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Abstract
Background: Exercise intolerance in heart failure with re-
duced ejection fraction (HFrEF) or heart failure with pre-
served ejection fraction (HFpEF) results from both cardiac 
dysfunction and skeletal muscle weakness. Respiratory mus-
cle dysfunction with restrictive ventilation disorder may be 
present irrespective of left ventricular ejection fraction and 
might be mediated by circulating pro-inflammatory cyto-

kines. Objective: To determine lung and respiratory muscle 
function in patients with HFrEF/HFpEF and to determine  
its associations with exercise intolerance and markers of  
systemic inflammation. Methods: Adult patients with HFrEF  
(n = 22, 19 male, 61 ± 14 years) and HFpEF (n = 8, 7 male,  
68 ± 8 years) and 19 matched healthy control subjects un-
derwent spirometry, measurement of maximum mouth oc-
clusion pressures, diaphragm ultrasound, and recording of 
transdiaphragmatic and gastric pressures following mag-
netic stimulation of the phrenic nerves and the lower tho-
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racic nerve roots. New York Heart Association (NYHA) class 
and 6-min walking distance (6MWD) were used to quantify 
exercise intolerance. Levels of circulating interleukin 6 (IL-6) 
and tumor necrosis factor-α (TNF-α) were measured using 
ELISAs. Results: Compared with controls, both patient groups 
showed lower forced vital capacity (FVC) (p < 0.05), maximum 
inspiratory pressure (PImax), maximum expiratory pressure 
(PEmax) (p < 0.05), diaphragm thickening ratio (p = 0.01), and 
diaphragm strength (twitch transdiaphragmatic pressure in 
response to supramaximal cervical magnetic phrenic nerve 
stimulation) (p = 0.01). In patients with HFrEF, NYHA class and 
6MWD were both inversely correlated with FVC, PImax, and 
PEmax. In those with HFpEF, there was an inverse correlation 
between amino terminal pro B-type natriuretic peptide levels 
and FVC (r = −0.77, p = 0.04). In all HF patients, IL-6 and TNF-α 
were statistically related to FVC. Conclusions: Irrespective of 
left ventricular ejection fraction, HF is associated with respira-
tory muscle dysfunction, which is associated with increased 
levels of circulating IL-6 and TNF-α. © 2020 S. Karger AG, Basel

Introduction

Heart failure (HF) is a highly prevalent disease that is 
associated with significant morbidity and mortality and 
therefore places a major financial burden on public health 
systems [1–4]. Approximately half of the patients have 
HF with reduced ejection fraction (HFrEF), while the re-
mainder have HF with preserved ejection fraction (HF-
pEF) [3]. Daily symptoms of HF are mainly driven by 
exercise intolerance and dyspnea [4].

Initial description of respiratory muscle involvement 
in HFrEF dates back to the 1990s [5]. Using invasive mea-
surement of transdiaphragmatic pressure following stim-
ulation of the phrenic nerves (referred to as “twitch” Pdi 
or twPdi when magnetically stimulated), it was shown 
that patients with HFrEF show impaired contractility of 
the diaphragm [6]. Measurement of twPdi is considered 
the gold standard of respiratory muscle strength testing 
because it overcomes most of the technical flaws associ-
ated with volitional tests such as forced vital capacity 
(FVC) or maximum inspiratory pressure (PImax) [7, 8]. 
Despite progress in the understanding of both the preva-
lence and clinical significance of diaphragm involvement 
in HFrEF, underlying mechanisms are still not well un-
derstood [9–13].

Chronic HF is associated with morphologic, histolog-
ic, and metabolic alterations of skeletal muscle. Loss of 
muscle mass is present even in non-cachectic patients 

with HF [9–13]. Probably dependent on disease severity, 
histologic abnormalities may include decreased capillary 
density, muscle fiber atrophy, and reduced electromyo-
graphic activity [9–13]. Metabolic changes include hypo-
perfusion of muscle tissue and impairment of oxidative 
and glycolytic pathways [9–13].

Circulating pro-inflammatory cytokines have been 
hypothesized as a potential mechanistic link between 
HFrEF and skeletal muscle dysfunction, and diaphragm 
weakness in particular [13]. Patients with severe HFrEF 
show increased levels of circulating pro-inflammatory cy-
tokines, including interleukin-6 (IL-6) and tumor necro-
sis factor-α (TNF-α), which relate to impaired functional 
status and worse prognosis [14–18]. These cytokines have 
been shown to directly impair muscle function in animal 
models [19]. To date, inspiratory muscle dysfunction in 
HFrEF patients has not been linked with immunological 
markers of the systemic inflammatory response.

In HFpEF, the understanding of respiratory muscle in-
volvement and its underlying mechanisms is currently 
poor. Whereas skeletal muscle involvement has been re-
ported to be less severe in patients with HFpEF than in 
those with HFrEF [18], recent animal studies have shown 
significant alterations of limb and respiratory muscle tis-
sue in rat models of HFpEF [20, 21].

Little is known about expiratory muscle involvement 
in both HFrEF and HFpEF. While it has been shown to 
occur in HFrEF, expiratory muscle weakness has not yet 
been shown to contribute to exercise intolerance or dys-
pnea and has never been comprehensively studied in HF-
pEF using invasive non-volitional tests, as recently re-
viewed [13]. As an innovative diagnostic method, mag-
netic stimulation of the thoracic expiratory nerve roots 
with recording of twitch gastric pressure (twPgas) has 
been introduced for non-volitional assessment of expira-
tory muscle function [5, 13, 22]. This case-control study 
investigated the extent and pathophysiological character-
istics of respiratory muscle dysfunction in patients with 
HFrEF and HFpEF, including assessment of exercise per-
formance and serum levels of circulating IL-6 and TNF-α.

