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ABSTRACT

Objectives: Spinal cord ischemia (SCI) is one of the major concerns of postoper-
ative paraplegia during major vascular or aortic surgery. Since mitochondrial
dysfunction develops at the early stage of SCI, this study tested the neuronal pro-
tective effect of transplantation of viable mitochondria to the ischemic cord in rats.

Methods: SCI was induced by crossclamping of thoracic aorta at T6 level for 25 mi-
nutes, followed by release of vascular clip to restore aortic blood flow in the anes-
thetized rats. Mitochondria (100 mg) were isolated from freshly harvested soleus
muscle and delivered via the internal jugular vein before releasing of vascular
clip. The motor function was assessed independently up to 7 days after reperfusion.
Spinal cords were harvested and analyzed for molecular and histological changes.

Results: Whole-body in vivo images acquired by an in vivo imaging system
confirmed the enhancement of MitoTracker fluorescence at the regions below
crossclamping and in the ischemic cord. Compared with control vehicles, transplan-
tation of mitochondria significantly improved the lower-limb locomotor function of
rats subjected to cord ischemia up to 7 days after surgery. Mitochondrial transplan-
tation suppressed the regional endoplasmic reticulum stress in the ischemic cord
by attenuating CCAAT-enhancer-binding protein homologous protein expression
and restoring binding immunoglobulin protein levels. In accordance, tissue levels
of interleukin-6, tumor necrosis factor-a, and caspase-3 were attenuated in the
mitochondrial transplanted group. Histologic examination also showed significant
increase in numbers of Nissls bodies in the neurons at the ventral horn of ischemic
cord following mitochondrial transplantation.

Conclusions: Our study showed that transplantation of freshly isolated mitochon-
dria during the early stage of spinal cord ischemia–reperfusion injury suppressed
the oxidative stress in endoplasmic reticulum of the injured cord, thereby reducing
neuroapoptosis and improving locomotor function of rats with SCI. (J Thorac Car-
diovasc Surg 2021;161:e337-47)
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Systemic delivery of mitochondria selectively
distributed to ischemic spinal cord.
CENTRAL MESSAGE

Transplantation of mitochondria
at the early stage of spinal cord
ischemia–reperfusion injury at-
tenuates neuronal apoptosis and
improves motor function
recovery.
PERSPECTIVE
Spinal cord ischemia is a major concern after
aortic surgery due to postoperative paraplegia
with an incidence of up to 20%. The improve-
ment in hindlimb locomotor function following
mitochondrial delivery during early phase of
cord ischemia suggests that transplantation of
mitochondria might potentially provide therapeu-
tic effect in preservation of the neurologic func-
tion of spinal cord during major aortic surgery.

See Commentaries on pages e349 and e350.
Spinal cord ischemia (SCI) is one of the major concerns af-
ter aortic surgery due to the development of postoperative
paraplegia, with an overall incidence of 0.5% to 1.5% for
coarctation repair, 10% for thoracic aneurysm repair, and
up to 20% for thoracoabdominal aorta repair.1 Although
the improvement in surgical techniques has significantly
reduced the risk of SCI after aortic repair, the incidence
of postoperative neurologic deficit remains as high as 9%
to 16%.2,3 Furthermore, 1.2% to 2.6% of these patients
suffered from permanent paraplegia after endovascular
procedures.2-4

Mitochondrial dysfunction has been recognized as the
initial step of neuronal injury during cord ischemia and is
also crucial for the amplification of secondary injury and
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Abbreviations and Acronyms
BAX ¼ Bcl-2-associated X protein
BBB ¼ Basso–Beattie–Bresnahan
Bcl-2 ¼ B-cell lymphoma-2
Bcl-XL ¼ B-cell lymphoma extra large
CHOP ¼ CCAAT-enhancer-binding protein

homologous protein
ER ¼ endoplasmic reticulum
GFAP ¼ glial fibrillary acidic protein
GRP78 ¼ binding immunoglobulin protein
Iba-1 ¼ ionized calcium-binding adapter

