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Using Clinical History Factors to Identify Bacterial Infections in Young
Febrile Infants
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Objective To develop a novel predictive model using primarily clinical history factors and compare performance
to the widely used Rochester Low Risk (RLR) model.
Study design In this cross-sectional study, we identified infants brought to one pediatric emergency department
from January 2014 to December 2016. We included infants age 0-90 days, with temperature ³38�C, and docu-
mented gestational age and illness duration. The primary outcome was bacterial infection. We used 10 predictors
to develop regression and ensemble machine learning models, which we trained and tested using 10-fold cross-
validation. We compared areas under the curve (AUCs), sensitivities, and specificities of the RLR, regression,
and ensemble models.
Results Of 877 infants, 67 had a bacterial infection (7.6%). The AUCs of the RLR, regression, and ensemble
models were 0.776 (95% CI 0.746, 0.807), 0.945 (0.913, 0.977), and 0.956 (0.935, 0.975), respectively. Using a
bacterial infection risk threshold of .01, the sensitivity and specificity of the regression model was 94.6% (87.4%,
100%) and 74.5% (62.4%, 85.4%), compared with 95.5% (87.5%, 99.1%) and 59.6% (56.2%, 63.0%) using the
RLR model.
Conclusions Compared with the RLR model, sensitivities of the novel predictive models were similar whereas
AUCs and specificities were significantly greater. If externally validated, these models, by producing an individual-
ized bacterial infection risk estimate, may offer a targeted approach to young febrile infants that is noninvasive and
inexpensive. (J Pediatr 2021;232:192-9).
E
ach year, approximately 500 000 young febrile infants, 0-90 days old, are brought to medical attention.1,2 Of these, at
least one-half will be hospitalized because they will be stratified as high risk for a bacterial infection, such as urinary tract
infection (UTI), bacteremia, and meningitis, but only 6%-10% will actually have a bacterial infection.3 Because a high

risk predictive model has remained elusive, efforts have focused on using a combination of categorical clinical characteristics
(eg, full term/premature) and serum biomarkers to identify infants at low risk of bacterial infection. Only when each charac-
teristic is satisfied as low risk will an infant be stratified as low risk. Thesemodels have high sensitivity (ie, they identify almost all
infants with bacterial infections as high risk) but have low specificity (ie, many infants without bacterial infections are classified
as high risk and subsequently hospitalized).4-10 This is problematic because a proportion of febrile infants without bacterial
infections may experience adverse events with costly financial and psychosocial effects for the family due to unnecessary
hospitalizations.11,12

Low-risk predictive models are limited in two ways. First, failure to meet any variable threshold would result in high risk
stratification, prompting subsequent hospitalization. Only 1 risk factor is evaluated at a time, without a comprehensive eval-
uation of the infant, as clinicians are trained to do. Second, low risk models often rely on sophisticated biomarkers, which are
invasive, expensive, and can be difficult to obtain in some settings. Furthermore, despite the addition of novel biomarkers,
diagnostic characteristics of recent models have shown only marginal improvements.8,10
1

Most medical diagnoses are made based on an individual’s history.13,14 Inex-
pensive and noninvasive elements of the personal history, such as maximum
temperature and duration of illness, are associated with bacterial infections in
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infants and children,4,5,8,9,15-19 but are not considered in low
risk models. Machine learning methods represent an
advanced analytic approach that can identify nonlinear asso-
ciations between predictors and outcomes and may enhance
diagnostic capabilities. Machine learning methods have been
used to improve risk stratification of acute coronary syn-
drome,20 predict mortality from myocardial infarction,21

and detect acute kidney injury.22 To address this gap and
the limitations of current models while optimizing state-of-
the-art analytic capabilities, our objective was to use primar-
ily clinical history factors to develop 2 novel bacterial
infection predictive models using regression and machine
learning methods that produce an individualized bacterial
infection risk estimate, and compare their performance
with the Rochester Low Risk (RLR) model.

Methods

We performed a cross-sectional study from a single, large ur-
ban pediatric emergency department (ED). The Drexel Uni-
versity Institutional Review Board approved this study.