Methods

Study Design and Participants
This cross-sectional case-control study was conducted from 

November 2017 to May 2019. Ethical approval was obtained from 
the local Ethics Committee (Ethikkommission der Ärztekammer 
Westfalen-Lippe und der Westfälischen Wilhelms-Universität 
Münster, Az. 2016-072-f-S). The study was registered and updated 
prospectively online (German Clinical Trial Register Identifier: 
DRKS00015912).
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Consecutive patients with chronic HF were recruited from the 
HF specialty outpatient clinic at Muenster University Hospital. In-
clusion criteria were >18 years of age and diagnosis of HFrEF or 
HFpEF in accordance with the current European Society of Cardiol-
ogy guidelines [4]. Patients were excluded if they met any of the fol-
lowing criteria: change in pharmacological and/or device-based 

therapy within the preceding 60 days; hospital admission requiring 
the administration of intravenous diuretics and/or invasive testing 
(coronary catheterization) within the preceding 30 days; intake of 
muscle relaxants; BMI >35 kg/m2; chronic obstructive pulmonary 
disease with GOLD class >II; significant lung emphysema; intersti-
tial lung disease; precapillary pulmonary hypertension confirmed 

Table 1. Demographic data and clinical characteristics of the study population

HFrEF 
(n = 22)

HFpEF 
(n = 8)

p value

Male, n (%) 19 (87) 7 (88) ns
Age, years 60.9±13.7 67.8±8.5 ns
BMI, kg/m2 29.5±5.0 27.6±4.2 ns
BSA, m2 2.1±0.2 2.0±0.1 ns
Ischemic heart disease, n (%) 14 (64) 2 (25) 0.04
Valvular disease, n (%) 6 (27) 4 (50) ns
Hypertension, n (%) 13 (59) 4 (50) ns
Diabetes, n (%) 7 (32) 3 (38) ns
Atrial fibrillation, n (%) 5 (23) 4 (50) 0.05
6-min walking distance 385±104 433±84 ns
NYHA class I, n (%) 4 (18) 0 (0) ns
NYHA class II, n (%) 10 (45) 4 (50) ns
NYHA class III, n (%) 7 (32) 3 (38) ns
NYHA class IV, n (%) 1 (5) 1 (13) ns

Laboratory values
Hemoglobin, g/dL 13.4±1.7 12.6±2.4 ns
Cr, mg/dL 1.5±0.7 1.2±0.2 ns
NT-proBNP, pg/mL 770 (392–1,914) 461 (299–840) ns

Pro-inflammatory cytokines, pg/mL
Interleukin-6 4.0 (3.0–6.0) 7.0 (4.5–11.3) ns
Tumor necrosis factor-α 10.5 (8.9–11.4) 11.2 (9.7–12.1) ns

Echocardiography
LVD, n (%) 16 (73) 1 (13) 0.01
LVEF, % 36.5±6.1 53.3±2.0 <0.01
Diastolic dysfunction (grades II–III), n (%) 3 (14) 2 (25) ns
Mitral regurgitation (grades II–III), n (%) 3 (14) 3 (38) 0.05
LAE, n (%) 15 (71) 5 (63) ns
LVH, n (%) 9 (41) 6 (75) 0.04
TAPSE <17 mm, n (%) 5 (23) 2 (25) ns
RAE, n (%) 4 (18) 3 (38) ns

Medication, n (%)
ACEI/ARB 12 (55) 5 (63) ns
ARNI 9 (41) 0 (0) 0.03
β-Blocker 22 (100) 7 (88) ns
Diuretics 18 (82) 6 (75) ns
Aldosterone antagonists 16 (73) 1 (13) 0.01

Values are mean±standard deviation, median (interquartile range), or number of patients (%). ACEI, angio-
tensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor-neprilysin 
inhibitor; BSA, body surface area; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with 
reduced ejection fraction; LAE, left atrial enlargement; LVD, left ventricular dilatation; LVEF, left ventricular 
ejection fraction; LVH, left ventricular hypertrophy; ns, not statistically significant (p > 0.05); NT-pro BNP, N-
terminal pro brain natriuretic peptide; NYHA, New York Heart Association; RAE, right atrial enlargement; 
TAPSE, tricuspid annular plane systolic excursion (∼right ventricular function).
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by right heart catheterization; concomitant neuromuscular, phrenic 
nerve, or thoracic wall disease; epilepsy; insulin-dependent diabetes 
mellitus; and active cardiac pacemaker disease. Healthy control sub-
jects were consecutively recruited and matched for age, gender, and 
BMI (1:2 for HFrEF patients and 1:1 for HFpEF patients). All sub-
jects gave written informed consent to participate in the study.

Clinical Evaluation
All study participants underwent a clinical examination with 

assessment of current New York Heart Association (NYHA) func-
tional class and standard transthoracic 2-dimensional Doppler 
echocardiography (LOGIQ S8-XD clear; GE Healthcare, London, 
UK) performed according to current recommendations [23].  
Serum levels of brain natriuretic pro-peptide hormone (NT-pro
BNP) were also assessed.

Exercise Testing
The 6-min walking distance (6MWD) was measured in all HF 

patients under standardized conditions; heart rate and oxygen sat-
uration were recorded before and after the 6MWD test, as recom-
mended [24].

