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Abstract
There has been an explosion of use for quantitative image 
analysis in the setting of lung disease due to advances in ac-
quisition protocols and postprocessing technology, includ-
ing machine and deep learning. Despite the plethora of pub-
lished papers, it is important to understand which approach 
has clinical validation and can be used in clinical practice. 
This paper provides an introduction to quantitative image 
analysis techniques being used in the investigation of lung 
disease and focusses on the techniques that have a reason-
able clinical validation for being used in clinical trials and 
patient care. © 2021 S. Karger AG, Basel

Introduction

Quantitative CT scanning was introduced in the 1980s, 
but in the last decade, there has been an explosion in the 
rate of development of both image acquisition and post-
processing technology, including machine and deep 

learning, resulting in novel investigation of both obstruc-
tive lung disease and interstitial lung disease (ILD) [1–3]. 
Volumetric thin-section CT imaging permits the assess-
ment of lung volume, regional gas volume, lung paren-
chyma, fissures, bronchovascular structures, and func-
tional parameters such as regional perfusion and ventila-
tion. These predominantly CT-derived parameters have 
been used to detect, quantitate, and follow the structural 
abnormalities in emphysema airway disease and ILD. 
This in turn has resulted in a growing interest for rigorous 
validation of quantitative imaging measures in the setting 
of drug/device discovery as well as for clinical care of pa-
tients. Conventional magnetic resonance imaging (MRI) 
even with new ultrashort echo time imaging of the lung 
parenchyma remains challenging [4]. Using more ad-
vanced techniques with hyperpolarized gases, MRI pro-
vides unique strategies for evaluating pulmonary struc-
ture and function at the alveolar level. Recent changes in 
the commercial landscape of the hyperpolarized gas field 
may allow this innovative technology to potentially move 
into the clinical environment, but for now, it remains 
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mostly a research tool [5]. This review summarizes the 
emerging role of quantitative image analysis (QIA) of 
chest CT for assessing the severity and disease activity of 
emphysema, airway disease, and ILD in routine clinical 
practice.

QIA Overview

Parenchyma
CT densitometry is the most established method of 

quantifying lung parenchyma on volumetric thin-section 
CT, acquired usually at total lung capacity (TLC). In the 
lung parenchyma, CT density measured in Hounsfield 
units (HU) is determined by the relative amounts of air, 
soft tissue, and blood in each volume element (voxel). 
Most scanner manufacturers now provide automated 
densitometry software, making density quantification 
more available. For the evaluation of ILD, the global his-
togram of lung density measures (skewness, kurtosis, and 
mean lung density) has been used. The deposition of in-
terstitial and alveolar matrix results in an increase in lung 
density manifest by a rightward shift of the CT frequency 

histogram and reduction of its peak (i.e., increasing mean, 
skewness, and kurtosis) [6, 7]. For emphysema, these al-
gorithms calculate the percentage of low-attenuation 
voxels at or below a given attenuation threshold, referred 
to as the percent emphysema or percent low-attenuation 
area. The optimal cutoff for thin-section CT is between 
−950 and −970 HU on the basis of comparisons with mac-
roscopic and microscopic morphometry of pathologic 
specimens [8, 9]. Another approach to quantify emphy-
sema is the “15th percentile” method or “Perc 15,” which 
reports the HU at the lowest fifteenth percentile of a cu-
mulative frequency distribution for all HU values [10, 
11].