molecule-1
IL-6 ¼ interleukin-6
IVIS ¼ in vivo imaging system
PBS ¼ phosphate buffer solution
POD ¼ postoperative day
SCI ¼ spinal cord ischemia
TNF-a ¼ tumor necrosis factor-a
TUNEL ¼ terminal deoxynucleotidyl transferase

dUTP nick end labeling
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subsequent neuronal cell death by increase in mitochondrial
oxidative damage.5 Within minutes after neuronal ischemic
injury, mitochondrial dysfunction in the neurons is induced
by deprivation of oxygen and glucose, followed by deple-
tion of adenosine triphosphate production and substantial
production of reactive oxygen and nitrogen species upon re-
introduction of oxygen after reperfusion, and may subse-
quently lead to neuronal apoptosis, autophagy, and
necroptosis.6,7 Therefore, mitochondria-targeting therapy
has recently been proposed in the treatment of spinal cord
injury, including combinatorial therapies, such as pharma-
cologically increasing antioxidant activity and decreasing
mitochondrial fission.8 Unfortunately, many of these phar-
macologic agents remain to be assessed in humans, and
none of these have yet proven successful for the treatment
of spinal cord injury. Since transplantation of viable mito-
chondria is a clinically feasible approach in ischemia–
reperfusion injury,9-11 this study hypothesized that
transplantation of exogenous viable mitochondria restored
the dysfunctional mitochondria in the neuronal cells
during the early phase of SCI and improved
neuroapoptosis and functional recovery in a rat model of
ischemic cord.
METHODS
Rat Model of Spinal Cord Ischemia

All experimental procedures were approved by the Institutional Animal

Care and Use Committee (The National Cheng Kung University, Tainan,

Taiwan; IACUC approval number 107177). SCI was induced in adult

Sprague–Dawley male rats anesthetized with 1.5 v/v% isoflurane in oxy-

gen, as previously characterized by our group.12 The anesthetized rats

were placed at right decubitus position and the thoracic cavity was exposed
e338 The Journal of Thoracic and Cardiovascular Sur
by incision of the left T5 to T6 intercostal space. Blood flow in thoracic–

lumbar spinal cord was temporarily occluded by application of a microvas-

cular clamp to the thoracic aorta at the T6 level. According to our previous

study, near-complete abolishment of blood flow into the lumbar spine was

confirmed by absence of dye staining following intravenous infusion of

Evans blue during the period of aortic crossclamping.12 Twenty-five mi-

nutes after crossclamping, the vascular clip was released to restore blood

flow to the spinal cord. The animals were recovered from anesthesia under

a warm blanket, and they were returned to cages after regained of upper

limb activity.

Hindlimb Locomotor Function Assessment
The Basso–Beattie–Bresnahan (BBB) scale (range 0-21) was used to

assess the hindlimb locomotor function of the rats once daily up to 7 days

after SCI.13 The BBB scale measures the functional recovery of spinal

cord by assessing hindlimb joint movements, stepping, forelimb and hin-

dlimb coordination, trunk position and stability, paw placement, and tail po-

sition.14 A score of ‘‘0’’ indicates paralysis and ‘‘21’’ indicates normal

locomotion. The locomotor functionwas assessed independently by an expe-

rienced research assistant who was blinded to the treatment groups.

Isolation and Administration of Mitochondria
Healthy na€ıve rats were asphyxiated with CO2 and bilateral soleus mus-