Spirometry and Maximum Inspiratory and Expiratory 
Pressures
Lung function tests were carried out according to current 

guidelines using an electronic spirometer (Vitalograph 3000TM; Vi-
talograph, Hamburg, Germany) [7, 25]. FVC was obtained in the 
upright sitting position [7]. At least 5 attempts were performed 
until the highest value was achieved and varied from the preceding 
test by <10%. FVC was expressed as percentage of the predicted 
value based on gender, age, and height [7, 25]. Maximum expira-
tory pressure (PEmax) and PImax were obtained using a handheld 
electronic manometer (MicroRPMTM; Care Fusion, Baesweiler, 
Germany) according to standard recommendations [7, 26]. Peak 
cough flow was measured using a standard peak flow meter [7]. 
For all measurements, a nasal clip was used to prevent air leakage 
[7].

Diaphragm Ultrasound
Diaphragm ultrasound was performed on the right hemidia-

phragm, as previously described [27–30]. Briefly, a portable ultra-
sound device (LOGIQ S8-XD; GE Healthcare, London, UK) with 
a 5-MHz and a 10-MHz linear transducer was used for evaluation 

35 HF patients (and controls)
invitation to participate in the study

14 HF patients (and 8 controls)
phrenic nerve conduction studies

14 HF patients (and 8 controls)
invasive inspiratory and

expiratory muscle strength
testing

30 HF patients (and 11 controls)
spirometric lung function testing,

manometry and diaphragm
ultrasound.

Cytokine analysis in HF patients.

0.27 cm

0.67 cm

0.3 mV

0.6 mV

4.05 ms 

4.00 ms 

6.50 ms 

11.45 ms 

Fig. 1. Study flowchart and methodology.

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e

D
ow

nl
oa

de
d 

by
: 

A
cc

es
s 

pr
ov

id
ed

 b
y 

th
e 

U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n 
Li

br
ar

y
14

1.
21

5.
93

.1
65

 -
 5

/2
0/

20
21

 5
:0

0:
50

 A
M



Spiesshoefer et al.Respiration 2021;100:96–108100
DOI: 10.1159/000509940

of diaphragm excursion (amplitude and velocity) and diaphragm 
thickness in the zone of apposition [27]. The diaphragm thicken-
ing ratio (DTR) was calculated as thickness at total lung capacity 
divided by thickness at functional residual capacity (FRC) ([27], 
see online suppl. Fig. 1; for all online suppl. material, see www.
karger.com/doi/10.1159/000509940).

Phrenic Nerve Conduction Studies following Cervical Magnetic 
Stimulation
Phrenic nerve conduction studies were conducted as previous-

ly described [31]. Diaphragm compound muscle action potentials 
(CMAPs) were recorded using a Dantec 2000TM electromyography 
device (Dantec Medical, Skovlunde, Denmark) and surface elec-
trodes. Posterior cervical magnetic stimulation was performed 
with the subject in the seated position. Stimuli were delivered using 
a MagPro CompactTM magnetic stimulator equipped with a 2 T 12-
cm C-100 circular coil (MagVenture, Willich, Germany) [31, 32]. 
The coil was placed at the seventh cervical vertebra and then 
moved up toward the sixth cervical vertebra until the highest re-

producible diaphragm CMAP was obtained. At least 5 stimuli were 
delivered to achieve the highest possible diaphragm CMAP show-
ing <10% variation from the preceding 2 stimulations. In order to 
avoid twitch potentiation, stimuli were separated by at least 40 s 
[11, 25, 26]. Stimulation at FRC was determined by visual observa-
tion of abdominal movements [31].

Invasive Inspiratory Muscle Strength Measurements
Twitch esophageal pressure (twPes) and twPgas were simulta-

neously recorded using balloon catheters (Cooper Surgical, Trum-
bull, CT, USA) transnasally inserted into the stomach and the dis-
tal esophagus, as previously described [8, 33]. Balloon catheters 
were connected to a differential pressure transducer (DPT-100TM; 
UT Medical Products, Athlone, Ireland) and an amplifier (ADIn-
struments, Oxford, UK) [7, 8, 33]. Pressure data for twPgas, twPes, 
and twPdi (defined as twPes – twPgas) were continuously dis-
played using LabChartTM software (ADInstruments, Oxford, UK) 
[11, 27] (online suppl. Fig. 2). Subjects were also instructed to re-
peatedly perform a maximum sniff maneuver (a short, sharp in-

Table 2. Lung function data and diaphragm ultrasound measures for patients with heart failure and controls

HFrEF (n = 22) Controls (n = 11) HFpEF (n = 8) Controls (n = 7)

Male, n (%) 19 (87) 8 (73) 7 (88) 6 (86)
Age, years 60.9±13.7* 55.0±11.1 67.8±8.5* 59.1±10.0
BMI, kg/m2 29.5±5.0 24.5±2.2 27.6±4.2 24.4±2.5
BSA, m2 2.3±0.2 2.1±0.2 2.2±0.1 2.0±0.1

Lung function data
FVC, L 3.4±1.1* 4.7±1.2 3.2±1.0* 4.5±0.9
FVC, % predicted 79.1±20.1* 109.6±16.4 80.8±22.6* 106.6±19.5
FEV1, L 2.7±1.0* 3.6±1.0 2.4±0.6* 3.5±0.8
FEV1, % predicted 80.8±20.1* 104.7±15.0 79.1±23.0* 102.6±18.4
FEV1/VC, % 78.9±7.6 77.5±3.4 82.9±11.1 76.8±3.9
PEF, L/s 6.9±2.5* 9.0±2.2 6.1±1.9* 8.6±1.9
PEF, % predicted 85.8±20.7* 109.2±21.1 76.3±20.4* 104.1±22.0
PCF L/min 425.5±170.7* 618.2±128.2 377.1±126.1* 627.1±101.9
PImax, cmH2O 69.2±21.2* 100.0±26.5 53.0±22.7* 86.4±12.8
PImax, % predicted 74.2±21.7* 112.5±35.5 60.7±26.3* 95.9±26.6
PEmax, cmH2O 102.1±34.1* 137.4±16.1 94.8±26.4* 133.9±14.5

