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Randomized Controlled Trial of Early Docosahexaenoic Acid and
Arachidonic Acid Enteral Supplementation in Very Low Birth Weight Infants
Brandy L. Frost, MD1,2, Aloka L. Patel, MD3, Daniel T. Robinson, MD, MSc4, Carol Lynn Berseth, MD5, Timothy Cooper, MD5,

and Michael Caplan, MD1,2

Objective To determine feasibility of providing a concentrated emulsified long-chain polyunsaturated fatty acids
(LCPUFA) supplement to very low birth weight infants, and to evaluate blood LCPUFA concentrations at 2 and
8 weeks of study supplementation.
Study design This prospective, randomized, double-blind, placebo-controlled trial randomized infants to receive
(1) LCPUFA-120 (a supplement of 40 mg/kg/day docosahexaenoic acid [DHA] and 80 mg/kg/day arachidonic acid
[ARA]; DHA:ARA at 1:2 ratio), (2) LCPUFA-360 (a supplement of 120mg/kg/dayDHA and 240mg/kg/day ARA), or (3)
sunflower oil (placebo control). Infants received supplement daily for 8 weeks or until discharge, whichever came
first. Whole blood LCPUFA levels (wt%; g/100 g) were measured at baseline, 2 weeks, and 8 weeks.
Results Infants were 28 weeks of gestation (IQR, 27-30 weeks of gestation) and weighed 1040 g (IQR, 910-
1245 g). At 2 weeks, the change in blood DHA (wt%) from baseline differed significantly among groups (sunflower
oil, n = 6;�0.63 [IQR,�0.96 to�0.55]; LCPUFA-120: n = 12;�0.14 [IQR,�0.72 to�0.26]; LCPUFA-360, n = 12; 0.46
[IQR, 0.17-0.81]; P = .002 across groups). Change in blood ARA (wt%) also differed by group (sunflower oil: �2.2
[IQR, �3.9 to �1.7]; LCPUFA-120: 0.1 [IQR, �2.1 to 1.1] vs LCPUFA-360: 2.9 IQR, 1.5 to 4.5]; P = .0002). Change
from baseline to 8 weeks significantly differed between groups for DHA (P = .02) and ARA (P = .003).
Conclusions Enteral LCPUFA supplementation supported higher blood DHA by 2 weeks. LCPUFA supplemen-
tation at 360 mg of combined DHA and ARA is likely necessary to reduce declines as well as allow increases in
whole blood concentrations in the first 8 weeks of life. (J Pediatr 2021;232:23-30).
Trial registration Clinicaltrials.gov: NCT03192839
roviding sufficient macronutrients and micronutrients to preterm infants has the potential to improve neurodevelop-
1-3 4-8
Pment. Long-chain polyunsaturated fatty acids (LCPUFA) are important to infant eye and brain development. Data

suggest supplementation of docosahexaenoic acid (DHA, 22:6n-3) may improve indicators of visual function in pre-
term infants.9 Low blood LCPUFA levels have been associated with risk of neonatal morbidities, such as bronchopulmonary
dysplasia (BPD), yet supplementation of DHA alone (no added arachidonic acid [ARA]) in preterm infants increased the
risk of BPD.10,11 A recent meta-analysis suggested that LCPUFA supplementation may contribute to a reduction in BPD as
well as necrotizing enterocolitis (NEC).12
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that have LCPUFAs are increasingly available, ideally the pre-
term infant’s primary source of nutrition should be provided
via the enteral route.16

Extremely preterm infants experience declines in LCPUFA
over the first 2 weeks of life while being nourished largely via
parenteral nutrition.17Maternal and preterm infant LCPUFA
supplementation has been investigated using different
methods.11,18-23 Previously, we enrolled extremely low birth
weight infants in a placebo-controlled, double-blind, ran-
domized trial using a concentrated LCPUFA supplement
applied to the buccal mucosa.24 This method of administra-
tion did not alter blood LCPUFA. Therefore, our objective in
the current trial was to determine the feasibility of using a
concentrated emulsified LCPUFA supplement via the enteral
route to very low birth weight infants (at 2 concentrations of
DHA and ARA). Blood LCPUFA were evaluated at 2 weeks
and 8 weeks of supplementation.
Methods

