovery cohort was split into 5 equal-sized groups based
on the density of each of the immune cell subtypes (C1-lowest
to C5-highest densities). CSS did not statistically significantly
differ for CD8 cells (P ¼ .08; Figure 3A), although tumors with
the lowest densities (C1) showed a trend toward inferior sur-
vival. CD45RO-cell (P ¼ .001) and FOXP3-cell (P < .001) densities
were both statistically significantly associated with CSS and
showed similar patterns; tumors with the highest densities (C5)
had the best survival, those with the lowest densities (C1) had

the poorest CSS with a rapid decline over the first 2 years, and
groups C2–C4 showed intermediate survival.

We therefore reclassified groups C2–C4 into 60% of cases
with intermediate (CD45ROInt, FOXP3Int), 20% of cases with low
(CD45ROLo, FOXP3Lo), and 20% of cases with high densities
(CD45ROHi, FOXP3Hi). These consolidated groups showed highly
statistically significant CSS differences (P < .001; Figure 3B) with
clinically meaningful differences in median CSS. Examples of
immune infiltrates in GCs with low, intermediate, and high im-
mune cell densities are shown (Figure 4A).

Validation of the FOXP3 Staining

The strong association of higher FOXP3-cell infiltrates with bet-
ter CSS was surprising as regulatory T cells are immunosup-
pressive and predict for a poor prognosis in some cancer types

Figure 4. Multimodal data validation. A) Representative multicolor fluorescence images of TMA cores with high (Hi), intermediate (Int), and low (Lo) density infiltrates

of CD8 cells (green), CD45RO cells (red), FOXP3 cells (yellow). All scale bars ¼ 50 lm. B) Correlation of computationally counted FOXP3 cells stained with chromogenic vs

fluorescent immunohistochemistry from 167 patients. The grey 45-degree line indicates where identical counts lie. The Spearman correlation coefficient and P values

are shown. C) Kaplan–Meier analysis of cancer-specific survival by CD45RO-cell and FOXP3-cell density in the validation cohort. Dashed lines indicate the median sur-

vival time for individual groups. P values were calculated with a log-rank test. All tests were two-sided.
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(25). We therefore validated the fluorescent FOXP3 staining
against a clinically established chromogenic FOXP3 stain.
Staining of 472 cores from 167 GCs with this assay followed by
computational quantification showed a high correlation
(Spearman r¼ 0.830; P < .001) with fluorescent staining
(Figure 4B). Computational cell counts of fluorescent FOXP3
staining were systematically lower than computational counts
of the chromogenic stain, revealing systematic biases between
the methods. Yet, the high correlation coefficient shows that
the ranking of samples remains consistent and validates fluo-
rescent FOXP3-cell quantification.

Validation of the Prognostic Role of CD45RO- and
FOXP3-Cell Infiltrates

We next assessed whether CD45RO- and FOXP3-cell densities
were also prognostic in the validation cohort. Identically to the
approach used in the discovery cohort, cases were split into
tumors with the highest 20%, intermediate 60%, and lowest 20%
of immune cell infiltrates. CD45RO-cell and FOXP3-cell densities
were also statistically significantly associated with CSS in this
cohort (P ¼ .02 and P ¼ .003, respectively; Figure 4C), validating
them as prognostic markers in Western GC patients. CSS of the
CD45ROLo and FOXP3Lo groups was less distinct from that of the
CD45ROInt and FOXP3Int groups in the validation cohort com-
pared with the discovery cohort. Yet, the rapid decline over the
first 2 years remained apparent for CD45ROLo and FOXP3Lo

cases, suggesting that these are important subgroups.

Multivariable Analysis

We next investigated whether CD45RO cells and FOXP3 cells
were independent predictors of CSS by analyzing them with tu-
mor stage, Lauren classification, EBV, and MMR subtypes in a
multivariable analysis. CD45RO-cell and FOXP3-cell densities,
as well as pathological tumour (pT) and pathological regional
lymph node (pN) stage, were the only statistically significant
predictors of CSS in the discovery and validation cohorts
(Table 2; Supplementary Table 5, available online).

Combining CD45RO- and FOXP3-Cell Densities Into the
Stomach Cancer Immune Score

Because CD45RO-cell and FOXP3-cell densities were indepen-
dent prognostic factors, we investigated whether they could be
combined to further refine CSS prediction. A 3x3 contingency
table defined 9 possible combinations of CD45RO-cell and
FOXP3-cell density groups (Figure 5A). The most divergent com-
binations of CD45ROHiFOXP3Lo and CD45ROLoFOXP3Hi com-
prised very few cases (n¼ 11 and n¼ 2, respectively), which
precluded meaningful analysis, and were excluded. CSS was
similar for some groups, allowing consolidation into 4 catego-
ries, termed the Stomach Cancer Immune-Score (STIM-score):
CD45ROIntFOXP3Lo, CD45ROLoFOXP3Int, and CD45ROLoFOXP3Lo

were combined into STIM1; CD45ROHiFOXP3Int and
CD45ROIntFOXP3Hi into STIM3. CD45ROHiFOXP3Hi showed the
best CSS and were defined as STIM4, and the largest group of
CD45ROIntFOXP3Int tumors was defined as STIM2. Re-analysis
by STIM-score was highly statistically significant in the discov-
ery (P < .001; Figure 5B) and validation cohorts (P ¼ .002;
Figure 5C).