Diaphragm ultrasound
Diaphragm excursion

1.6 [1.2–3.0]
1.3 [0.9–1.9]
2.6 [2.0–3.3]
6.7±2.4
5.0±1.6*

0.21 [0.16–0.25]
0.40 [0.39–0.53]*

1.9 [1.8–2.1]*

Amplitude during tidal breathing, cm 1.5 [1.2–2.0] 1.6 [1.6–2.9] 1.3 [1.1–1.7]
Velocity during tidal breathing, cm/s 1.3 [0.7–1.7] 1.7 [1.5–2.1] 1.3 [1.1–1.7]
Amplitude during voluntary sniff, cm 2.1 [1.9–2.8] 2.9 [1.6–4.8] 2.1 [1.9–3.4]
Velocity during voluntary sniff, cm/s 7.1±2.1 7.0±2.6 6.4±1.4
Amplitude during max. inspiration, cm 8.1±2.7 5.0±2.3 7.5±2.8

Diaphragm thickness
FRC, cm 0.21 [0.20–0.27] 0.19 [0.16–0.21] 0.21 [0.20–0.28]
TLC, cm 0.65 [0.48–0.83] 0.33 [0.29–0.41]* 0.65 [0.44–0.92]
Thickening ratio 3.1 [2.1–3.3]* 1.8 [1.4–2.0]* 3.1 [2.1–3.3]

Data are presented as mean±standard deviation, number of patients, or percentage as indicated. BSA, body surface area; FEV1, forced 
expiratory volume after 1 s; FRC, functional residual capacity; FVC, forced vital capacity; HFpEF, heart failure with preserved ejection 
fraction; HFrEF, heart failure with reduced ejection fraction; max., maximum; PEmax, maximum expiratory pressure; PImax, maximum 
inspiratory pressure; PCF, peak cough flow; PEF, peak expiratory flow; TLC, total lung capacity. * p ≤ 0.05 versus controls.
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spiratory maneuver). The best of 5 consecutive efforts was used for 
analysis [7, 8, 33].

Invasive Expiratory Muscle Strength Measurements
The lower thoracic nerve roots were magnetically stimulated at 

the tenth vertebra with rostrocaudal adjustment of the coil posi-
tion (by no more than 2 vertebrae) in order to achieve the highest 
reproducible CMAP [34, 35]. For bilateral recording of abdominal 
CMAPs, surface electrodes were placed in the anterior axillary line 
close to the lower costal margin [34, 35]. Stimulation intensity was 
set at 100% of the maximum magnetic output (2 T). Stimulation 
was performed at FRC with recording of twPgas through the gas-
tric balloon catheter [34, 35]. In addition, subjects were instructed 
to repeatedly perform a maximum cough maneuver for recording 
of cough Pgas.

Measurement of Circulating Pro-Inflammatory Cytokines
Fasting venous blood samples (30 mL) were collected after su-

pine rest for 30 min. Blood samples were centrifuged immediately. 
Plasma aliquots were stored at −70°C and analyzed using auto-
mated assays or commercially available ELISAs. Analytical quality 
was monitored according to national regulations (Rili-BÄK 2014), 
including regular external quality assessments. Quantification of 
IL-6 was performed using an electrochemiluminescence immuno-

assay on a Cobas e802TM automated analyzer (Roche, Mannheim, 
Germany). The proposed reference value and limit of detection 
was 1.5 pg/mL, and intra- and inter-assay variabilities were <5.2 
and <3.9%, respectively, at high analyte concentrations, and <4.9 
and <5.1%, respectively, at low analyte concentrations (as specified 
in the manufacturer’s user manual). Plasma levels of TNF-α were 
determined using an ELISA assay (Thermo Fisher Scientific, Ober-
hausen, Germany). The limit of detection and proposed reference 
value was 5.6 pg/mL, and intra- and inter-assay variabilities were 
<1.4 and <1.8%, respectively, at high analyte concentrations, and 
<5.9 and <8.5%, respectively, at low analyte concentrations (as 
specified in the manufacturer’s user manual).

Statistical Analysis
Statistical analyses were performed using Sigma PlotTM soft-

ware (Version 13.0; Systat, Erkrath, Germany). The primary end-
point was a reduction in twPdi. Assuming a 2-sided significance 
level of 0.05 (α) and 80% power (β), a sample size of 11 subjects 
per group was calculated to be sufficient to detect a 25% difference 
in twPdi. This was considered clinically relevant based upon pre-
vious studies, indicating that a 25% decrease in twPdi was usually 
associated with significant and clinically relevant diaphragm 
weakness [36, 37]. Based on our own observations regarding in-
vasive pressure measurements in patients with HF, the dropout 
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Fig. 2. Forced vital capacity (a), maximum inspiratory pressure (b), and maximum expiratory pressure (c) in 
patients with heart failure and controls. HFpEF, heart failure with preserved ejection fraction; HFrEF, heart fail-
ure with reduced ejection fraction; ns, not statistically significant (p > 0.05).
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rate was assumed to be up to 40% [5, 7, 11]. For twPdi, normal 
values in healthy individuals were derived from our previous data 
[8]. For normally distributed data, results are expressed as mean 
and standard deviation, and the t test for independent samples 
was used for group comparisons. For non-parametric variables, 
median and interquartile ranges or the Mann-Whitney U test was 
used as appropriate. Pearson’s correlation coefficient was used to 
test for correlations between continuous variables. Bonferroni’s 
post hoc correction was applied to adjust for multiple testing. For 
all analyses, a p value of ≤0.05 was considered statistically signifi-
cant.