This study was conducted in 2 Chicago metropolitan area
level III neonatal intensive care units (NICUs) (NorthShore
University Health System and Rush University Medical Cen-
ter). After obtaining informed consent from the parent or
guardian, very low birth weight infants were enrolled into
this prospective, randomized, double-blind, placebo-
controlled trial within the first 72 hours of life. Exclusion
criteria included having a known metabolic disorder, having
a congenital gastrointestinal anomaly, being deemed inap-
propriate for the study by the treating physician, or being
in another investigational therapy. The first patient was
enrolled in August 2017. Study supplement was completed
for the final infant in August 2018.

Enrolled infants were assigned to one of 3 study groups
via computer generated randomization: (1) LCPUFA-120
(40 mg/kg/day DHA and 80 mg/kg/day ARA), (2)
LCPUFA-360 (120 mg/kg/day DHA and 240 mg/kg/day
ARA), or (3) sunflower oil (placebo control). The DHA:ARA
ratio was 1:2 for the LCPUFA-120 and LCPUFA-360 study
supplements. The LCPUFA-120 supplement was selected
because it approximates both the in utero LCPUFA accretion
rates, as well as current supplementation strategies in preterm
formula. Furthermore, LCPUFA supplementation in preterm
formula targets average human milk LCPUFA content,
recognizing that maternal milk levels range widely. In addi-
tion, provision of ARA in addition to DHA has been recom-
mended by consensus reports.25 To provide a robust contrast
with the LCPUFA-120 supplement, and to overcome any
concerns regarding absorption or difficulties with the
substance adhering to tubing, we selected the LCPUFA-360
supplement. Randomization ratio was 2:2:1 for LCPUFA-
120:LCPUFA-360:control in blocks of 5. Study supplements
were barcoded to manage and verify administration. A hos-
pital pharmacist randomized patients and prepared the study
supplement or sunflower oil control using amber syringes to
maintain blinding of the study team, clinical team, and family
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of the infant. The supplement was given via nasogastric tube
or orally with a feed when infants were taking everything
orally. Specifically, the supplement would be administered
via the nasogastric tube just before a feed; thus, the feeding
was used as a flush to follow the supplement. If the infant
was not being fed enterally, the supplement could be flushed
with sterile water via the nasogastric tube. The nursing staff
administered the supplement at regular intervals throughout
each study day, provided as 3-4 daily doses. Supplementation
continued for up to 8 weeks or discharge, whichever occurred
first.
The medical charts of both infants and mothers were re-

viewed for baseline maternal and infant demographics,
maternal medical and pregnancy history, maternal polyun-
saturated fatty acids (PUFA) supplementation in both preg-
nancy and lactation, and measures of severity of illness for
neonates (Score for Neonatal Acute Physiology-Perinatal
Extension II).26 The clinical outcomes recorded included res-
piratory distress syndrome, intraventricular hemorrhage
(any grade), periventricular leukomalacia, patent ductus ar-
teriosus, spontaneous intestinal perforation, NEC, BPD
defined as requiring supplemental oxygen at 36 weeks post-
menstrual age, retinopathy of prematurity requiring treat-
ment, late-onset sepsis (positive and negative culture),
cholestasis, and mortality.
Measures of nutritional intake included parenteral nutri-

tion prescriptions, timing of initiation of feedings, and
time to full enteral nutrition (defined as 120 kcal/kg/day).
Prescribing of nutritional provisions was at the discretion
of the treating neonatologist. In general, parenteral nutrition
was started in both NICUs within the first day of life. Infants
received intravenous lipid emulsion with Intralipid 20% so-
lution (Fresenius Kabi) within 48 hours of age. Enteral feed-
ings were initiated when deemed appropriate at 20 mL/kg/
day or less and advanced as tolerated. Human milk was pro-
vided using either mother’s own milk or donor human milk
if mother’s own milk was unavailable. The donor human
milk was obtained from the same milk bank for both NICUs.
Donor human milk was transitioned to preterm formula at
33 weeks postmenstrual age at Rush University Medical
Center, and after 4 weeks of age at NorthShore University
HealthSystem.
Serial milk samples, including mother’s own milk and/or