Study Design and RLR Model
To identify subjects, 3 members of the study team used a
standardized data abstraction tool to review manually the
medical records of all infants who presented to the ED
from January 1, 2014 to December 31, 2016. Inclusion
criteria consisted of (1) age 0-90 days old; (2) fever, defined
as a temperature ³38 �C, within 6 hours of arriving to the
ED or reported by the caregiver from a measurement prior
to arrival, but during the current illness; (3) documented
gestational age at birth; and (4) documented duration of
illness (any symptom). Study personnel then used an abstrac-
tion instrument to review manually the electronic health re-
cord for variables of interest. We chose to use the RLR model
(Table I; available at www.jpeds.com)4 as the standard
because it is widely used and diagnostic characteristics are
similar to other models.5,7,8,10 Based on our clinical
experience, we considered missing values for variables as
low risk for purposes of RLR stratification and tested this
assumption by comparing bacterial infection rates in
infants with complete data to infants with missing data.
One author reviewed the abstracted data to assign risk status.

Novel Predictive Models
Informed by the literature,4,5,8,9,15-19 we selected 10 predictor
variables a priori to develop regression and machine learning
models. Undocumented or missing values for predictor vari-
ables may reflect the clinician’s perception of bacterial infec-
tion risk. For example, a clinician may not order a urinalysis
when their concern for a bacterial infection is low. To address
this issue and more completely capture this risk differentia-
tion, we included an additional value for categorical vari-
ables, labeled “not documented” or “not ordered.” With
this in mind, categorical variables included sex (male/
female), insurance type (public/private), presence of a
chronic medical condition (yes/no), appearance (well/ill/
not documented), and cough status (yes/no/not docu-
mented). Insurance type was included as a marker of socio-
economic status as poverty may be associated with bacterial
infections.23 In an independent and blinded fashion, 2 au-
thors manually reviewed all records to dichotomize chronic
medical conditions based on the likelihood that the condi-
tion may be related to a bacterial infection. We discussed
discrepant designations until we reached consensus
regarding the classification of the condition. Examples of
chronic medical conditions include vesicoureteral reflux,
hypospadias, and gastroschisis. Infants were recorded as ill-
appearing if they were described as toxic, limp, inconsolable,
ill-appearing, listless, lethargic, irritable, or unresponsive.24 A
“Review of Systems” template, which noted the presence/
absence of cough, was consistently completed in the ED per
standard practice with >99% compliance. Continuous vari-
ables included age (days), caregiver report of gestational
age at birth (weeks), maximum temperature (Celsius), and
duration of illness in days (any symptom). For some infants,
gestational age was recorded only as “full term” so we used
37.5 weeks for analysis. The only laboratory study included
in the novel predictive models was urinary tract inflamma-
tion (yes/no/not ordered), defined as ³5 white blood cells/
high power field of unspun urine or positive (³trace) leuko-
cyte esterase.4,8,10,25

Outcome
The primary outcome was bacterial infection (ie, UTI,
bacteremia, or meningitis). As previously described, we
defined UTI as (1) a catheterized urine specimen that grew
³10 000 colony forming units/mL of a pathogenic organism;
(2) evidence of urinary tract inflammation; and (3) clinical
management as a pathogen.26 We defined bacteremia and
meningitis as growth of a single pathogenic organism from
blood and/or cerebrospinal fluid cultures that was treated
clinically as a pathogen.

Statistical Analyses
Using the 10 predictor variables, we developed 2 novel pre-
dictive models: 1 using regression and 1 using an ensemble
machine learning method. We considered both regression
and super learner analyses because each method possesses
inherent advantages and disadvantages. Regression analyses
are easily understood and interpretable, however, can be
limited in their ability to detect nonlinear associations.
Conversely, machine learning algorithms are capable of iden-
tifying complex, nonlinear relationships between predictors
and outcomes and may offer improvements in diagnostic ca-
pabilities. However, the nature of these relationships are
often opaque and poorly understood,27 and therefore, clini-
cians may appropriately be skeptical of using them in clinical
settings. Second, reproducibility is a challenge because there
are a substantial number of variables that must be considered
and established.28,29 In addition, studies suggest that machine
learning methods may not be better than traditional
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Table II. Sample characteristics

Subject characteristics N = 877 (%)