Low-attenuation voxels can be due to both parenchy-
mal destruction and air trapping. As both can occur in 
COPD, it is important to evaluate each component. The 
densitometric parameters for quantification of air trap-
ping include the ratio of expiratory to inspiratory mean 
lung density [12, 13], the expiratory to inspiratory relative 
volume change of voxels with attenuation between −860 
and −950 HU [14, 15], and the percentage of voxels below 
−856 HU in expiration [16]. Volumetric nonrigid regis-
tration of inspiratory and expiratory allows biphasic 

Fig. 1. The classification of a parenchymal abnormality can be ex-
tended beyond density measures by using texture analysis which 
takes into account the pattern, the spatial relationships between 
voxels, and the magnitude of attenuation. Texture features are de-
rived from a region of interest converted to a numerical dimen-

sion, and the following calculation classification can be attributed 
to similar clusters of features. In a machine-learnt model, the clas-
sification is driven by visual classification of parenchymal pattern 
within the region of interest by an expert eye. Image courtesy of  
Grace Kim UCLA.
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characterization of each voxel for quantification of air 
trapping. To address the overlap with air trapping and 
emphysema parametric, response mapping has been pro-
posed. In this technique, volumetric nonrigid registration 
of inspiratory and expiratory enables biphase character-
ization of each voxel for classification and quantification 
of normal lung emphysema and air trapping [17–20].

Beyond density measures, texture analysis takes into 
account the pattern, the spatial relationships between 
voxels, and the magnitude of attenuation values to enable 
further characterization and quantitation of parenchymal 
pathology (Fig. 1) [21–23]. Methods such as run-length 
matrices, fractal measures, and gray-level co-occurrence 
matrices can be used to determine uniformity, shape, and 
other morphologically distinct features. In addition, dif-
ferent types of image filtration can be performed to re-
move noise, enhance edges, and emphasize or extract cer-
tain features. This can be used to suggest specific subtypes 

of emphysema or to differentiate among visually and 
pathologically distinct causes of diffuse low-attenuation 
areas, such as air trapping and other cystic lung processes. 
In the setting of diffuse lung disease, texture features can 
differentiate the characteristics of ground glass, reticula-
tion with and without architectural destruction, and hon-
eycomb cysts.

Airways
The airways can be segmented to the level of first 6 to 

10 bronchial generations, from which measurements 
can be made using multiplanar reformatted images 
(Fig.  2) [24–34]. The common parameters obtained 
from airway measurements include the total bronchial 
area or outer airway wall area, the wall area, the internal 
or lumen area, and the wall thickness. The radiologic as-
sessment of airway disease severity is more challenging 
due to the substantial variability in airway size within 
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Fig. 2. The airways can be segmented to the 
level of the first 6 to 10 bronchial genera-
tions (a, b), from which measurements can 
be made using multiplanar reformatted 
images. The radiologic assessment of air-
way disease severity is more challenging 
due to the substantial variability in airway 
size within and between subjects, even 
among healthy individuals. To facilitate 
comparisons between individuals, a useful 
measure known as Pi10 which represents 
the square root of the wall area for a hypo-
thetical airway with an internal perimeter 
of 10 mm has become popular. The Pi10 is 
based on the linear relationship between 
the square root of the airway wall area and 
the internal perimeter of the airway (c) 
(courtesy of Eva Van Rikxoort Thirona).
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and between subjects, even among healthy individuals. 
To facilitate comparisons between individuals, a useful 
measure known as Pi10 which represents the square 
root of the wall area for a hypothetical airway with an 
internal perimeter of 10 mm has become popular. The 
Pi10 is based on the linear relationship between the 
square root of the airway wall area and the internal pe-
rimeter of the airway (Fig. 3) [33, 35]. Functional respi-
ratory imaging is a postprocessing technology that uti-
lizes computational fluid dynamics to assess airway vol-
ume and resistance [36]. Despite a lot of work, the 
reproducibility, clinical validity, and ease of use of air-
way measurements remain challenging, and they have 
not been widely used in the clinical setting.