donor human milk, were obtained to measure the LCPUFA
content of enteral nutrition. Samples were collected on dried
filter paper at 1, 2, 4, and 8 weeks of age or at discharge if the
infant was receiving humanmilk feedings at that time.Whole
blood samples were obtained as capillary blood spots to mea-
sure the blood LCPUFA levels at baseline (before starting
supplements), 2 weeks, and 8 weeks of supplementation.
For LCPUFA analysis, whole blood and human milk samples
were collected on Perkin Elmer 226 filter paper (pretreated
with a 3-component antioxidant cocktail) and allowed to
dry at room temperature for 15 minutes. Filter papers were
mailed to OmegaQuant for analysis. One punch of the dried
spot was transferred to a screw-cap glass vial followed by
addition of boron trifluoride in methanol, toluene, and
Frost et al
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methanol. It was shaken and then heated at 100�C for 45 mi-
nutes. Hexane and distilled water were added after the
mixture cooled. After vortexing briefly, the samples were
spun to separate layers and an aliquot of the hexane layer
that contained the fatty acid methyl esters was transferred
to a vial for gas chromatography. Gas chromatography flame
ionization detection was carried out using a GC2010 Gas
Chromatograph (Shimadzu Corporation) equipped with a
SP2560, 100-m fused silica capillary column (0.25 mm inter-
nal diameter, 0.2 mmfilm thickness; Supelco) using hydrogen
as a carrier gas. Fatty acids were identified by comparison
with a standard mixture of fatty acids characteristic of red
blood cells (GLC OQ-A, NuCheck Prep; this mixture was
also used to construct individual fatty acid calibration
curves). Whole blood fatty acids are reported as weight%
(wt%) of total fatty acids (g/100 g). This method of
measuring fatty acid levels has been previously described
for both blood spots and milk spots.27-29

Statistical Analyses
The primary outcome for this study was blood LCPUFA
levels at 2 weeks. Secondary outcomes were blood LCPUFA
levels at 8 weeks, days to reach full enteral feeds (defined as
120 kcal/kg/day), and the incidence of NEC and BPD. Data
are presented as median (IQR) or number (%). Nonpara-
metric approaches including the Kruskal-Wallis and Fisher
exact tests were used to compare clinical characteristics and
blood fatty acid concentrations in cross-sectional compari-
sons. The Wilcoxon rank-sum test was used to compare fatty
acid concentrations in milk by participating center. Linear
regression accounted for repeated fatty acid concentrations
in each infant and identified whether fatty acid changes
differed by group longitudinally. Reported beta coefficients
reflected change in fatty acid concentrations for the
LCPUFA-120 and LCPUFA-360 groups when compared
with the sunflower oil group as reference, adjusted for rele-
vant covariates, throughout the 8 weeks of supplementation.
Given the biological relevance of sex and gestational age as a
reflection of duration of fetal accretion, these variables were
included in the multivariable model as well as study cen-
ter.17,30 Analyses were performed using Stata v12.1 (Stata-
Corp). We aimed to enroll 30 infants into the study, with
12 per each of the LCPUFA groups, and 6 in the placebo; a
power analysis was not performed.
Results

Between July 2017 and August 2018, 30 infants were enrolled
(Figure 1). No significant group differences were detected in
baseline demographic and nutritional outcomes (Table I).
The age at which intravenous lipids were discontinued and
age at full enteral nutrition were similar among groups
(Table I). All infants survived to discharge and morbidities
of prematurity were similar across the groups (Table I). Of
the 30 infants, 16 (53%) received a blood transfusion
during the study, with no difference among groups
Randomized Controlled Trial of Early Docosahexaenoic Acid and
Birth Weight Infants
(P = .06). One infant in the LCPUFA-120 group developed
NEC and did not receive the study supplement during the
period of bowel rest. All other infants received the assigned
study supplement daily and displayed no indicators of
intolerance to the supplement itself or administration with
enteral feeds. Human milk LCPUFA concentrations were
similar when comparing centers, aside from DHA in the
first milk samples and eicosapentaenoic acid in the week 8/
discharge samples (Table II; available at www.jpeds.com).
Infants received study supplementation from 2 days of age