cles were harvested for isolation of viable mitochondria using a mitochon-

dria isolation kit (Thermo Scientific, Waltham, Mass). After being washed

with phosphate buffer solution (PBS, containing 0.1 M sodium phosphate

and 0.15 M sodium chloride at pH 7.2), the soleus muscle tissue (approx-

imately 5 mg) was cut into small pieces and incubated with the tryptase so-

lution (0.3 mg/mL) for 3 minutes. The proteolytic activity of tryptase was

quenched by bovine serum albumin and the tissue was homogenized using

a grinder. The tissue sample was centrifuged at 11,752g for 3 minutes at

4�C to remove the supernatant. The mitochondrial pellets were eventually

obtained after 3 repeats of suspension and centrifugation to discard the

cytosolic fraction using the mitochondria isolation reagents (A to C solu-

tions). All mitochondria used for transplantation were isolated within

1 hour before administration. At 5 minutes before release of aortic clamp-

ing, the freshly isolated mitochondria (100 mg) were resuspended in 0.2 mL

of PBS and intravenously transplanted via the jugular vein of the recipient

rat. The dosage of mitochondria was directly derived from the dose-

dependent assays characterized by Gollihue and colleagues.15

In Vivo Imaging System (IVIS) to Localize the
Distribution of Transplanted Mitochondria

In some experiments, the isolated mitochondria were stained with a red

fluorescence (MitoTracker Deep Red; Invitrogen/Molecular Probes, Inc,

Eugene, Ore) or green fluorescence dyne (MitoTracker Green; Invitrogen)

for the in vivo or ex vivo imaging, respectively. The whole-body scan was

performed at 2 hours and 24 hours after intravenous delivery of Mito-

Tracker Deep Red fluorescence-labeled mitochondria under an IVIS

(Caliper IVIS Spectrum System, PerkinElmer, Waltham, Mass). Rats that

received MitoTracker Green fluorescence-labeled mitochondrial were

sacrificed by CO2 asphyxia at 2 hours after delivery. The whole spinal

cord was removed en-bloc immediately after sacrifice and scanned under

the IVIS for the fluorescence expression. IVIS is a noninvasive spectrum

system used to illuminate the fluorescent sources or bioluminescent

reporters in living animals or tissues with a 2-dimensional or

3-dimensional tomography.16

Allocation of Experimental Groups and Study
Protocol

Animals were randomly allocated to receive sham operation (thoracot-

omy only, sham group) and spinal cord ischemia (thoracotomy and aortic
gery c May 2021
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FIGURE 1. Diagram of study design and experimental flowchart. The primary study endpoint was the changes of locomotor function from day 1 to day 7

after operation. SCI, Spinal cord ischemia; PBS, phosphate buffer solution; BBB, Basso–Beattie–Bresnahan scale; POD, postoperative day.
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crossclamping, SCI group). Rats with SCI were then assigned to receive

intravenous administration of plain PBS or skeletal muscle-derived mito-

chondria in PBS, as the control or mitochondrial treatment group, respec-

tively. Na€ıve rats were defined as the healthy aged-matched rats that used

for skeletal muscle harvesting and served as controls for the whole-body

IVIS studies. A total of 37 rats received SCI treatment (14 controls and

23 mitochondrial transplantation), 8 rats received sham operation, and 6

rats served as naive. The study protocol is shown as Figure 1.

Harvest of Spinal Cord Tissues
Rats were sacrificed by CO2 asphyxiation and decapitation at postoper-

ative day 7. Following thoracotomy, the T13 rib (the lowest rib) was iden-

tified to trace the corresponding T13 vertebral body. Spinal cord tissues

below T11 vertebral body (considered as lumbar cord) were harvested

for analysis.12

Western Blot
Lumbar spinal cord was minced and homogenized in lysis buffer.

Equal amount of proteins (100 mg) were loaded into polyacrylamide gels

(9%-12%) and transferred to nitrocellulose membranes by the wet-

transferring method. The membranes will be incubated overnight with pri-

mary antibodies of appropriate dilutions at 4�C. After washing with PBS,

the membranes were incubated with appropriate dilution horseradish

peroxidase-linked secondary antibodies for 1 hour at room temperature.

Bands were visualized using enhanced chemiluminescence and quantified

by scanning densitometry (the ImageJ; 1.48v, National Institutes of Health,

Bethesda, Md).