Blood Vessels
New QCT methods are being developed to assess ves-

sel structure and perfusion to better understand the rela-
tionship between these changes, emphysema and ILD. 
Several approaches exist for automated vessel segmenta-
tion allowing for some measurements including total 
cross-sectional area, volume of the small vessels (3D), and 
the ratio of blood vessel volume in vessels <5 mm2 in cross 
section (BV5) to total blood vessel volume (as a measure 
of pruning). Cross-sectional area of subsegmental small 
pulmonary vessels has been shown to correlate with the 

extent of CT density measures of emphysema and reflects 
difference between COPD phenotypes [37, 38]. The vol-
ume of segmented pulmonary vessels, including arteries 
and veins but excluding vessels at the hilum, expressed as 
a percentage of lung volume has been proposed as an in-
dependent measure of IPF severity [39–41]. Beyond 
structure perfusion can be assessed using dual-energy 
CT. This has led to the identification of regional perfusion 
heterogeneity within subjects with the same pattern and 
can be used to monitor and document reversible vaso-
constriction[42, 43]. The clinical significance of these 
findings still needs to be clarified.

Fissures
The fissures subdivide the human lungs into different 

lobes, and air may flow through between lobes resulting 
in interlobar collateral ventilation (Fig. 4) [44]. Identify-
ing the fissures is achieved using an anatomic knowledge-
based model (usually airways and vessel trees), gray-level, 
and shape information [45–49]. The assessment of the 
completeness or integrity of fissures, as a biomarker for 
collateral flow, was first applied in a subgroup analysis of 
subjects undergoing endobronchial valve (EBV) place-
ment for treatment of emphysema [45]. In this prespeci-
fied analysis, patients with a fissure integrity score >90% 
of the fissure abutting the treatment lobe were shown to 
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Fig. 3. COPD is widely recognized as a complex heterogeneous 
syndrome including emphysema and airway disease. There has 
been increasing interest in including visual and QIA assessments 
of emphysema (CT density scores) and airways (direct airway and 
indirect air trapping) to better phenotype patients with COPD. 
Patients with airway-dominant phenotype are associated with in-
creased chronic cough and exacerbations. In patients with COPD, 

there is an increased number of airways with thickened walls but 
not dilated lumens as shown visually in this tribox plot, and the 
number of thickened airways can be expressed as the percentage 
of airways within the lung or lobe to show the distribution and 
heterogeneity of the airway involvement (courtesy of Eva Van 
Rikxoort Thirona). QIA, quantitative image analysis.
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have significant improvement in their forced expiratory 
volume in 1 s (FEV1) compared to those whose FIS was 
<90% [41]. The majority of automated fissure detection 
methods use feature descriptors targeted toward normal 
fissure anatomy [46–56]. Validation of fissure integrity, 
as a marker for collateral flow between lobes, has been 
confirmed both indirectly by improved treatment out-
come as well as directly from local flow measurements 
within the lobes [57–60]. There is no relationship be-
tween fissure integrity and type or extent of emphysema 
and association between fissure integrity and pulmonary 
function measures, such as FEV1 and FEV1/FVC [61–
64].

Ventilation/Perfusion
MRI using hyperpolarized gases allows direct visual-

ization of the airspaces of the lung and provides for eval-
uation of pulmonary structure and function. Recent stud-
ies in humans using hyperpolarized 3He and increasingly 
the more available hyperpolarized 3XE to measure venti-
lation, diffusion, and partial pressure of oxygen have been 
useful [65–75]. Inhaled 3Xe is also readily dissolvable in 
lung tissue allowing for the evaluation of gas exchange, 
uptake, and transport [76]. While still very much limited 
to centers of expertise, recent advances in gas polarization 
technology make it increasingly feasible to deploy these 
techniques into the clinical setting [77].