(IQR, 2-3 days of age) through 55 days of age (IQR, 45-
56 days of age). Blood samples for LCPUFA analysis were
drawn on days of age 2 (IQR, 2, 3 of age), 15 days of age
(IQR, 14, 17 days of age), and 53 days of age (IQR, 46, 55
days of age). The baseline blood LCPUFA levels (DHA,
ARA, linoleic acid, alpha-linolenic acid, and eicosapentae-
noic acid) were similar among groups (Table III). At
2 weeks, the blood DHA levels were significantly different
between groups. ARA and eicosapentaenoic acid were also
significantly different between groups with higher levels in
the LCPUFA-360 group. At 8 weeks, these differences in
ARA and DHA persisted.
The absolute changes in blood DHA levels included a

change from baseline by �0.63 wt% (IQR, �0.96 to �0.55
wt%) during the first 2 weeks in the sunflower oil group,
and from baseline over the 8 weeks by �0.82 wt% (IQR,
�1.14 to �0.6 wt%) in that group (Figure 2, A). In the
LCPUFA-120 group, the absolute changes in DHA were–
0.14 wt% (IQR, �0.72 to 0.26 wt%) over the first 2 weeks
and an increase of 0.34 wt% (IQR, 0.1 to1.0 wt%) over the
8 weeks. In contrast, the LCPUFA-360 group demonstrated
a 0.46 wt% (IQR, 0.17 to 0.81 wt%) increase in DHA at
2 weeks and an increase of 0.6 wt% (IQR, 0.29 to 1.32 wt
%) at 8 weeks. These absolute changes were significantly
different between groups during the first 2 weeks
(P = .002) and during the 8 weeks (P = .021). Similarly,
blood ARA levels decreased and showed an absolute change
in concentration of �2.2 wt% (IQR, �3.9 to �1.7 wt%) in
the sunflower oil group, a change of 0.099 wt% (IQR, �2.1
to 1.1 wt%) in the LCPUFA-120 group, and an increase of
2.9 wt% (IQR, 1.5 to 4.5 wt%) in the LCPUFA-360 group
(P = .0002 between groups) by 2 weeks (Figure 2, B). ARA
demonstrated a change of �4.2 wt% (IQR, �5.5 to – 2.4
wt%) in the sunflower oil group, a change of �0.16 wt%
(IQR, �0.12 to 1.1 wt%) in the LCPUFA-120 group, and
increased by 2.02 wt% (IQR, 0.78 to 3.17 wt%) in the
LCPUFA-360 group over 8 weeks (P = .003 between groups).
The baseline infant blood DHA levels were notably higher

at one center compared with the other: 3.8 wt% (IQR, 3.5-4.2
wt%) vs 2.9 wt% (IQR, 2.4-3.5 wt%) (P = .002). There was no
significant difference in maternal use of dietary PUFA sup-
plements during pregnancy between centers.
Multivariable models identified group assignment and

study center as significant predictors of change in blood
DHA and ARA levels in the LCPUFA groups vs the sunflower
oil group over the 8 weeks of study supplementation
(Table IV).
Arachidonic Acid Enteral Supplementation in Very Low 25
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Assessed for eligibility (n = 80) 

Excluded  (n = 50) 
   Not meeting inclusion criteria (n = 13) 
   Declined to participate (n =  28) 
   Other reasons (n = 9) 

Analyzed  (n = 12) 

Lost to follow-up (n = 0) 

Discontinued intervention (n = 0) 

Allocated to LCPUFA-360 
supplement (n = 12) 

• Received allocated 
intervention (n = 12) 

Lost to follow-up (n = 0) 

Discontinued intervention (n = 0) 

Allocated to SO (n = 6) 

• Received allocated 
intervention  (n = 6 ) 

Analyzed  (n  = 6)  

Randomized (n = 30) 

Allocated to LCPUFA-120 
supplement (n = 12)  

• Received allocated 
intervention (n = 12) 

Lost to foll (n = 0) ow up   

Discontinued intervention (n = 0) 

Analyzed (n = 12) 