Results

Subjects
Thirty patients with HF were enrolled in the study (age 

63 ± 13 years, 26 male, BMI 29.0 ± 4.8 kg/m2, 22 with 
HFrEF and 8 with HFpEF); all patients presented with 
exertional dyspnea and had elevated NT-proBNP levels 
(Table 1; Fig. 1). Eleven matched control subjects (age 55 
± 11 years, 8 male, BMI 24.5 ± 2.2 kg/m2) were recruited 
for the HFrEF group, and 8 controls were enrolled for the 
HFpEF subgroup. Patients with HF showed moderate ex-

ercise intolerance (6MWD 130–570 m; median 414 m, 
interquartile range [IQR] 355–448), and 20/30 (66%) had 
a 6MWD of <450 m.

Spirometry and PImax and PEmax
FVC (by ∼30%) and PEmax (by ∼25%) were signifi-

cantly lower in patients with HFrEF versus controls (Ta-
ble 2; Fig. 2). Clinical severity of HF (based on NYHA 
class) showed a moderate inverse correlation with FVC  
(r = −0.60, p < 0.01), PImax (r = −0.61, p = 0.03), and PEmax 
(r = −0.56, p < 0.01) (Fig. 3a–c). In addition, the 6MWD 
was significantly correlated with FVC (r = 0.51, p = 0.02) 
and PImax (r = 0.71, p < 0.01) (Fig. 3d, e). Patients with 
HFpEF had significantly lower FVC (by ∼25%), PImax (by 
∼40%), and PEmax (by ∼30%) compared with matched 
controls (Table 2; Fig. 2). There were no differences be-
tween the 2 types of HF with respect to FVC and mouth 
occlusion pressures (all p > 0.05).

Diaphragm Ultrasound
Diaphragm excursion and DTR (both by ∼40%) were 

lower in patients with HFrEF than in controls (Table 2; 
Fig. 4a). DTR was also lower in HFpEF patients than in 
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Fig. 3. Association between New York Heart Association (NYHA) class and forced vital capacity (a), maximum 
inspiratory pressure (b), and maximum expiratory pressure (c), and association between 6-min walking distance 
and forced vital capacity (d) and maximum inspiratory pressure (e) in patients with heart failure with reduced 
ejection fraction.

D
ow

nl
oa

de
d 

by
: 

A
cc

es
s 

pr
ov

id
ed

 b
y 

th
e 

U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n 
Li

br
ar

y
14

1.
21

5.
93

.1
65

 -
 5

/2
0/

20
21

 5
:0

0:
50

 A
M



HF Impairs Respiratory Muscle Function 
Irrespective of LVEF

103Respiration 2021;100:96–108
DOI: 10.1159/000509940

controls (by ∼40%) (Table 2; Fig. 4). Diaphragm thick-
ness at FRC was normal in both HF subgroups (Table 2). 
There was no correlation between ultrasound data and 
NYHA class or NT-proBNP levels in both HFrEF and 
HFpEF patients (all p > 0.05, Fig. 4a). Diaphragm ultra-
sound parameters did not significantly differ between HF 
groups (all p > 0.05).

Phrenic Nerve Conduction Studies
Reproducible diaphragm CMAP and twPdi readings 

were obtained in 11 patients with HFrEF, 3 patients with 
HFpEF, and all controls. In all groups, no side-to-side 
difference was found, and neither CMAP latency (HFrEF 
5.5 [4.9–6.8], HFpEF 5.5 [5.1–6.7] vs. control 5.0 [4.4–
5.3] ms, p > 0.05) nor amplitude (HFrEF 0.15 [0.10–0.25], 
HFpEF 0.20 [0.10–1.43] vs. control 0.10 [0.05–0.33] mV, 
p > 0.05) was abnormal in either of the 2 patient sub-
groups, indicating normal phrenic nerve conduction 
properties.

Invasive Inspiratory Muscle Strength Measurements
Transnasal insertion of balloon catheters was refused 

by 16 patients, leaving 11 patients with HFrEF, 3 patients 
with HFpEF, and all control subjects for group compari-
son of invasive pressure recordings. The twPdi was sig-
nificantly lower in patients with HFrEF (by ∼35%) or HF-
pEF (by ∼55%) than in controls (Table 3; Fig. 4b). No sta-
tistically significant correlations were found in any of the 
groups between invasively obtained inspiratory muscle 
strength measures and NYHA class, NT-proBNP levels, 

or 6MWD (all p > 0.05). Furthermore, twPes, twPgas, and 
twPdi did not differ significantly between patient sub-
groups (all p > 0.05).

Invasive Expiratory Muscle Strength Measurements
twPgas following magnetic stimulation of the abdom-

inal muscles did not differ between HF subgroups or for 
either HF group compared with controls (p > 0.05). This 
was also the case for Pgas values following maximum vol-
untary cough (cough Pgas) in all HF patients (Table 3).