QIA Assessing the Severity and Disease Activity of 
Emphysema

COPD Phenotypes
COPD is widely recognized as a complex heterogeneous 

syndrome including emphysema and airway disease. There 
has been increasing interest in including visual and QIA 
assessments of emphysema (CT density scores) and air-
ways (direct airway and indirect air trapping) to better phe-
notype patients with COPD [78, 79]. These approaches 
have classified patients into emphysema or airway-domi-
nant and mixed phenotypes with variable proportions of 
patients falling into these categories in different COPD 
populations [80, 81]. The emphysema-dominant CT phe-
notypes have been shown to correlate with different pul-
monary function parameters [82], body mass index [83], 
dyspnea severity [84], exacerbations [85], rapid decline of 
FEV1 [86], and pulmonary-related mortality [87]. Patients 
with airway-dominant phenotype are associated with in-
creased chronic cough and exacerbations [88]. The mixed 
phenotype has shown associations with more severe dys-
pnea and more frequent hospitalizations than the other 
CT-based phenotypes [89]. The relationships of these phe-
notypes with clinical parameters and outcome measures 
have however varied between different studies suggesting a 
need to reach a consensus on the most appropriate method 
for quantifying emphysema and airways in COPD studies.

a b c

Fig. 4. For the selection of subjects for EBV, QCT is an essential 
component of both patient selection and lobe selection for treat-
ment. Using automated algorithms, the lungs are segmented to the 
lobar level (a), the fissure integrity or completeness is measured 
using a second algorithm (b) (incomplete coverage shown in red 
for minor fissure), and the percentage of pixels below −920 and/or 

−950 HU (depending on valve manufacture guidelines) in each 
lobe (shown by the pixel overlay) is calculated to assess disease se-
verity in each lobe and the homogeneity in disease destruction be-
tween upper and lower lobes (c) (courtesy of Eva Van Rixoort Thi-
rona). EBV, endobronchial valve.
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Quality of Life and Symptom Measures
CT density measures of emphysema extent have cor-

related with several QOL tools including the ST Georges 
Respiratory Questionnaire (SGRQ), multidimensional 
Body Mass Index, Airflow Obstruction, Dyspnea, Exercise 
(BODE) score, and Medical Research Council (MRC) 
tool. Increased CT density scores reflecting increased pa-
renchymal destruction have been shown to be predictive 
of clinically significant changes in these scores [90–95]. 
Interestingly, airway-predominant disease phenotype co-
horts are associated more strongly with changes in the 
SGRQ, while emphysema-predominant phenotype shows 
more changes with BODE. Increased dyspnea has been 
independently associated with both emphysema and air-
way disease identified on chest CT scans of subjects with 
COPD [96, 97]. Even among individuals without COPD, 
emphysema on chest CT has been associated with dys-
pnea. Airway wall thickening (Pi10) has been associated 
with higher COPD Assessment Test scores, and the pa-
tient reported presence of cough, wheeze, and sputum 
[96–100].

Lung Function
CT density measures of emphysema are for the most 

part inversely correlated with both absolute and percent-
predicted FEV1 [101–103], although there is heterogene-
ity in the published data. Much of the heterogeneity is due 
to differences in acquisition parameters, as well as differ-
ences in segmentation and quantitation algorithms [103]. 
The importance of standardized noncontrast thin-sec-
tion CT performed at suspended full inspiration is very 
important. CT density and gas transfer measures are also 
significantly correlated with the variation again being re-
duced by standardizing for CT acquisition parameters. 
Functional respiratory imaging is an alternative approach 
for observing changes in airway volume and resistance 
and has been shown to be more sensitive than FEV1 [104, 
105]. CT-based measures of TLC demonstrate good cor-
relation with TLC measured by plethysmography, the 
former may be underestimated, particularly in the pres-
ence of air trapping [106, 107]. Thus, a normal TLC on 
chest CT suggests the absence of restrictive lung physiol-
ogy, and a high TLC likely indicates the presence of hy-
perinflation.

Longitudinal studies designed to evaluate lung func-
tion decline have found CT density measures are inde-
pendently associated with the rate of annual FEV1 de-
crease. Functional small airway disease on parametric re-
sponse mapping has also been correlated with lung 
function decline in patients with emphysema. CT mea-

sures of small airway abnormality have been demonstrat-
ed in current and former smokers even without spiromet-
ric evidence of obstruction. These results suggest that 
subjects with mild to moderate COPD and smokers with 
preserved pulmonary function who have evidence of em-
physema or air trapping on chest CT may be at increased 
risk for disease progression.