Figure 1. CONSORT diagram depicting enrollment into study, allocation to study group, follow up, and analysis of results.
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Discussion

We established the feasibility of providing a concentrated
emulsified PUFA supplement as daily nutritional support
in 30 very low birth weight neonates. Previously, we demon-
strated that blood LCPUFA levels decrease by 2 weeks of age
in preterm infants.17 In the current study, blood DHA levels
decreased in infants receiving no supplemental DHA.
LCPUFA supplementation at 120 mg of DHA and ARA
seemed to maintain a steady DHA status, and blood DHA
26
concentrations increased in infants receiving LCPUFA sup-
plementation at 360 mg of DHA and ARA. Similarly, blood
ARA levels decreased in the infants receiving no supple-
mental LCPUFA, remained similar to baseline levels in
infants receiving LCPUFA-120 supplementation, and
increased for infants receiving LCPUFA-360 supplementa-
tion. Group differences persisted at 8 weeks, with higher
blood DHA and ARA levels in infants receiving LCPUFA-
360 supplementation. In addition, the supplement was
generally well-tolerated by all infants.
Frost et al



Table I. Maternal and infant demographics and outcomes

Characteristics All (n = 30)
Sunflower oil

(control) (n = 6)
LCPUFA-120
(n = 12)

LCPUFA-360
(n = 12) P value*

Gestational age, weeks 28 [27-30] 30 [28-31] 28 [26.5-28.5] 29 [27-30.5] .12
Birthweight, g 1040 [910-1245] 1135 [910-1350] 1070 [945-1282.5] 985 [902.5-1237.5] .81
Maternal age, years 29.5 [22-33] 33.5 [28-34] 30 [21-35] 29 [22-31] .22
Maternal supplementation† 8 (27) 4 (67) 3 (25) 2 (17) .11
Multiple gestation 8 (27) 2 (33) 2 (17) 4 (33) .65
Completed antenatal steroids 25 (83) 5 (83) 8 (67) 12 (100) .19
Cesarean delivery 22 (73) 5 (83) 7 (58) 10 (83) .49
Small for gestational age 10 (33) 4 (67) 2 (17) 4 (33) .15
Female 18 (60) 6 (100) 6 (50) 6 (50) .09
SNAPPE-II 18.5 [9-23] 18 [14-22] 14 [9-23.5] 20 [7.5-24.5] .98
Length of stay, days 61 [49-84] 47.5 [34-62] 58.5 [49-82.5] 71 [52-106.5] .2
Intravenous lipid infusion started, age, hours 16 [2.5-28] 14.75 [3-31] 2.5 [2-10.5] 26.5 [18-29] .02
Intravenous lipid infusion stopped, age, days 9.5 [7-9] 11 [9-11] 8.5 [7-14.5] 10.5 [7.5-12] .77
Parenteral protein infusion started, age, hours 3 [2-4] 3 [3-3] 2 [2-2.75] 4 [3.5-5] .004
Enteral nutrition initiation, days 1 [0-2] 1 [0-2] 1 [0.5-2] 0 [0-1] .35
Full enteral nutrition, days 12 [10-14] 13 [12-14] 10 [9-17] 12 [11-13.5] .34
Respiratory distress syndrome + surfactant 13 (43) 2 (33) 4 (33) 7 (58) .56
Intraventricular hemorrhage 5 (17) 2 (33) 2 (17) 1 (8) .39
NEC or spontaneous intestinal perforation 1 (3) 0 1 (8) 0 1
Therapy for retinopathy of prematurity 2 (7) 1 (17) 1 (8) 0 .67
Sepsis 8 (27) 3 (50) 3 (25) 2 (17) .38
BPD 3 (10) 0 1 (8) 2 (17) .83
Cholestasis 1 (3) 0 0 1 (8) 1