Circulating Pro-Inflammatory Cytokines
Data on IL-6 and TNF-α serum levels were available 

for all patients with HFpEF and for 20/22 patients with 
HFrEF. IL-6 serum levels exceeded the reference value in 
19/20 HFrEF patients and in 6/8 HFpEF patients. Levels 
of TNF-α were elevated in 19/20 patients with HFrEF and 
in all patients with HFpEF (Table 1). Levels of IL-6 and 
TNF-α did not differ significantly between HF subgroups 
(all p > 0.05).

When dichotomized into 2 groups based on the me-
dian FVC (% predicted) as a cutoff, HFrEF patients with 
FVC <78% had higher IL-6 levels compared to those with 
FVC ≥78% (6.0 [4.0–12.0] vs. 3.0 [3.0–5.0] pg/mL, p = 
0.04; Fig. 5a). In addition, patients with higher IL-6 levels 
(≥7 pg/mL) had significantly lower FVC compared to 
those with IL-6 <7 pg/mL (60.1 ± 22.8 vs. 86.1 ± 16.4 cm-
H2O, p = 0.02; Fig. 5b). Levels of TNF-α or IL-6 levels did 
not differ in HFrEF subgroups dichotomized by PImax, 
PEmax, DTR, or TwPdi (all p > 0.05). In patients with HF-
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Fig. 4. Diaphragm thickening ratio (derived from diaphragm ultrasound) (a) and twitch transdiaphragmatic 
pressure (b) in patients with heart failure with reduced ejection fraction (HFrEF) or preserved ejection fraction 
(HFpEF) and controls.
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Table 3. Invasively obtained inspiratory and expiratory muscle strength data in patients with heart failure (n = 
14) and matched control subjects (n = 8)

Subject no. 
(age, gender)

Inspiratory muscle strength tests Expiratory muscle strength tests

twPdi, 
cmH2O

sniff Pdi, 
cmH2O

PImax, 
cmH2O

twPgas, 
cmH2O

coughPgas, 
cmH2O

PEmax, 
cmH2O

HFrEF
1 (78, M) 13.3 106.5 75 29.9 94.7 89
2 (52, F) 27.4 63.6 * 3.8 92.6 85
3 (49, M) 11.1 94.7 * 45.2 225.3 87
4 (54, M) 13.6 103.1 * 88.3 205.4 134
5 (48, M) 12.7 102.9 * 4.9 114.4 112
6 (80, M) 13.3 61.8 77 * 78.3 165
7 (31, M) 4.1 63.3 101 27.0 111.9 109
8 (67, M) 6.1 89.3 74 18.9 165.1 135
9 (56, M) 1.3 40.0 36 3.4 111.4 80
10 (63, M) 7.0 36.3 84 5.5 93.5 110
11 (60, M) 20.1 85.8 72 44.1 156.6 103
Mean 11.8 77.0 74.1 27.1 131.8 109.9
SD 7.4 25.3 19.5 26.9 49.2 26.0

Controls
1 (36, M) 7.8 106.6 106 12.8 60.8 145
2 (49, M) 20.9 72.2 78 9.3 131.7 129
3 (49, M) 14.6 64.9 88 17.8 116.8 155
4 (54, F) 22.5 116.4 131 9.2 146.2 139
5 (55, M) 12.7 67.8 89 53.7 65.3 121
6 (60, M) 27.1 77.9 68 19.8 116.4 115
7 (64, M) 25.5 113.7 81 * 164.2 130
8 (78, M) 18.9 87.8 92 * 99.9 138
Mean 18.7 88.4 91.6 19.6 112.7 134.0
SD 6.6 21.1 19.4 15.5 36.4 13.0
p value 0.049 ns ns ns ns 0.03

HFpEF
1 (81, M) 11.6 42.0 28 30.1 52.4 57
2 (60, M) 12.0 67.0 64 * 109.4 53
3 (60, M) 5.9 67.8 89 18.9 214.4 129
Mean 9.8 58.9 60.3 24.5 125.4 79.7
SD 3.4 14.7 20.7 7.9 82.2 42.8

Controls
1 (78, M) 18.9 87.8 92 17.8 99.9 138
2 (64, M) 25.5 113.7 81 (53.7) 164.2 130
3 (60, M) 27.1 77.9 68 19.8 116.4 115
Mean 23.8 93.1 80.3 18.8 126.8 127.7
SD 4.4 18.5 12.0 1.4 33.4 11.7
p value 0.01 0.07 ns ns ns ns

CoughPgas, gastric pressure following a cough; F, female; HFpEF, heart failure with preserved ejection frac-
tion; HFrEF, heart failure with reduced ejection fraction; M, male; ns, not statistically significant (p > 0.05); PEmax, 
maximum expiratory pressure; PImax, maximum inspiratory pressure; SD, standard deviation; sniff Pdi, trans-
diaphragmatic pressure following maximum voluntary sniff; twPdi, transdiaphragmatic pressure following cer-
vical stimulation of the phrenic nerve roots; twPgas, gastric pressure following magnetic stimulation at the tenth 
vertebra. * Missing value due to technical issues and/or poor cooperation.
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pEF, levels of IL-6 and TNF-α were inversely correlated 
with FVC (r = −0.84, p < 0.01 and r = −0.77, p = 0.03, re-
spectively) (Fig. 5c, d).