Mitochondrial apoptosis and was determined by the protein levels of

Bcl-2-associated X protein (BAX; Santa Cruz Biotechnology Inc, Santa

Cruz, Calif), B-cell lymphoma-2 (Bcl-2; Abcam, Cambridge, Mass),

B-cell lymphoma extra large (Bcl-XL; Cell Signaling, Danvers, Mass)

and caspase-3 (Cell Signaling). Mitochondrial or endoplasmic reticulum

(ER) stress was determined by the protein expressions of CCAAT-

enhancer-binding protein homologous protein (CHOP; GeneTex, Irvine,

Calif) and binding immunoglobulin protein (GRP78; GeneTex). Neuroin-

flammation was determined by the protein expressions of glial fibrillary
The Journal of Thoracic and Car
acidic protein (GFAP; GeneTex), ionized calcium-binding adapter

molecule-1 (Iba-1; BD Biosciences, San Jose, Calif), interleukin-6 (IL-6;

GeneTex), and tumor necrosis factor-a (TNF-a; Abcam).

Terminal Deoxynucleotidyl Transferase dUTP Nick
End Labeling (TUNEL) Assay

Apoptotic cells in the optimal cutting temperature–embedded spinal

cord sections were investigated by TUNEL assay (ApopTag In Situ

Apoptosis Detection Kits; Sigma-Aldrich, St Louis, Mo). Tissue sections

were washed with PBS and incubated with TUNEL working strength

TdT enzyme reaction mixture. Tissue sections were then incubated with

anti-digoxigenin conjugate (rhodamine) for 30 minutes, and TUNEL-

positive nuclei were observed under a fluorescence microscope (Olympus

BX51, Tokyo, Japan).
Histologic and Immunostaining Examinations
Lumbar spinal cord was fixed in 10% buffered formalin saline for

24 hours. The tissue biopsies were processed through increasing grades

of alcohol and embedded in paraffin wax. Sections of spinal cord were

stained by the hematoxylin and eosin and Nissl staining methods and

were examined under a light microscope. Numbers of viable neurons and

the containing Nissl bodies in the ventral horn of lumbar cord were

computed under high-power fields (200-4003) by a researcher (S.Y.F.)

who was blinded to the treatment groups.
Statistics
The primary study endpoint of this experiment was the change in hin-

dlimb locomotor function up to 7 days after spinal cord ischemia–

reperfusion injury. A pretest sample size estimation determined that 8

rats in each group would able to detect a mean difference in BBB scores

of 2 (standard deviation of 1.3) with an a value of 0.05.12 All data sets

were tested for normality assumption using the Shapiro–Wilk test before

statistical procedures. The values of continuous variables were compared

by an unpaired t test when the normality assumptions were met; otherwise.

the Mann–Whitney U test was used. Two-way repeated-measures analysis
diovascular Surgery c Volume 161, Number 5 e339



FIGURE 2. Representative images acquired by an in vivo imaging system (IVIS) (Caliper IVIS Spectrum System) showing the whole-body in vivo images

(A-C) stained by a red fluorescence dyne (MitoTracker Deep Red; Invitrogen), or ex vivo images (D-F) stained by a green fluorescence dyne (MitoTracker

Green; Invitrogen). MitoTracker Deep Red was specifically localized at the left upper abdominal quadrant after transplantation of mitochondria in na€ıve rats

(A). In rats with spinal cord ischemia (SCI) injury, the fluorescence was highly expressed at the dorsal regions below the levels of aortic crossclamping

(arrowheads) (B and C). The ex vivo images showed low MitoTracker Green fluorescence uptake in isolated spinal cord harvested from SCI rats receiving

only fluorescence dyne (D) and na€ıve rats receiving mitochondria labelled with MitoTracker Green fluorescence (E). High MitoTracker Green fluorescence

expression was detected in the lumbar cord isolated from SCI rats receivingmitochondrial transplantation (F). *Indicates the thoracic spinal cord level 6 (T6)

where the vascular clip was applied to the thoracic aorta. Experiments were performed in 3 na€ıve rats and 5 rats with SCI.
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of variance was used to compare the differences in BBB scales between the

control and mitochondrial transplantation groups at the different study

point times. A Bonferroni post hoc procedure was used for multiple com-

parisons. Results are presented as the median and interquartile range. Sta-

tistical significance was accepted at a level of P<.05. All of the statistical

analyses were performed using the SigmaPlot 14.0 (Systat Software Inc,

San Jose, Calif).
e340 The Journal of Thoracic and Cardiovascular Sur
RESULTS
Distribution of Transplanted Mitochondria After
SCI