Demographic characteristics
Median age, d (SD) 57 (22.3)
Male 500 (57)
Public insurance 801 (91)

Race/ethnicity
White/other 109 (12)
Black 326 (37)
Hispanic 424 (48)
Unknown race/ethnicity 30 (3)

Clinical characteristics
Full term 801 (91)
Chronic medical condition 29 (3)
Cough present 439 (50)
Duration of symptoms, mean; median (d) 1.89; 0
Rochester high risk 390 (44)

Outcome
Bacterial infection 67 (7.6)

THE JOURNAL OF PEDIATRICS � www.jpeds.com Volume 232
methods.30 To address these possible concerns, we have esti-
mated the importance of each predictor variable. For the
regression model, we calculated the coefficients and 95%
CIs for each predictor. For the super learner model, we
used the VIMP package in R to estimate the importance of
each variable by removing 1 variable at a time and then calcu-
lating the difference in the observed area under the curve
(AUC).31 We have also provided the data and code we used
to perform the analysis, found here (https://zenodo.org/
record/4081821#.YA1n_elKhR4).

To fit the regression model, we used a generalized linear
model with logit link function. For the ensemble learning
approach, we used a super learner model,32 which combines
a set of machine learning algorithms to optimally produce a
predictive model which is superior to each individual algo-
rithm. A super learner model first builds a predictive model
for each algorithm and then uses cross-validation to find the
optimal weighted combination of the predicted values as a
final output. We used the SuperLearner R package that in-
cludes random forest, earth, generalized additive models
with default settings, and generalized linear model. To avoid
overfitting, we used 10-fold cross-validation in which we
used 9 folds to train and tune the models and one fold to es-
timate performance.33

We compared the RLR model to the regression and super
learner models using AUC, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV),
likelihood ratios, and number needed to hospitalize
(NNH). Assuming that high-risk infants are hospitalized,
NNH represents the number of infants needed to hospitalize
to identify 1 bacterial infection. NNH was calculated using
the inverse of the PPV (1/PPV). The output of the 2 novel
predictive models is an estimate of the probability, or risk,
of a bacterial infection for an individual infant. To demon-
strate their features, we considered 3 prespecified probabili-
ties of bacterial infection (.01, .03, and .05) and used them
as cut-points for the estimated bacterial infection risks. We
calculated sensitivity, specificity, PPV, NPV, likelihood ra-
tios, and NNH for each model based on these cut-points
and compared the resulting diagnostic characteristics with
the RLR model. Last, we identified infants who were misclas-
sified as disease-free after cross-validation.

To construct CIs, we used a percentile bootstrap technique
where we resampled the entire set 500 times and performed
10-fold cross-validation on each bootstrapped sample. We
created the cross-validation folds to ensure all of the re-
sampled individuals were grouped together in the same
fold and used the out-of-fold predictions to create bootstrap-
ped estimates of sensitivity, specificity, PPV, and NPV. We
then used the 0.025 and 0.975 percentiles of these estimates
to form the corresponding 95% CIs.34 We used 10-fold
cross-validation in which we used 9 folds to train and tune
the models and 1 fold to estimate performance. We used a
bootstrap hypothesis test to examine statistically significant
differences in cross-validated AUCs, sensitivities, and speci-
ficities between the RLR, regression, and super learner
models. In addition, we performed 10-fold cross-validation
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to identify infants with bacterial infections who were misclas-
sified using the novel predictive models. To illustrate the clin-
ical application of this novel bacterial infection predictive
model, we used the regression model to create a preliminary
web-based risk calculator that could be used at the point-of-
care, found here (https://www.urmc.rochester.edu/sites/
biriskcalculator/).
Clinicians may be skeptical of using clinical history factors

obtained retrospectively because they may be recorded
inconsistently and/or inaccurately, potentially introducing
a source of bias. To address this issue, we performed a sensi-
tivity analysis by removing the 4 subjective predictor vari-
ables (gestational age at birth, appearance, cough status,
and duration of illness) that relied on caregiver’s report or
clinician’s assessment. We then repeated the cross-
validation procedure for both models with the remaining 6
objective variables (sex, insurance, chronic medical condi-
tion, age, maximum temperature, and urinary tract inflam-
mation) that were either reported as a distinct number (eg,
temperature) or were documented as a discrete value (eg,
urine laboratory study). For the sensitivity analysis, we again
used a bootstrap hypothesis test to assess for statistically sig-
nificant differences in sensitivities and specificities between
the RLR, regression, and super learner models.