Collateral Ventilation
Quantitative CT analysis of fissure integrity or com-

pleteness has been shown to be a useful surrogate mea-
sure of collateral ventilation in selecting patients for en-
dobronchial treatment of emphysema (Fig. 1) [50, 108–
110]. QCT Fissure Integrity Score (FIS) has been 
validated in this setting using the Chartis device, which 
directly measures collateral flow and treatment outcome 
defined as target lobe value reduction (TLVR) ≥350 mL 
[111]. Patients with an incomplete fissure (and thus sig-
nificant CV) have a significantly lower benefit from valve 
treatment, as the occluded lobe can be backfilled with air 
through the collateral channels [111, 112]. The accuracy 
for correctly classifying and predicting therapeutic TLVR 
with EBV was similar for physiologic measurement using 
the Chartis system and structure assessment of fissures on 
HRCT. Patients with TLVR ≥350 mL had statistically sig-
nificant improvement in respiratory function, exercise 
performance, and quality of life measures [60, 111–114]. 
More recent data support the use of quantitative CT mea-
surements to screen in patients for further analysis and/
or treatment with fissure completeness [56, 104, 113]. 
The QCT evaluation is noninvasive and thus is increas-
ingly used as the screening test of choice.

Exacerbations
QCT measures of emphysema extent, change in em-

physema extent score, airway lumen, and wall thickness 
have been shown to be associated with an increase in an-
nual COPD exacerbation rate and duration irrespective 
of degree of spirometry measure airflow limitation in the 
COPD gene study [88, 115–118]. Another QCT measure 
of the ratio of the pulmonary artery diameter to the aorta 
diameter >1 has also been demonstrated to be a strong 
and independent predictor of severe exacerbations, even 
when adjusted for lung function and prior history of ex-
acerbations [119].

Mortality
A higher CT density score for emphysema reflecting 

increased amount of emphysema is a significant indepen-
dent predictor of all-cause, respiratory, or cardiovascular 
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mortality in smokers with and, notably, without COPD 
[87, 120–122]. This is true for both visual and quantitative 
assessments of emphysema. There is a well-documented 
relationship between QCT emphysema scores and the 
Body Mass Index, Airflow Obstruction, Dyspnea, and Ex-
ercise (BODE) index, a well-validated predictor of mor-
tality in subjects with COPD [87, 99, 123–127]. This rela-
tionship is strongest with FEV1, but there are indepen-
dent significant relationships between emphysema and 
the other BODE components including body mass index, 
modified Medical Research Council dyspnea scale 
(mMRC), and exercise tolerance as measured by the 
6-min walk distance (6MWD). The relationship between 
quantitative measures and patient outcomes in COPD is 
less well defined. In one study, a relationship between seg-
mental wall area percentage and BODE score was dem-
onstrated, albeit it is much weaker than the relation with 
quantitative emphysema measures [128]. However, in 
other studies, airway wall thickness as measured by Pi10 
was not associated with increased mortality. The extent 
of bronchiectasis has been shown to be associated with 
decreased survival in patients with COPD [87, 124].

Drug and Device Discovery
QCT has the potential to offer new biomarkers to ac-

celerate drug discovery through either enriching cohorts 
based on CT phenotypes or offering more specific region-
al measures not possible with conventional techniques. 
The most validated of these biomarkers is the use of CT 
density measures for assessing therapy in the setting of al-
pha-1 antitrypsin deficiency patients. In 2 trials, changes 
in CT density were the primary outcome measure [129, 
130]. The Perc CT density measure was a log-transformed 
and volume-adjusted study. The duration of this study was 
2–3 years, and the rate of density decline was measured in 
g/L−1 per year. In these studies, only a low-to-moderate 
correlation between CT density and FEV1, KCO, and ex-
ercise tolerance was shown, further emphasizing role of 
CT density as an independent biomarker. QCT has also 
been used to enrich cohorts for trials evaluating EBV ther-
apies by assessing extent of emphysema fissure integrity 
scores to ensure target lobes were good candidates for 
therapy. Also, TLVR has been used as a measure of suc-
cessful lobar volume reduction with an MICD of 350 mLs 
proposed as meaningful treatment response.