In the na€ıve rats, the fluorescence of MitoTracker Deep
Red was specifically localized at the left upper quadrant
of the abdomen at 2 hours after transplantation of
gery c May 2021



B
as

so
-B

ea
tt

ie
-B

re
sn

ah
an

 lo
co

m
o

to
r 

sc
al

e

POD1

Control Mitochondria

POD3 POD5 POD7

*

25

20

15

10

0

5
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mitochondria (Figure 2, A). At 2 hours after intravenous
administration of mitochondria in rats with cord ischemia
and reperfusion, in vivo images showed that the
fluorescence was highly expressed at the dorsal
regions below the levels of aortic crossclamping
(Figure 2, B and C). The isolated spinal cord was also
scanned under IVIS, and the ex vivo images confirmed
that the MitoTracker Green fluorescence was highly
stained in the lumbar cord subjected to ischemic injury
(Figure 2, D-F).
Hindlimb Locomotor Function Assessment
The hindlimb BBB locomotor rating scales were

assessed through postoperative day (POD) 1 to POD 7
in rats with SCI (Figure 3). The BBB scales were
significantly reduced to extremely low levels at POD 1
in both groups, suggesting the presence of motor
dysfunction due to ischemic cord syndrome. Compared
with controls, the hindlimb locomotor function was
significantly improved in the rats that received
mitochondrial transplant from POD 1 to POD 7 and was
returned to a significantly greater BBB rating scale score
at 7 days after operation (1.2 � 0.7 vs 12.0 � 7.2, control
vs mitochondria groups; mean difference 10.8, 95%
confidence interval, 3.8-17.9; P ¼ .006; Figure 3).
The Journal of Thoracic and Car
Mitochondrial Dysfunction and ER Stress in the
Ischemic Cord
Ischemia–reperfusion injury in the lumbar spinal cord

induced mitochondrial dysfunction (increased BAX-to-
Bcl-2 ratio) and ER stress (suppressed GRP78 and
increased CHOP) (Figure 4, A and B). The expression of
Bcl-XL was also significantly enhanced following SCI
(Figure 4, A). Expression of cleaved caspase-3 and TUNEL
assay was used as biomarkers for assessing neuroapoptosis
in the ischemic cord. Spinal cord ischemic injury signifi-
cantly increased the protein expression of CHOP, cleaved
caspase-3, and number of apoptotic cells in the cord
(Figure 4, B and C). Following transplantation of mitochon-
dria, expression of CHOP and GRP78, the BAX-to-Bcl-2
ratio, and Bcl-XL were restored in the ischemic cord
(Figure 4, A and B). Furthermore, expression of cleaved
caspase-3 and formation of apoptotic cells in the cord tissue
of rats with SCI were also reduced in the mitochondrial
treated rats (Figure 4, B and C).
Neuroinflammation in the Ischemic Cord
The neuroinflammatory reactions in the ischemic cord

were determined by the tissue levels of inflammatory cyto-
kines (IL-6 and TNF-a)17 and cell-mediated immunoreac-
tivity (GFAP and Iba-1).18 The enhanced expressions of
IL-6 and TNF-a in the ischemic cord were significantly sup-
pressed by mitochondrial transplant (Figure 5), but changes
in the protein levels of GFAP and Iba-1 were not signifi-
cantly different at POD 7 (Figure 5).
Histologic Examinations
There were significant central chromatolysis and reactive

gliosis in the gray matter of ischemic spinal cord (Figure 6).
Numbers of neurons in ventral horns of the gray matter of
lumbar cord were reduced in animals subjected to cord
ischemia–reperfusion injury with or without mitochondrial
transplant (Figure 6). Compared with controls, the numbers
of Nissl bodies in the ventral horn neurons were signifi-
cantly increased in the mitochondrial group (Figure 6).
DISCUSSION
This study showed that ischemia–reperfusion injury