Results

Of 9177 infants, 877met inclusion criteria (Figure; available at
www.jpeds.com). Themedian age was 57 days, amajority were
male, one-half were Hispanic, and almost all infants had
public health insurance. Over 90% of infants were full-term,
almost two-thirds of whom were documented as “full-term”
without a discrete gestational age (Table II). We observed
moderate agreement in classifying infants with chronic
medical conditions (n = 29; 3.3%) and resolved any
differences through consensus. Using the RLR model, 390
infants (44%) were high risk (Table II). Sixty-seven infants
had a bacterial infection (7.6%), 17 of whom had
bacteremia or meningitis (1.9%). The most common
Yaeger et al
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Table III. Etiology and type of bacterial infection categorized by age

Type of bacterial infection 0-30 d 31-60 d 61-90 d Total

Febrile infants, n 147 351 379 877
Infants with any bacterial infection, n (%) 21 (14.3%) 25 (7.1%) 21 (5.5%) 67 (7.6%)
Infants with bacteremia or meningitis, n (%) 4 (2.7%) 9 (2.6%) 4 (1.1%) 17 (1.9%)
Infants with UTI only, n 17 (11.6%) 16 (4.6%) 17 (4.5%) 50 (5.7%)
Organism recovered from urine only (n) Escherichia coli (12)

Klebsiella pneumoniae (3)
Enterococcus faecalis (1)
Group B Streptococcus (1)

Escherichia coli (13)
Enterococcus faecalis (1)
Citrobacter koseri (2)

Escherichia coli (16)
Enterococcus faecalis (1)

–

Infants with UTI and bacteremia, n (%) 0 2 (0.6%) 2 (0.5%) 4 (0.5%)
Organism recovered from urine and blood — Escherichia coli (2) Escherichia coli (1)

Group B Streptococcus (1)
—

Infants with bacteremia only, n (%) 3 (2%) 5 (1.4%) 1 (0.3%) 9 (1%)
Organism recovered from blood only (n) Group B Streptococcus (3) Group B Streptococcus (2)

Salmonella species (1)
Klebsiella pneumoniae (1)
Staphylococcus aureus (1)

Neisseria meningitidis, Group B (1) –

Infants with meningitis only, n (%) 1 (0.7%) 0 0 1 (0.1%)
Organism recovered from cerebrospinal fluid only (n) Escherichia coli (1) – – –
Infants with bacteremia and meningitis, n (%) 0 2 (0.6%) 1 (0.3%) 3 (0.3%)
Organism recovered from blood and cerebrospinal fluid (n) – Group B Streptococcus (2) Salmonella species (1) –
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organism identified was Escherichia coli (69%) followed by
Group B streptococcus (13%) (Table III). The RLR model
misclassified 3 infants with bacterial infections as low risk: a
22-day old infant with Group B streptococcus bacteremia, a
27-day old infant with Escherichia coli meningitis, and a 49-
day old infant with Staphylococcus aureus bacteremia.

The AUCs of the RLR, regression, and super learner
models were 0.776 (95% CI 0.746, 0.807), 0.945 (95% CI
0.913, 0.977), and 0.956 (95% CI 0.935, 0.975), respectively.
The bootstrap hypothesis test showed that the cross-validated
AUCs of the regression and super learner models were signif-
icantly greater than that of the RLR model by 15.5% and
16.6%, respectively. The sensitivity, specificity, and NNH
for the RLR model were 95.5% (95% CI 87.5%, 99.1%),
59.6% (95% CI 56.2%, 63.0%), and 6.1, respectively. Using
a bacterial infection risk threshold of .01, the sensitivity, spec-
ificity, and NNH for the regression model was 94.6% (95%
CI 87.4%, 100%), 74.5% (95% CI 62.4%, 85.4%), and 4.2
compared with 95.6% (95% CI 89.6%, 100%), 73.6% (95%
CI 66.1%, 81.7%), and 4.3 for the super learner model
(Table IV). Diagnostic characteristics for the remaining
risk thresholds are shown in Table IV. At both the .01 and
.03 risk thresholds, the sensitivities of the novel predictive
Table IV. Test characteristics for the RLR, regression, and s