Discussion

This study is the first in human controlled trial to dem-
onstrate inspiratory muscle dysfunction with restrictive 
ventilation disorders in patients with HF, as assessed by 
means of a multimodal diagnostic approach including 
spirometry, mouth occlusion pressures, diaphragm ultra-
sound, and standardized invasive measurement of the Pdi 
following magnetic stimulation. Respiratory muscle dys-
function was closely linked to exercise intolerance, and 
FVC correlated with serum levels of circulating IL-6 and 
TNF-α, suggesting an association between lung restric-
tion and systemic inflammatory response in chronic HF.

Initial description of inspiratory muscle impairment 
in HFrEF dates back to the 1990s [5]. Mancini and col-

leagues [5] showed that PImax is reduced in patients with 
HFrEF (n = 10) compared with healthy controls. Notably, 
a strong correlation was found between ratings of per-
ceived dyspnea and PImax values, underlining the clinical 
importance of inspiratory muscle weakness in HFrEF [5].

Diaphragm ultrasound has emerged as a novel tool for 
assessing diaphragm function [38]. Specifically, the DTR 
may reflect diaphragm strength [38] and has been shown 
to be impaired in patients with HFrEF [11, 39]. Subse-
quently, in a larger cohort of HFrEF patients (n = 244), 
Meyer and colleagues [9] reported that approximately ev-
ery third patient showed reduced PImax values, which 
were associated with worse overall prognosis. Notably, 
this study showed that PImax adds prognostic value be-
yond known risk factors of clinical deterioration, includ-
ing peak oxygen consumption, left ventricular ejection 
fraction, and norepinephrine plasma concentration [9]. 
Furthermore, the clinical significance of diaphragm dys-
function was underlined by close correlation of PImax 
with NYHA functional class and peak oxygen consump-
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Fig. 5. Association between interleukin-6 (IL-6) levels and forced vital capacity (FVC) in patient with heart failure 
with reduced ejection fraction (a, b) (dichotomization of patients according to FVC and IL-6 using their median 
values), and between IL-6 (c) or tumor necrosis factor alpha (TNF-α) (d) levels in patients with heart failure with 
preserved ejection fraction.
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tion [9]. In this regard, the present study is confirmatory 
by showing that inspiratory muscle dysfunction relates to 
exercise intolerance in HFrEF patients while further 
strengthening this concept by application of diaphragm 
ultrasound.

In contrast to HFrEF, less is known about diaphrag-
matic dysfunction and its pathophysiological role and 
clinical implications in patients with HFpEF. Recent ani-
mal and clinical studies have shown that molecular, mi-
tochondrial, histologic, and functional alterations in the 
diaphragm may also be present in HFpEF, and that these 
may be partly reversible by exercise training [20, 39, 40]. 
DTR is an intuitive ultrasound-derived measure reflect-
ing the diaphragm’s capacity to contract. As in HFrEF 
patients, DTR was reduced in patients with HFpEF and 
showed close association with exercise intolerance (based 
on the 6MWD) [41].

The diagnostic gold standard of diaphragm force gen-
eration (i.e., twPdi) has not yet been applied in HFpEF 
patients outside animal models [20, 21]. Its application in 
the current study objectively confirmed that diaphragm 
dysfunction is present in HFpEF. Of note, the extent and 
characteristics of diaphragm involvement appear to be 
comparable in patients with HFpEF and HFrEF. Thus, it 
can be assumed that respiratory muscle weakness is a 
consequence of HF per se rather than being caused by 
impairment of left ventricular function alone.

It has been hypothesized that circulating pro-inflam-
matory cytokines provide a mechanistic link between HF 
and diaphragm dysfunction [13]. Levels of circulating 
pro-inflammatory cytokines are increased in both HFrEF 
and HFpEF, possibly impacting overall functional status 
and prognosis [14–17, 19]. Of note, pro-inflammatory 
cytokines (TNF-α and IL-6 in particular) have been 
shown to directly impair muscle function in animal mod-
els [19, 42]. Furthermore, Gosselink and coworkers [42] 
showed that genetic abolition of TNF-α improves dia-
phragm function in a mouse model of dystrophin-related 
muscular dystrophy. Diaphragm isometric force was en-
hanced, and in the long run, alteration of the myosin 
heavy chain isoform profile was detectable [42]. Notably, 
it has been further highlighted that different intracellular 
pathways regulate expression of myosin heavy chain iso-
forms, including the mitogen-activated protein kinase 
family and the extracellular signal regulated kinase 1/2, 
which plays a decisive role in myosin heavy chain isoform 
maintenance [13, 42, 43]. Moreover, mitogen-activated 
protein kinase can be modulated in vitro by inflamma-
tory cytokines such as TNF-α and oxidative stress [13, 42, 
43]. For this reason, it can be hypothesized that chronic 

elevation of pro-inflammatory cytokines in patients with 
HF may contribute to long-term alterations of both limb 
and respiratory muscle composition on a molecular level 
[13].

Spirometric and manometric findings from this study 
suggest that expiratory muscle dysfunction is present in 
patients with HF, whether or not left ventricular function 
is impaired. This is consistent with the limited body of 
data previously published on this subject [5, 9]. The cur-
rent study adds to this knowledge because expiratory 
muscle function in HF was specifically assessed by inva-
sive measurement of cough Pgas and twPgas following 
magnetic abdominal muscle stimulation. Both measures 
showed no difference between HF patients and controls. 
This finding suggests that impairment of expiratory force 
generation is accountable to other muscles than the ab-
dominal wall muscles (e.g., internal intercostal muscles) 
and that detailed assessment of expiratory muscle func-
tion in patients with HF requires both volitional and non-
volitional tests.