induced ER stress and mitochondrial apoptosis in the lum-
bar spinal cord, leading to neurodegenerative and impaired
locomotor function in the hindlimbs of experimental rats.
Transplantation of exogenous viable mitochondria at the
acute phase of spinal cord reperfusion injury significantly
improved the hindlimb locomotor function by attenuating
ER stress and mitochondrial injury, as shown by the resto-
ration of expressions of GRP78/CHOP and Bcl-2 family
proteins (BAX/Bcl-2 ratio and Bcl-XL) in the injured spinal
cord (Figure 7). Mitochondrial treatment also significantly
reduced the regional proinflammatory reaction (IL-6 and
diovascular Surgery c Volume 161, Number 5 e341
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TNF-a levels) (Figure 7). The improvement in mitochon-
drial function and neuroinflammation suppressed cell
apoptosis and neuronal chromatolysis in the spinal cord.
e342 The Journal of Thoracic and Cardiovascular Sur
In this study, spinal cord ischemic injury was induced by
temporary occlusion of aortic blood flow at T6 level, which
mimicking the crossclamp of thoracic aorta during
gery c May 2021
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thoracolumbar aortic repair surgery.12 Paraplegia of lower
limbs developed in rats after the operation, and the locomo-
tor functions was not significantly improved up to 7 days af-
ter reperfusion of aortic blood flow, indicating the
permanent neurologic damage in the ischemic cord. Mito-
chondrial injury in the cord tissue was detected by the
enhanced expression of BAX-to-Bcl-2 ratio and Bcl-XL
and suppression of GRP78. The BCL-2 protein family
tightly regulates the permeability of outer mitochondrial
membrane and plays a key role in the intrinsic apoptotic
pathway during ischemic neuronal injury, as Bcl-2 is antia-
poptotic and BAX is proapoptotic.19,20 The increased BAX/
Bcl-2 ratio represents a sensitive biomarker for proapopto-
tic activity during neuronal ischemic injury.21 Previous
studies demonstrated that protein levels of Bcl-XL in the
neuronal mitochondria decreased from 2 hours to 24 hours
after spinal cord injury22 but were significantly enhanced
from 2 days to 7 days after neuron ischemia.20 Although
Bcl-XL is generally considered as an antiapoptotic member
in the Bcl-2 family, the phosphorylation of Bcl-XL at serine
73 or interaction with BAD (ie, Bcl-2 associated death pro-
moter) during ischemic injury may promote cell death.22,23

Therefore, the enhanced BAX/Bcl-2 ratio and Bcl-XL
expression in this study may simply suggest the delayed
phase of mitochondrial dysfunction or progressive neuronal
death in the ischemic spinal cord.
The Journal of Thoracic and Car
GRP78 is a major ER chaperone protein that regulates the
unfolded protein response, as well as mediates antiapoptotic
properties.24 Furthermore, CHOP is a multifunctional tran-
scription factor in the ER stress response.25 Our results
showed that GRP78 was significantly suppressed and
CHOP was significantly upregulated in the spinal cord sub-
jected to ischemia–reperfusion injury, suggesting a greater
level of ER stress in the injured neuronal tissue.24 SCI
also enhanced the expressions of neurodegenerative
markers (GFAP and Iba-1) and fragmentation of Nissl
bodies in the neurons. Nissl bodies are the protein synthesis
infrastructure of a neuron, and fragmentation of Nissl
bodies (chromatolysis) usually represents degeneration of
the injured neurons.26 Collectively, our results showed
that ischemia–reperfusion injury in lumbar spinal cord
induced ER stress and mitochondrial dysfunction and led
to increased tissue expression of cell apoptosis marker (ie,
cleaved caspase-3) and neuroinflammatory cytokines (ie,
IL-6 and TNF-a).
Current therapeutic interest for spinal cord injury has