Predictive model Sensitivity Specificity PPV

Rochester risk 0.955 (0.875, 0.991) 0.596 (0.562, 0.630) 0.164 (0.151, 0
Regression
Risk = .01 0.946 (0.874, 1) 0.745 (0.624, 0.854) 0.239 (0.162, 0
Risk = .03 0.921 (0.842, 0.973) 0.847 (0.792, 0.900) 0.333 (0.254, 0
Risk = .05 0.904 (0.822, 0.970) 0.880 (0.842, 0.916) 0.383 (0.301, 0

Super learner
Risk = .01 0.956 (0.896, 1) 0.736 (0.661, 0.817) 0.231 (0.173, 0
Risk = .03 0.930 (0.861, 0.986) 0.827 (0.778, 0.872) 0.307 (0.238, 0
Risk = .05 0.912 (0.833, 0.974) 0.860 (0.821, 0.897) 0.349 (0.274, 0

� LR, negative likelihood ratio; + LR, positive likelihood ratio.
NNH to evaluate and empirically treat 1 infant with a bacterial infection.
Numbers in parentheses represent 95% CIs.

Using Clinical History Factors to Identify Bacterial Infections in Y
models were the same as the RLR model (regression:
P = .418, P = .126; super learner: P = .718, P = .230) and
the specificities were significantly greater (regression:
P < .012, P < .002; super learner: P < .002, P < .002).
Using a bacterial infection risk threshold of .01, the cross-

validated regression and super learner models misclassified 3
infants and 2 infants, respectively. Both models misclassified
a 27-day old infant with Escherichia colimeningitis and a 22–
day old infant with Group B streptococcus bacteremia, as did
the RLR model. The regression model also misclassified a 64-
day old infant with Neisseria meningitidis group B bacter-
emia. Presence of urinary tract inflammation was most
strongly associated with bacterial infections for both models.
In addition, female sex, age, ill appearance, maximum tem-
perature, and presence of cough were significantly associated
with bacterial infections for the regression model whereas
duration of illness was a significant predictor for the super
learner model (Table V; available at www.jpeds.com). For
the sensitivity analysis that was restricted to 6 factors
measured objectively and at a risk threshold of .01, the
sensitivity and specificity of the regression model was
94.1% (95% CI 86.1%, 98.8%) and 58.2% (95% CI 35.4%,
77.2%) compared with 91.0% (95% CI 84.1%, 96.9%) and
uper learner models at selected risk estimates

NPV + LR � LR NNH

.178) 0.994 (0.982, 0.998) 2.37 (2.14, 2.61) 0.08 (0.02, 0.23) 6.1

.339) 0.994 (0.986, 1) 3.94 (2.46, 6.59) 0.07 (0.00, 0.18) 4.2

.429) 0.993 (0.985, 0.997) 6.25 (4.31, 9.42) 0.09 (0.03, 0.19) 3

.475) 0.991 (0.984, 0.997) 7.75 (5.48, 10.93) 0.11 (0.03, 0.20) 2.6

.307) 0.995 (0.987, 1) 3.73 (2.76, 5.39) 0.06 (0.00, 0.14) 4.3

.387) 0.993 (0.986, 0.999) 5.51 (3.99, 7.63) 0.09 (0.02, 0.17) 3.3

.435) 0.992 (0.984, 0.997) 6.66 (4.94, 9.23) 0.10 (0.03, 0.20) 2.9
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70.2% (95% CI 57.8%, 81.9%) for the super learner model.
At this risk threshold, both novel predictive models were
as sensitive and specific as the RLR model (regression:
P = .398, P = .532; super learner: P = .148, P = .066).