a b c

d e f

Fig. 5. QLF can be used to measure the extent of fibrosis at baseline 
and also the change in fibrosis over time. A case of an 81-year-old 
male with IPF with baseline and follow-up with clear progression 
HRCT longitudinal TLC scans (top): baseline (a), 1 year (b), and 

2 years (c); overlays of color QLF (blue + red) score at baseline QLF 
9% (415 mL) (d), 1-year QLF 14% (581 mL) (e), and 2-year QLF 
31% (1102 mL) (f); image courtesy of Grace Kim UCLA. TLC, to-
tal lung capacity.
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Interstitial Lung Disease

ILD Phenotype
HRCT is an essential component of an initial ILD eval-

uation and also has become part of the armamentarium 
of tools used for routine management of these patients. 
The visual pattern and distribution of fibrosis on HRCT 
diagnosis is a standard method for diagnosing the nature 
of the clinical diagnosis and outcome [131–135]. How-
ever, radiologic evaluation of ILD and further character-
ization of pulmonary fibrosis can be difficult even for the 
subspecialist radiologist. Studies have found only fair to 
moderate interobserver agreement for overall CT classi-
fication of pulmonary fibrosis [136, 137]. Machine-learnt 
texture feature algorithms have been shown to be power-
ful in distinguishing between normal parenchyma and 
abnormal parenchymal patterns due to fibrosis and 
ground glass (Fig.  5) [138, 139]. More recently, deep 
learning techniques have been shown to classify fibrotic 
lung disease with essentially equivalent performance to 
subspecialist radiologists [140]. These approaches may 
strengthen our ability to make predictions regarding out-
comes in patients with ILD, such as response to specific 
therapies and mortality, which could substantially im-
prove patient management [7, 140, 141].

Physiology
The relationship between pulmonary function tests 

and QCT measures of diffuse lung disease has been shown 
both at a single point intime and changes overtime. Sev-
eral machine-learnt algorithms have shown an inverse re-
lationship between the quantitated extent of fibrosis and 
forced viFVC measures on spirometry. In the setting of 
scleroderma lung, a similar relationship has been shown 
between the extent of lung involvement and DLCO [142]. 
Change in texture-based and QCT scores has been shown 
to correlate with changes in forced vital capacity (FVC). 
Interestingly, change in QCT texture measures after 4–6 
months has been shown to predict >10 FVC decline at 
12–18 months [143]. In this context, it is feasible that pa-
renchymal changes occur prior to deterioration of pul-
monary function tests. This has led to the increased use 
of CT to follow-up patients with diffuse lung disease, with 
the additional advantage of being able to better assess dis-
ease progression in patients with coexistent emphysema, 
since PFTs may be confounded by this overlap.

The GAP (gender, age, and physiology) model has 
been developed to improve the prognostication for pa-
tients with IPF. The addition of QCT measures of fibrosis 
extent has been shown to further improve the prognosti-

cation over the conventional model [7]. This suggests that 
QCT measures of structural abnormalities representing 
fibrosis are measuring additional attributes of the disease 
process that add to the evaluation of these patients. QCT 
fibrosis score has also been shown to be an alternative to 
DLCO diffusion capacity of carbon in a modified GAP 
assessment maybe offering a simpler method for deter-
mining risk of death in patients with IPF.