been focused on the restoration of mitochondrial function
after injury by targeting on inhibition of the mitochondrial
membrane leak, use of alternate energy sources, enhanced
endogenous antioxidant activity, and maintenance of mito-
chondrial morphology.8 Transplantation of exogenous
viable mitochondria was recently showed to maintain the
diovascular Surgery c Volume 161, Number 5 e343
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FIGURE 6. Representative histologic sections of spinal cord obtained from rats with spinal cord ischemia-reperfusion injury (A). The upper 2 panels are

spinal cord sections stained using the hematoxylin and eosin stain, and the lowest panels are tissue stained by the Nissl staining method. There were sig-

nificant central chromatolysis and reactive gliosis in the grey matter of ischemic spinal cord (B). Numbers of neurons in ventral horns of the gray matter of

lumbar cord were reduced in animals subjected to cord ischemia–reperfusion injury with or without mitochondrial transplant (C). Compared with controls,

the numbers of Nissl bodies in the ventral horn neurons were significantly increased in the mitochondrial group. Results were analyzed using the Mann–

WhitneyU test. *P<.05 controls (n¼ 6) versus mitochondrial group (n¼ 8). Data are presented as box-and-whisker plots, in which the horizontal lines of

color boxes indicate the 75th percentile, median and 25th percentile of the distribution, and the upper and lower whiskers indicate the maximal and minimal

values. SCI, Spinal cord ischemia.
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acute bioenergetics of the injured spinal cord15 and other
central nervous system trauma.27 However, no previous
study has reported the administration of viable mitochon-
dria in the acute phase of spinal cord ischemia–
reperfusion injury.

In this study, we labeled the mitochondria harvested from
the calf muscle using MitoTracker fluorescence to localize
e344 The Journal of Thoracic and Cardiovascular Sur
the distribution of mitochondria following systemic deliv-
ery via the jugular veins. In the na€ıve rats, the in vivo Mito-
Tracker red fluorescence was detected mainly in the left
upper quadrat of abdominal cavity at 2 hours after trans-
plantation, which suggested entrapment of exogenous mito-
chondria in the spleen. However, the MitoTracker red
fluorescence-labeled mitochondria were disseminated in
gery c May 2021



FIGURE 7. Ischemia–reperfusion injury during aortic surgery generates inflammatory responses (activation of interleukin [IL]-6 and tumor necrosis factor

[TNF]-a) and induces mitochondrial dysfunction (increased BAX-to-Bcl-2 ratio) in the lumbar spinal cord, leading to caspase-3–mediated neuroapoptosis

and impaired locomotor function in the hindlimbs of experimental rats. Transplantation of exogenous viable mitochondria at the reperfusion phase of spinal

cord ischemic injury significantly improves the hindlimb locomtor function by attenuating endoplasmic reticulum (ER) stress and mitochondrial injury, as

shown by the restoration of expressions of GRP78/CHOP and Bcl-2 family proteins (BAX/Bcl-2 ratio) in the injured spinal cord. Mitochondrial treatment

also significantly reduces the regional pro-inflammatory reaction (IL-6 and TNF-a). The improvement in mitochondrial function and neuroinflammation

suppresses cell apoptosis in the spinal cord. BAX, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma-2; TNFR-1, tumor necrosis factor receptor-1; IL-

6R, interleukin-6 receptor; Cyt c, cytochrome c; CHOP, CCAAT-enhancer-binding protein homologous protein; Grp78, binding immunoglobulin protein;

ROS, reactive oxygen species; BBB scale, Basso-Beattie-Bresnahan scale.
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the body parts below T6 levels where the aortic clip was
applied. The ex vivo MitoTracker green fluorescence also
confirmed that the transplanted mitochondria were only
localized in the thoracolumbar cord that subjected to
ischemia–reperfusion injury. Although the mechanisms
for ‘‘end-organ homing’’ and ‘‘subcellular internalization’’
where the transplanted mitochondria are retained in the
The Journal of Thoracic and Car
injured down-stream organs remained to be determined,11

our imaging measurements clearly demonstrate the selec-
tive distribution of mitochondria in the ischemic tissues
following intravenous administration.
In animals that received mitochondrial transplantation,