For RLR stratification, 13% of values were missing, almost
one-half of which occurred among infants >60 days old and
consisted mostly of clinical history regarding the nursery
stay. Approximately 75% of infants with a missing laboratory
study were ³60 days old. Compared with infants with com-
plete data, the OR of a bacterial infection for infants with
missing data was 0.72 (95% CI 0.43, 1.18). For the novel pre-
dictive models, 9% of values were either not documented or
not ordered, over two-thirds of which were for infants
>60 days old. Of infants with at least 1 missing value
(n = 273), there were 1 bacterial infections (0.7%), both of
whom had bacteremia. The OR of a bacterial infection for in-
fants with at least 1 value that was not documented or not or-
dered was significantly lower compared with infants with
complete data (OR 0.06; 95% CI 0.01, 0.25). No infants
were diagnosed with a bacterial infection within 7 days
following their initial encounter.

Discussion

As in previous studies,30 our findings demonstrate that the
regression and super learner models performed similarly.
Compared with the RLR model and using a conservative
bacterial infection risk estimate threshold of .01, the point es-
timates of the novel predictive models indicate that 25%
fewer infants could be hospitalized while misclassifying the
same number of infants with bacterial infection. At this lower
bacterial infection risk estimate threshold of .01, the RLR,
regression and super learner models misclassified 3 infants,
3 infants, and 2 infants with bacterial infections, respectively.
Notably, all 3 models failed to identify an infant with Escher-
ichia coli meningitis and Group B streptococcus bacteremia.
This finding exemplifies the central challenge with evaluating
young febrile infants that has been observed in each iteration
of low-risk models. Even highly sensitive predictive models
will occasionally miss an infant with a bacterial infection. Us-
ing the regression model and a more lenient risk threshold of
.03, a clinician could expect to misclassify the same number
of infants with bacterial infections compared with the RLR
tool, but may hospitalize more than 2 times fewer infants.
Our findings show that the sensitivities for the regression
and super learner models are similar to the RLR model,
and the specificities are significantly greater. If confirmed
in validation studies, implementation of these models may
safely decrease unnecessary hospitalizations, resulting in
lower costs and fewer invasive tests while mitigating other
harmful effects.35,36

Reliance on clinical history factors, rather than serumor ce-
rebrospinal fluid biomarkers, distinguishes our work from
other studies and represents a paradigm shift in how clinicians
conceptualize bacterial infection risk in young febrile infants.
Our approach reflects the importance of the clinical history
and illustrates how inexpensive, noninvasive markers of dis-
196
ease can be used to identify infants with bacterial infections
in clinical practice. In addition, this approach is relevant
from a practical standpoint for 3 reasons. First, we wanted
to operationalize a clinician’s reasoning skills to evaluate
simultaneously relevant clinical information, coupling prin-
ciples of illness scripts and disease patterns with current evi-
dence. Second, 70% of children in the US are hospitalized
in general/community hospitals,37 many with limited re-
sources to perform on-site laboratory studies. Procalcitonin,
for example, is associated with bacterial infections,8,38 but is
not readily available in all settings, limiting point-of-care uti-
lization. By focusing on clinical history factors, we strived to
develop an accurate predictivemodel that could bewidely im-
plemented, regardless of available resources. Last, up to 80%
of positive blood cultures are due to contaminants,39-41 the
treatment of which can result in unnecessary care and compli-
cations while awaiting final determination.42 One effective
approach to reduce the rates of contaminated blood cultures
is to refrain from collecting them if they are unlikely to result
in growth of a pathogenic organism.43 By omitting serumbio-
markers as predictor variables, clinicians may be able to avoid
obtaining blood cultures in a subset of infants found to be at
extremely low risk of bacterial infections and whose risk of
contamination may be substantially greater than the risk of
bacteremia.We envision that this approach could have at least
2 benefits. First, as the decision to collect a blood culture is
largely made by individual clinicians, there are subsets of in-
fants who do not receive a blood culture, resulting in extensive
practice variation.41,44 By quantifying this risk, clinicians may
be better equipped to embrace a standardized approach to
blood culture collection in extremely low-risk infants, thereby
reducing practice variation. Second, by identifying infants
whose bacterial infection risk is negligible, thousands of blood
culture contaminants each year could be avoided, thereby
reducing the likelihood that infants with contaminants would
be unnecessarily hospitalized and treated. This novel predic-
tive model and web-based bacterial infection risk calculator
may offer a path forward that is as conservative as current
models but is less invasive with fewer costs. This approach re-
quires rigorous investigation with proper evaluation and
external validation before clinicians should forego the initial
collection of serum biomarkers and blood cultures for some
young febrile infants.
Although 2 infants may be stratified into the same risk-tier