Mortality
IPF has a poor prognosis, with an overall median sur-

vival time of approximately 3 years [144, 145]. Predicting 
which course a patient’s disease will take remains a diffi-
cult challenge for clinicians and researchers [146–148]. A 
greater extent of fibrotic changes on HRCT is known to 
be predictive of mortality across the spectrum of ILD in-
cluding IPF, RA-ILD, SSc-ILD, chronic HP, pulmonary 
sarcoidosis [149], and unclassifiable ILD [150]. The ex-
tent of fibrosis by several QCT measures has been consis-
tently associated with survival in patients with IPF [151, 
152]. The extent of emphysema at CT (i.e., the emphy-
sema score) also has been associated with survival in pa-
tients with IPF; however, the findings are less consistent 
among studies. Using QCT in addition to PFTs provides 
more tangible evidence to help monitor patients with IPF, 
guide treatment decisions, and plan for transplant or pal-
liative care.

Drug Discovery
QCT methods for quantifying disease on HRCT could 

provide rapid, objective measurement of disease extent 
and change over time. In recent years, some of these tools 
have been used to analyze CT imaging data in clinical tri-
als both retrospectively and prospectively [153–157]. For 
QCT measures to be used as biomarkers for drug or device 
efficacy, the algorithms must be stable. There must be cut-
points defined for the detection of disease and established 
predictive or surrogate outcome measures of disease. For 
treatment efficacy to be assessed, the derived measure of 
disease extent must have algorithms that are stable and 
have established cutoff points for meaningful change. This 
requires extensive clinical validation beyond the initial de-
velopment and analytic validation. Almost all the algo-
rithms have initial analytic validation within the setting of 
a drug trial and few have had extensive clinical validation, 
but clearly this is an area of active research [149].

Clinical Application of QCT
The implementation of QCT into clinical practice re-

quires that the workflow be optimized from scan request 
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through image acquisition, analysis, and workflow. It is 
important that referring clinicians identify the clinical 
question to be addressed by the imaging and not simply 
order an imaging study. The acquisition protocol to per-
form quantitative analysis needs to be performed using the 
correct set of parameters including usually noncontrast, 

thin section <1 mm, and nonenhancing reconstruction 
Kernel [158, 159]. It is important to acquire the images at 
the correct suspended lung volume usually TLC for paren-
chyma measures of disease, functional residual capacity for 
airway measurements, or at residual volume for assess-
ment of air trapping [160]. Follow-up studies to assess 

Fig. 6. QCT is being used increasingly in 
patient care outside of the clinical trial set-
ting. CT chest reports are evolving from the 
traditional descriptive report with some-
times subjective qualitative estimate for 
disease burden by the radiologist to an au-
tomated report multiple algorithms run-
ning simultaneously to measure and popu-
late a report with the information needed 
for clinical care. An example of this is 
shown in the QCT report for chest CT 
studies in which the different findings are 
presented in a table with easy-to-identify 
normal and abnormal results, measures, 
and index image.
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change should be performed on the same CT machine if 
possible and with the same acquisition parameters and 
breathold. Artifacts such as patient motion, beam harden-
ing, variation in inspiratory effort, differences in image ac-
quisition and reconstruction techniques, or inaccurate 
preprocessing steps such as segmentation of anatomic 
structures affect accuracy and reproducibility of measures. 
The imaging chain should be automated to allow image 
processing, including segmentation and quantitative anal-
ysis, to be performed before the images are reviewed and 
reported on [161]. Ideally, the report should be structured 
to easily capture and depict the quantitative data (Fig. 3).

Conclusion

Increasingly, quantitative chest CT is finding applica-
tion in routine clinical care of patients (Fig. 6). Clinicians 
need to understand the different measures available from 

a plethora of software applications. They also must un-
derstand which algorithms have robust clinical valida-
tion, so that they can be used safely in clinical practice. It 
is important that standardized good-quality CT studies 
are acquired, requiring clear communication between cli-
nicians and radiologists. This communication will ensure 
that the correct CT study is performed and the correct 
quantitative measures are made to answer the clinical 
question.
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