Values are number (%) or median [IQR].
SNAPPE-II, Score for Neonatal Acute Physiology-Perinatal. Extension II.
*P values are for comparisons of all groups, evaluated using the Kruskal-Wallis test for continuous variables and Fisher exact for dichotomous variables.
†Unknown (n = 5).
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Previous studies have demonstrated the ability to maintain
LCPUFA levels using enteral supplementation in preterm in-
fants. In formula that had DHA and ARA added at different
concentrations, Clandinin et al described a dose-response
relationship using increasing dosage when supplementing
formula with DHA and ARA, demonstrating red blood cell
membrane LCPUFA levels approximating those of breast
fed infants at 6 weeks of age.31 The manufacturers of formula
for preterm infants now routinely add LCPUFA. Further-
more, researchers have also sought to increase breast milk
concentration using maternal supplementation strategies,
Table III. Whole blood LCPUFAs measured from baseline t

Fatty acid All (n = 30) Sunflower oil (n =

Baseline
Linoleic acid, 18:2n-6 10.5 [8.7-12.3] 10.5 [10.2-10.5
Alpha-linolenic acid, 18:3n-3 0.27 [0.2-0.32] 0.26 [0.24-0.29
ARA, 20:4n-6 15.4 [13.6-16.2] 15 [13.4-17.5
Eicosapentaenoic acid, 20:5n-3 0.16 [0.12-0.22] 0.19 [0.13-0.22
DHA, 22:6n-3 3.5 [2.8-4.2] 3.7 [3.1-4]

2 Weeks
Linoleic acid, 18:2n-6 12.3 [10.8-13.8] 14.2 [12.6-15.2
Alpha-linolenic acid, 18:3n-3 0.24 [0.22-0.3] 0.24 [0.23-0.24
ARA, 20:4n-6 15.1 [14.1-18.4] 12 [11.3-12.7
Eicosapentaenoic acid, 20:5n-3 0.3 [0.22-0.37] 0.23 [0.19-0.28
DHA, 22:6n-3 3.3 [2.8-4] 2.8 [2.3-3.1]

8 Weeks
Linoleic acid, 18:2n-6 18.6 [15.8-21] 21.9 [20.3-22.4
Alpha-linolenic acid, 18:3n-3 0.65 [0.34-0.75] 0.72 [0.59-0.74
ARA, 20:4n-6 14.9 [12.8-17] 10 [9.7-11.9]
Eicosapentaenoic acid, 20:5n-3 0.35 [0.27-0.47] 0.24 [0.18-0.32
DHA, 22:6n-3 3.7 [3.1-4.1] 2.6 [2.1-3]

Values are reported in units of wt % (g/100 g of fatty acids) and as median [IQR].
P values are for comparisons of all groups, evaluated using the Kruskal-Wallis test.

Randomized Controlled Trial of Early Docosahexaenoic Acid and
Birth Weight Infants
including high-dose LCPUFA supplementation.21 As
compared with published values of LCPUFA concentrations
in preterm human milk, we detected higher linoleic acid and
ARA along with comparable alpha-linolenic acid and DHA
concentrations.32

Extremely preterm infants have a decreasing DHA status
owing to inadequate enteral feeding volumes for up to several
weeks after birth and because LCPUFA-containing intrave-
nous emulsions are not yet in routine use. Several studies
have evaluated the use of a concentrated supplement. Infants
previously randomized (n = 31) to 1 of 3 different DHA
hrough hospital discharge

12) LCPUFA-120 (n = 12) LCPUFA-360 (n = 12) P value

] 10.2 [7.9- 15.4] 10.3 [8.5-11.7] .98
] 0.26 [0.18-0.52] 0.28 [0.23-0.34] .89
] 15 [13.2-16.4] 15.5 [14-16.2] .92
] 0.14 [0.1-0.16] 0.18 [0.15-22] .27

3 [2.6-3.5] 3.6 [3.1-4.2] .15

] 12.4 [10.9-14.9] 11.3 [9.9-12.6] .03
] 0.25 [0.2-0.3] 0.23 [0.22-0.3] .99
] 14.8 [14.1-15.2] 18.9 [16.8- 19.8] .0001
] 0.28 [0.22-0.36] 0.36 [0.33-0.38] .04