using a low-risk model, it is unlikely that they actually have
the same bacterial infection risk. The novel predictive models
may provide an accurate estimate of this risk. Recognizing
that the balance of risk tolerance/risk aversion may vary
widely between clinicians, an individualized bacterial infec-
tion risk estimate allows clinicians to identify their preferred
risk estimate threshold (eg, .01 vs .03). As demonstrated in
other clinical decision support tools,45,46 the practical appli-
cation of the regression model as a web-based risk calculator
is appealing because it can be integrated into a clinician’s
workflow, facilitating point-of-care utilization with mobili-
zation of resources based on estimated bacterial infection
risk. If externally validated, we expect that a web-based risk
Yaeger et al
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calculator could be useful for emergency and hospital medi-
cine clinicians. Clinicians could either manually enter data
into a risk calculator or the model could be embedded within
an electronic medical record system to automatically calcu-
late risk. In addition, office-based clinicians, who may have
limited access to on-site laboratory studies, may be able to
utilize the risk calculator to help decide which young febrile
infants warrant further diagnostic evaluation, thereby safely
avoiding ED visits for a subset of infants.

At least 2 elements of the study design may have contrib-
uted to the improved performance of our models compared
with the RLR model. First, to avoid sacrificing information
that may affect model performance, we used continuous vari-
ables, when appropriate, rather than categorizing variables
and introducing possibly arbitrary thresholds. Second, in
contrast to other studies,4,8,9,16,41 we included premature in-
fants to avoid potentially introducing selection bias as pre-
maturity is associated with race47-49 and poverty,50 which
are correlated with each other and may also be associated
with bacterial infections.23

The sensitivity analysis showed that a subset of 6 objective
clinical history factors performed at least as well as the RLR
model in terms of sensitivity and specificity. Although
external validation studies are needed, this finding suggests
there may indeed be value to identifying infants with bacte-
rial infections by using primarily clinical history factors and
should assuage concerns that results are due solely to the
use of variables obtained from caregiver reports or subjective
assessments that may be inaccurate or incomplete. Notably,
excluding the infant’s appearance in the sensitivity analysis
minimally affected model performance. Perhaps appearance
may be more important for younger infants or when solely
invasive bacterial infections, such as bacteremia and menin-
gitis, are considered. Future work should focus on using
separate datasets to identify the combination of clinical his-
tory factors for each model that produce the best predictive
value.

The Pediatric Research in the Outpatient Setting (PROS)
study16 showed clinicians could safely decrease testing and
hospitalization of young febrile infants without strict adher-
ence to a low-risk model. Some clinicians have interpreted
this as a justification to rely more heavily on clinical judg-
ment. Given the infrequent occurrence of bacterial infec-
tions, others have voiced concern that these findings
justify the systematic use of low-risk models to avoid
missing bacterial infections. It has also been noted that
the PROS study was conducted in largely suburban prac-
tices, with experienced clinicians, low rates of public insur-
ance, and established family relationships to ensure
appropriate follow-up.51 This clinical environment con-
trasts markedly with the urban EDs where predictive
models were first developed and was the setting for our
study. Now 16 years later, the core question remains: how
can clinicians systematically identify infants truly at high
risk of a bacterial infection without missing bacterial infec-
tions? We propose that the clinical history factors opera-
tionalized in this study may overlap with those considered
Using Clinical History Factors to Identify Bacterial Infections in Y
in the PROS study. These clinical history factors, together
with a more systematic approach to determine a family’s
ability to follow-up, may help answer this core question
and require further investigation.
This study has several limitations. First, this is a retrospec-