the expressions of GRP78/CHOP and Bcl-2 family proteins
(BAX/Bcl-2 ratio and Bcl-XL) were significantly restored,
diovascular Surgery c Volume 161, Number 5 e345
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indicating the attenuation of ER stress and mitochondrial
function in the ischemic cord. The tissue levels of IL-6
and TNF-a in the spinal cord were also suppressed by mito-
chondrial treatment. The improvement in mitochondrial
function and neuroinflammation in the mitochondrial-
treated animals thus resulted in suppression of cell
apoptosis (cleaved caspase-3 and TUNEL cells) and
neuronal chromatolysis (Nissl bodies) in the spinal cord.
Assessment of the hindlimbs further verified the significant
functional improvement in locomotor activities in rats
treated with mitochondria at the early reperfusion stage of
SCI.

The first clinical application of mitochondrial transplan-
tation was reported by McCully group in 2017.9 Their re-
sults showed that intramyocardial injection of viable
mitochondria in 5 pediatric patients with ischemia–reperfu-
sion-associated myocardial dysfunction resulted in
improvement of ventricular function in 4 of these patients,
and they were then successfully separated from extracorpo-
real mechanical support. Therefore, mitochondrial trans-
plantation has been highlighted as a revolutionary
approach for tissue regeneration in which conventional ther-
apies are unsuccessful.28 With regard to the other advan-
tages in regenerative medicine, mitochondrial
transplantation can be rapidly isolated and purified within
30 minutes to meet the clinical needs,29 such as at the acute
phase of cord ischemia–reperfusion injury during aortic
repair surgery. In addition, absence of alloreactivity and
damage-associated molecular pattern molecules reaction
following single or serial injections of syngeneic or alloge-
neic mitochondria might potentiate the clinical applications
of mitochondrial transplantation.30 Our study also high-
lights that intravenous administration of mitochondria is a
more convenient route of transplantation than regional
injection.

There are several limitations in this study. Although we
demonstrated that the exogenously transplanted mitochon-
dria distributed into the ischemic cord under IVIS images,
the molecular pathways of uptake and internalization of
these viable mitochondria into the neurons of spinal cord
should be further characterized. In fact, the transmigration
of exogenous mitochondria through the vascular walls and
uptake to the ischemic tissue following systemic vascular
delivery are undetermined.11 Second, the optimal number
of mitochondria transplanted was not characterized in this
study. The quantity of mitochondria used for transplantation
in our experiment was derived from the study reported by
Gollihue and colleagues, in which the neuroregenerative ef-
fect of mitochondrial transplantation was tested in a rat
model of contusive cord injury.15 Third, molecular changes
in the injured spinal cord were not measured at the early
phase after cord ischemia. Nevertheless, the locomotor
function of lower limbs was continuously assessed from
immediately after injury to 7 days later. The progressive
e346 The Journal of Thoracic and Cardiovascular Sur
improvement in locomotor activities over the observational
period reflected the restoration of subcellular function of the
ventral neurons following mitochondrial transplantation.
Fourth, the recovery of other neurologic functions of spinal
cord (such as sensory, neuropathic pain, and autonomic re-
sponses) should be analyzed in our future experiments.
Fifth, this study used plain PBS rather than the mitochon-
drial incubation medium as the placebo solution in the con-
trol group. Since the incubation time of the freshly isolated
mitochondria in PBS was considerably short (within
1 hour), the potential paracrine effects mediated by the in-
cubation medium were less likely to affect the recovery of
ischemic cord.

In conclusion, our study demonstrated that transplanta-
tion of freshly isolated mitochondria at the early stage of
spinal cord ischemia–reperfusion injury significantly sup-
presses the ER stress and mitochondrial dysfunction in
the ischemic cord, leading to attenuation in the inflamma-
tory and neuroapoptotic reactions, and improvement in
the motor function recovery. Transplantation of viable mito-
chondria might potentially provide therapeutic effect in
preservation of the neurologic function of spinal cord dur-
ing major aortic surgery.
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