3.1 [2.4-3.4] 4.1 [3.9-4.3] .0001

] 15.8 [14.1-20.4] 18.1 [16.5-20] .03
] 0.42 [0.26-0.67] 0.75 [0.38-0.99] .06

14.3 [13.9-15.4] 17.1 [15.8-17.9] .005
] 0.34 [0.28-0.41] 0.38 [0.34-0.47] .05

3.5 [3.2-4] 4.1 [3.9-4.9] .001

Arachidonic Acid Enteral Supplementation in Very Low 27



Figure 2. Change in A, DHA and B, ARA levels during the course of supplementation. The time course of supplementation is
shown for all 3 groups, for DHA and ARA levels (levels shown as wt%). For both figures, bars with * indicate differences between
groups when comparing absolute changes in levels from baseline to 2 weeks based on Kruskal-Wallis (P = .002 for DHA and
P = .0002 for ARA). For both figures, barswith ** indicate differences between groupswhen comparing absolute changes in levels
from baseline to 8 weeks/discharge based on Kruskal-Wallis (P = .021 for DHA and P = .003 for ARA).
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concentrations (via emulsion from tuna oil) maintained
blood DHA concentrations as well as infants whose mothers
took a DHA supplement (but whose infant did not directly
receive supplemental DHA).33 Blood DHA levels decreased
only in the group receiving no DHA supplementation. In a
separate study, preterm infants of 24-34 weeks gestation
(n = 60) randomized to receive 50 mg/day of algal DHA
liquid or placebo until discharge or 376/7 weeks of gestation
were compared with term infants (n = 30) who did not
receive supplementation.34 Blood DHA levels significantly
increased over the course of supplementation compared
with preterm infants receiving no supplementation; however,
blood DHA remained lower in infants receiving supplemen-
tation compared with term neonates. In the context of this
evidence, along with our results presented here, very low
Table IV. Multivariable regression analyses showing
associations between exposures and changes in whole
blood DHA and ARA during intervention

Exposure variables b [95% CI] (wt%) P value

DHA
LCPUFA-120* 0.54 [0.02 to 1.06] .04
LCPUFA-360* 0.86 [0.34 to 1.38] .001
Gestational age 0.06 [�0.03 to 0.15] .21
Female sex �0.32 [�0.70 to 0.06] .097
Study center �0.58 [�0.98 to �0.18] .004

ARA
LCPUFA-120* 2.60 [0.94 to 4.30] .002
LCPUFA-360* 3.6 [1.9 to 5.3] <.001
Gestational age 0.02 [�0.28 to 0.33] .87
Female sex �0.7 [�1.9 to 0.52] .26
Study center �1.5 [�2.8 to �0.16] .028

*Reference group is placebo.

28
birth weight infants likely require LCPUFA supplementation
above that found in maternal milk and preterm formulas to
maintain LCPUFA levels that approximate in utero accretion
rates.
Although we supplemented the infants in the LCPUFA-

360 group with significantly more DHA and ARA than is
currently in routine use in formulas, and their blood
LCPUFA levels increased compared with the other 2 groups,
they remained below levels reported for term infants. Thus,
even at the higher level of supplementation, these preterm in-
fants did not seem to be absorbing LCPUFA in excess of
normal in utero accretion. Similar findings have been re-
ported previously in preterm infants supplemented with
higher doses of DHA in human milk and formula.35

Although our focus was mainly on feasibility, larger studies
in the future may be able to provide more insight into the ef-
fect of these higher doses of LCPUFA on important neonatal
morbidities and long-term outcomes, given the potential for
LCPUFA to modulate inflammation and potential metabolic
effects, including growth and adiposity.36-38

Our study was not powered to evaluate differences in clinical
outcomes. It is plausible that achieving LCPUFA levels ap-
proaching term referencewould translate into effects on clinical
outcomes, but we do not yet have enough data to correlate spe-
cific levels with clinical outcomes. Although a recent study
found DHA supplementation alone led to increased risk of
BPD, no added ARA supplementation was used in that partic-
ular study.11 Furthermore, a maternal supplementation study
using DHA alone similarly found an increased risk of BPD in
the infants receivingmilk frommothers in the supplementation
group, comparedwith those receivingmilk from themothers in
the placebo group.39 The impact of a combined DHA/ARA
Frost et al
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enteral supplement merits further study with regard to clinical
outcomes in preterm infants.