tive study from a single site with high rates of public insur-
ance. Documentation and performance of tests were
completed at the discretion of the treating clinician, resulting
in missing data. However, for the RLR model, the OR of a
bacterial infection for infants with missing data was lower
relative to infants with complete data, suggesting our
approach of labeling missing data as low risk was reasonable.
For the novel predictive models, the OR of a bacterial infec-
tion for infants with missing data was significantly lower
compared with infants with complete data, indicating that
missing data did not create a major source of bias in assessing
sensitivity for bacterial infections. In addition, the sensitivity
analysis affirms there is value in collecting clinical history
factors retrospectively to predict bacterial infections. This
potential issue requires further investigation with a prospec-
tive study design. Second, the novel predictive models are not
externally validated, limiting their generalizability. We did,
however, use 10-fold cross-validation as an internal valida-
tion technique to avoid overfitting. One of the perceived ad-
vantages of machine learning models is their ability to
consider a large number of predictors, however, the novel
predictive models only considered 10 predictors. We did so
because we sought to include evidence-based predictors
that were consistently documented, thereby limiting the
amount of missing data and ensuring that the models
made intuitive sense. It is possible that additional data,
such as circumcision status, may enhance the diagnostic ca-
pabilities of the models. In addition, because we chose pre-
dictor variables a priori, it is possible that some variables,
such as insurance status, may not substantially contribute
to the prediction of bacterial infections. Although model
reduction analyses may improve clinical utilization by
removing variables that are not strongly associated with an
outcome, it is problematic to re-select variables and re-
train models with the same dataset because this approach
can result in overfitting, thereby limiting reproducibility.52

Last, given the small sample size, we did not evaluate the
outcome of invasive bacterial infections. Future studies, in
separate, larger populations, should address these limitations
by identifying factors that are most strongly associated with
bacterial infections to refine and validate an optimal predic-
tive model.
In this study, we used primarily clinical history factors to

develop novel predictive models that estimate bacterial infec-
tion risk based on each infant’s unique clinical profile. If
externally validated, implementationmay result in fewer hos-
pitalizations and invasive procedures than the RLR model,
without missing infants with bacterial infections. We em-
ployed a targeted approach, creating a unique risk estimate
for each infant that would allow clinicians to determine their
preferred risk thresholds. By developing a preliminary web-
based risk calculator, we demonstrated how this technology
oung Febrile Infants 197
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can be applied to clinical decision-making at the point-of-
care. Although external validation and refinement in variable
selection are needed, our results are promising as they may
represent a more individualized and value-based approach
to manage young febrile infants. n
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9177 Infants 0 – 90 Days Old With ED Encounter From 2014 - 2016  

8253 Infants with
documented 

temperature <

924 Infants 

- 44 infants without documented 
gesta�onal age at birth

- 3 infants without documented 
dura�on of illness (any symptom)

877 Febrile Infants Included in the Study

Figure. Flow diagram to indicate the included and excluded infants.
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Table I. Factors used to classify febrile infants as low
risk

History
Gestational age ³37 wk
No prolonged nursery stay/NICU stay
No hospitalizations in the past 72 h
No history of perinatal antibiotics
No reported social concerns
No chronic disease

Examination
Well appearing

Laboratory
Peripheral WBC count >5000/mm3 and <15 000/mm3

Absolute band count £1500
<5 WBC/high power field in urine (unspun)
Negative leukocyte esterase in urine

NICU, neonatal intensive care unit; WBC, white blood cell.
All factors and thresholds must be met to satisfy low-risk designation.

Table V. Importance of variable

A. Regression model Coefficients (95% CI)

Sex (female) 1.07 (0.33, 1.86)
Insurance (public) �0.18 (�1.58, 1.44)
Chronic medical condition (yes) 1.10 (�0.43, 2.65)
Age �.02 (�.04, �.01)
Gestational age .01 (�0.24, 0.25)
Appearance (Ill) 2.85 (1.75, 4.05)
Maximum temperature 1.28 (0.69, 1.91)
Duration of illness 0.13 (�.03, 0.27)
Cough status (present) �1.46 (�2.35, �0.63)
Urinary tract inflammation (present) 4.76 (3.8, 5.94)

B. Super learner model Improvement in AUC (95% CI)

Sex 0 (0, .07)
Insurance .01 (0, .05)
Chronic medical condition 0 (0, 0.05)
Age 0 (0, .05)
Gestational age .04 (0, .08)
Appearance .06 (0, .13)
Maximum temperature 0 (0, .04)
Duration of illness .08 (.02, .14)
Cough status 0 (0, .04)
Urinary tract inflammation .23 (.14, 0.32)
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