This study has several limitations, which need to be 
taken into account. First, inter- and intra-observer vari-
abilities may have affected magnetic stimulation data. To 
minimize this bias, extensive training and repetitive stim-
ulations with maximum magnetic output were performed 
until variability of the twPdi and diaphragm CMAP am-
plitude was <10%, as previously published by our group 
[44–48]. Second, this study focused on ambulatory pa-
tients in a stable clinical condition, and findings may be 
different in patients with worse functional status. Third, 
a clear distinction between lung restriction due to gas 
trapping and ventilatory restriction because of inspira-
tory muscle dysfunction cannot be made as body plethys-
mography was not performed. Although entrapment of 
gas appears less likely in patients with HF, this aspect 
should be acknowledged as a limitation to this study. Fi-
nally, serum cytokine levels were not measured in control 
subjects, but reference values were provided by the man-
ufacturer and compared with previously published nor-
mative data. Statistical correlations between cytokine lev-
els and FVC (Fig. 5) should be interpreted with caution, 
with special regard to the small sample size. Since the cur-
rent study aimed to be mainly hypothesis-generating, fu-
ture studies in larger patient cohorts are needed to con-
firm an association between measures of respiratory mus-
cle strength and circulating levels of proinflammatory 
cytokines in patients with HFrEF and HFpEF.

D
ow

nl
oa

de
d 

by
: 

A
cc

es
s 

pr
ov

id
ed

 b
y 

th
e 

U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n 
Li

br
ar

y
14

1.
21

5.
93

.1
65

 -
 5

/2
0/

20
21

 5
:0

0:
50

 A
M



HF Impairs Respiratory Muscle Function 
Irrespective of LVEF

107Respiration 2021;100:96–108
DOI: 10.1159/000509940

References

  1	 Bleumink GS, Knetsch AM, Sturkenboom 
MCJM, Straus SMJM, Hofman A, Deckers 
JW, et al. Quantifying the heart failure epi-
demic:  prevalence, incidence rate, lifetime 
risk and prognosis of heart failure:  the Rot-
terdam Study. Eur Heart J. 2004; 25: 1614–9.

  2	 Cleland JG, Khand A, Clark A. The heart fail-
ure epidemic:  exactly how big is it? Eur Heart 
J. 2001; 22(8): 623–6.

  3	 Oktay AA, Rich JD, Shah SJ. The emerging 
epidemic of heart failure with preserved ejec-
tion fraction. Curr Heart Fail Rep. 2013; 10(4): 

401–10.
  4	 Ponitkowski P, Voors AA, Anker SD, Bueno 

H, Cleland JG, Coats AJ, et al. 2016 ESC 
guidelines for the diagnosis and treatment of 
acute and chronic heart failure The Task 
Force for the diagnosis and treatment of acute 
and chronic heart failure of the European So-
ciety of Cardiology (ESC). Eur Heart J. 2016; 

128: 891–975.

  5	 Mancini DM, Henson D, LaManca J, Levine 
S. Respiratory muscle function and dyspnea 
in patients with chronic congestive heart fail-
ure. Circulation. 1992; 86(3): 909–18.

  6	 Hughes PD, Polkey MI, H, Coats AJ, Moxham 
J, Green M, et al. Diaphragm strength in 
chronic heart failure. Am J Respir Crit Care 
Med. 1999; 160(2): 529–34.

  7	 Laveneziana P, Albuquerque A, Aliverti A, 
Babb T, Barreiro E, Dres M, et al. ERS state-
ment on respiratory muscle testing at rest and 
during exercise. Eur Respir J. 2019; 53(6): 

1801214.
  8	 Spiesshoefer J, Henke C, Herkenrath S, Brix 

T, Randerath W, Young P, et al. Transdi-
apragmatic pressure and contractile proper-
ties of the diaphragm following magnetic 
stimulation. Respir Physiol Neurobiol. 2019; 

266: 47–53.

  9	 Meyer FJ, Borst MM, Zugck C, Kirschke A, 
Schellberg D, Kübler W, et al. Respiratory 
muscle dysfunction in congestive heart fail-
ure:  clinical correlation and prognostic sig-
nificance. Circulation. 2001; 103(17): 2153–8.

10	 Meyer FJ, Borst MM, Zugck C, Kirschke A, 
Schellberg D, Kübler W, et al. Respiratory 
muscle dysfunction in congestive heart fail-
ure:  clinical correlation and prognostic sig-
nificance. Circulation. 2012; 103(17): 2153–8.

11	 Caruana L, Petrie MC, McMurray JJ, MacFar-
lane NG. Altered diaphragm position and 
function in patients with chronic heart fail-
ure. Eur J Heart Fail. 2001; 3(2): 183–7.

12	 Bowen TS, Rolim NP, Fischer T, Baekkerud 
FH, Medeiros A, Werner S, et al. Heart failure 
with preserved ejection fraction induces mo-
lecular, mitochondrial, histological, and func-
tional alterations in rat respiratory and limb 
skeletal muscle. Eur J Heart Fail. 2015; 17(3): 

263–72.

Conclusions

Respiratory muscle dysfunction is present in patients 
with chronic HF, irrespective of left ventricular ejection 
fraction. It contributes to exercise intolerance and is as-
sociated with increased serum levels of circulating pro-
inflammatory cytokines, possibly reflecting that systemic 
inflammation mediates long-term structural impairment 
of respiratory muscles. Future studies should further in-
vestigate both the complex pathophysiology and clinical 
significance of respiratory muscle weakness in HF. Fur-
thermore, interventional studies that evaluate the effects 
of respiratory muscle strength training on respiratory 
muscle function and exercise tolerance are desirable.
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