LCPUFA-containing intravenous lipid emulsions are now
being used in NICUs; however it is unclear if these products
provide appropriate quantities and balance of LCPUFA.40,41

Thus, further research is needed on providing very low birth
weight infants with adequate LCPUFA supplementation,
incorporating both enteral and parenteral strategies.

The limitations of our study were its small size, which pre-
cluded assessing the clinical effects of supplementation. The
study setting of a Midwestern city may also impact generaliz-
ability of our results, because maternal dietary intake of fish is
known to impact LCPUFA levels in mother’s own milk.42,43

In fact, although only 20 miles separate the participating cen-
ters, infant blood levels at birth were considerably different,
as were milk DHA levels in early samples in a consistent
manner (ie, lower in blood and milk at the same center).
However, consistent concentration-dependent patterns
were detected for both DHA and ARA at both study time
points, suggesting that the effects were not likely due to po-
tential differences in maternal intake.

In conclusion, it is plausible thatmaintaining bloodLCPUFA
levels near in utero accretion ratesmay be of benefit in this pop-
ulation. Nonetheless, recent trials have demonstrated conflict-
ing results, including risk from DHA supplementation alone
withno addedARA.11Althoughclinical practice trends demon-
strate earlier feeding initiation in the most premature infants,
alternate approaches to providing LCPUFA to preterm infants
are needed. In this small feasibility trial, we demonstrated that a
concentrated and emulsified LCPUFA supplement can main-
tain and support higher blood LCPUFA levels in supplemented
infants. Further study is needed to identify clinical implications
of this combined supplement. n
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Table II. Human milk LCPUFAs from study week 1 through hospital discharge at each center

Fatty acids Milk source Week 1* Week 2† Week 4‡ Week 8/discharge§

n-6
Linoleic acid, 18:2n-6 Center 1 18.0 [15.7-18.4] 17.8 [16.5-18.7] 18.1 [17.3-18.4] 21.2 [16.7-21.5]

Center 2 18.8 [15.3-19.0] 17.2 [16.2-18.2] 18.0 [16.3-20.2] 17.8 [15.3-18.6]
ARA, 20:4n-6 Center 1 0.9 [0.8-1.2] 0.8 [0.8-1.0] 0.7 [0.5-0.8] 0.5 [0.4-0.5]

Center 2 0.9 [0.7-1.0] 0.8 [0.5-1.1] 0.7 [0.5-0.8] 0.6 [0.5-0.8]
n-3
Alpha-linolenic acid, 18:3n-3 Center 1 1.3 [0.9-1.5] 1.3 [1.1-1.6] 1.5 [1.5-1.5] 1.7 [1.0-1.9]

Center2 1.0 [0.9-1.5] 1.3 [1.1-1.6] 1.4 [1.2-1.5] 1.4 [0.9-1.4]
Eicosapentaenoic acid, 20:5n-3 Center 1 0.04 [0.03-0.05] 0.04 [0.03-0.05] 0.03 [0.02-0.05] 0.02 [0.02-0.03]**

Center 2 0.04 [0.04-0.05] 0.04 [0.03-0.04] 0.04 [0.03-0.05] 0.05 [0.05-0.08]**
DHA, 22:6n-3 Center 1 0.6 [0.4-0.6]{ 0.5 [0.5-0.6] 0.4 [0.3-0.5] 0.2 [0.1-0.2]

Center 2 0.3 [0.2-0.4]{ 0.5 [0.3-0.6] 0.4 [0.2-0.5] 0.3 [0.2-0.4]

Values are reported in units of wt % (g/100 g of fatty acids) and as median [IQR].
*Mother’s milk: n = 19; donor milk: n = 7; center 1: n = 15; center 2: n = 11.
†Mother’s milk: n = 21; donor milk, n = 6, source unknown: n = 2; center 1: n = 15; center 2: n = 14.
‡Mother’s milk: n = 15; donor milk, n = 7; center 1: n = 9; center 2: n = 13.
§Mother’s milk: n = 9; donor milk n = 1; center 1: n = 5; center 2: n = 5.
{P < .01 comparing values between centers using the Wilcoxon rank-sum test.
**P < .05 comparing values between centers using the Wilcoxon rank-sum test.
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