Association of CD45RO- and FOXP3-Cell Densities With
Molecular Characteristics

MMRd and EBVþ GCs are considered particularly immunogenic
because of high mutation burdens and virus presence, respec-
tively. We therefore assessed how immune cell densities dif-
fered between these subtypes. Of EBVþ tumors from the
discovery and the validation cohort, 87.5% and 50.0%, respec-
tively, were STIM3 or STIM4 (Figure 5, B and C), supporting
higher immune recognition of EBVþ compared with
MMRp&EBV- GCs of which only 30.9% in the discovery cohort
and 26.2% in the validation cohort were STIM3 or STIM4. The
percentage of GCs that were classed as STIM3 or STIM4 was
similar for MMRd GCs and MMRp&EBV- GCs (Figure 5, B and C).

Comparing immune cell densities directly between molecu-
lar subgroups showed that CD45RO-cell densities were statisti-
cally significantly higher in EBVþ than in MMRp&EBV- GCs in
the discovery and the validation cohorts (Figure 6, A and B).
FOXP3-cell densities were statistically significantly higher in

Table 2. Final statistically significant variables of the multivariable Cox regression analysis of the discovery cohort and assessment of these in
the validation cohort

Variable

Discovery cohort Validation cohort

HR (95% CI) Pa HR (95% CI) Pa

CD45RO-cell density
Hi 1.00 (Reference) — 1.00 (Reference) —
Int 1.71 (1.11 to 2.65) .02 1.59 (0.74 to 3.44) .24
Lo 2.09 (1.25 to 3.48) .005 2.59 (1.09 to 6.18) .03

FOXP3-cell density
Hi 1.00 (Reference) — 1.00 (Reference) —
Int 2.00 (1.21 to 3.29) .007 3.19 (1.25 to 8.15) .02
Lo 2.79 (1.54 to 5.08) .001 3.28 (1.19 to 9.06) .02

Stage (UICC TNM 7th Edition)
pT3/4 1.00 (Reference) — 1.00 (Reference) —
pT1/2 0.22 (0.10 to 0.45) <.001 0.29 (0.10 to 0.80) .02
pN1–3 1.00 (Reference) – 1.00 (Reference) —
pN0 0.45 (0.29 to 0.70) <.001 0.37 (0.18 to 0.74) .005

aTwo-sided, Cox regression analysis. CI ¼ confidence interval; HR ¼ hazard ratio; TNM ¼ Tumour, regional lymph node and metastasis classification of malignant

tumours; UICC ¼ UICC ¼ Union for International Cancer Control.
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Figure 5. Combination of CD45RO-cell and FOXP3-cell densities into the Stomach Cancer Immune-Score (STIM-score). A) A 3x3 contingency table of CD45RO-cell and

FOXP3-cell density classes. A Kaplan–Meier analysis of the 7 color-coded groups is shown on the right. B) Kaplan-Meier analysis of the consolidated STIM-score in the

discovery cohort and (C) the validation cohort. Dashed lines indicate the median survival time for individual groups. The data table shows the distribution of EBVþ,

MMRd, and MMRp/EBV- cases according to STIM-score. P values were calculated with a log-rank test. All tests were two-sided. EBV ¼ Epstein–Barr virus; MMRd ¼mis-

match repair deficient; MMRp ¼mismatch repair proficient.
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Figure 6. Association of CD45RO-cell and FOXP3-cell densities with MMR and EBV status in (A) the discovery cohort and (B) the validation cohort. Densities were offset

by 1 before log transformation. Horizonal bars indicate the mean, and P values were calculated with unpaired t tests on nontransformed data. All tests were two-sided.

EBV ¼ Epstein–Barr virus; MMRd ¼mismatch repair deficient; MMRp ¼mismatch repair proficient.
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EBVþ GCs compared with MMRp&EBV- tumors in the discovery
cohort (Figure 6A) but not in the validation cohort (Figure 6B).
MMRd GCs only showed a higher density of CD45RO cells com-
pared with MMRp&EBV- GCs in the discovery cohort (Figure 6A).
The small number of EBVþ and MMRd cases may have contrib-
uted to these differences between discovery and validation
cohorts.

Discussion

Multicolor immunofluorescence coupled with computational
image analysis identified and validated CD45RO-cell and
FOXP3-cell densities as prognostic markers in Western GC
patients, independent of stage, MMR and EBV status, and other
pathological features. Those 20% of patients with the highest
densities of CD45RO cells and of FOXP3 cells had a particularly
good CSS, whereas the 3 groups with intermediate densities
showed similar CSS. GCs with the lowest densities showed a
rapid early decline in CSS. Most previous GC studies defined
high and low T-cell infiltrate groups based on a median cutoff
value (11–13), which may explain the weak prognostic effect
they found for immune infiltrates compared with the large dif-
ferences shown by our analysis.

Our results provide important insights into GC immunobiol-
ogy, suggesting that immunogenicity is low or that immuno-
suppressive factors constrain immune recognition in the
majority of tumors, so that only 20% of cases achieve major sur-
vival benefits from T-cell infiltration. CD45RO cells are consid-
ered long-lived memory T cells, which are generated in
response to cognate antigen recognition (10). Abundant CD45RO
cells may, hence, identify GCs that have been actively detected
by T cells. In contrast, CD8 cells were not statistically signifi-
cantly associated with CSS, perhaps indicating that a large pro-
portion of these are passive bystanders that do not recognize
cancer cells (26). FOXP3 is a marker for regulatory T cells de-
scribed as immunosuppressive. The paradoxical association of
a cell type that is thought to inhibit antitumor immunity with a
good prognosis may point to the existence of distinct subtypes
of suppressive and nonsuppressive regulatory T cells, as re-
cently described in CRCs (27). Furthermore, in vitro experiments
reported FOXP3 expression as an early activation marker in T
cells without suppressive function (28). Our results warrant fur-
ther investigation of the biology of FOXP3 cells in GC and sug-
gest caution when applying immunotherapies that inhibit or
deplete regulatory T cells in GCs.

With response rates for PD1/PDL1 inhibitors of 10%–15% (16–
18), immunotherapy sensitivity is also confined to a small sub-
group of GCs. In addition, PD1/PDL1 inhibitors are predomi-
nantly effective against tumors that are spontaneously
recognized by the immune system, which manifests in higher
T-cell infiltrates and interferon-gamma signatures, among
others (29). Investigating whether high CD45RO-cell or FOXP3-
cell infiltrates can identify GCs with high spontaneous immu-
nogenicity that will also respond to immunotherapy will be an
important next step, particularly as PDL1 expression is a poor
predictive biomarker for checkpoint inhibitors in GC (18,30).
Understanding the molecular basis that results in low immune
cell infiltrates in 20% of cases with the associated rapid survival
decline may lead to novel therapeutic opportunities for this
group of patients.

Our data furthermore revealed high CD45RO-cell and FOXP3-
cell infiltrates in EBVþ GCs. Surprisingly, T-cell densities in
MMRd GCs were similar to MMRp/EBV- GCs. We recently

showed that the hypermutator phenotype in MMRd GCs confers
extreme intratumor heterogeneity that enables the evolution of
multiple genetic immune-evasion events within individual
tumors (31). This ability to readily acquire mutations in
immune-evasion regulators, and potentially the activity of non-
genetic immune escape mechanisms such as high beta-catenin
activity (32) or mesenchymal features (33), may perhaps explain
low immune infiltrates in many MMRd GCs.

This large study in GC patients who had been treated with
surgery alone defines T-cell subtypes that influence the natural
history of GCs. This unique cohort can be used as a comparator
when assessing the predictive role of immune cells in GC im-
munotherapy trials that do not include an untreated control
group. Comparison to GCs treated with perioperative or adju-
vant chemotherapy should be undertaken to further define the
predictive role of T-cell infiltrates for chemotherapy outcomes.

We finally devised a strategy combining both cell types into
the STIM-score, which is more straightforward to apply in the
clinic than 2 separate markers and identifies patient groups
with clinically meaningful differences in CSS. This could be use-
ful to identify patients with low recurrence risks who may not
require intensive adjuvant or perioperative chemothrapy or
chemoradiotherapy or to prioritize those patients with very
poor survival outcomes for treatment intensification trials.

Before the STIM-score can be clinically applied, optimal T-
cell density cutoffs should be defined in diagnostic GC biopsies
and in resected GCs whole slides because these may differ from
cutoffs determined in TMAs. Limitations of this study include a
lack of CD4-cell analysis, the specimen age of up to 33 years,
and the absence of samples from tumor margins in the TMA,
which precluded investigating tumor margins and centers simi-
lar to the immunoscore approach (8–10). Finally, independent
validation in GC cohorts from additional centers should be
undertaken.
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