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Objective To validate our previously identified candidate metabolites, and to assess the ability of these metab-
olites to predict hypoxic-ischemic encephalopathy (HIE) both individually and combined with clinical data.
Study design Term neonates with signs of perinatal asphyxia, with and without HIE, and matched controls were
recruited prospectively at birth from 2 large maternity units. Umbilical cord blood was collected for later batch me-
tabolomic analysis by mass spectroscopy along with clinical details. The optimum selection of clinical and metab-
olites features with the ability to predict the development of HIE was determined using logistic regression modelling
and machine learning techniques. Outcome of HIE was determined by clinical Sarnat grading and confirmed by
electroencephalogram grade at 24 hours.
Results Fifteen of 27 candidate metabolites showed significant alteration in infants with perinatal asphyxia or HIE
when compared withmatched controls. Metabolomic data predicted the development of HIE with an area under the
curve of 0.67 (95% CI, 0.62-0.71). Lactic acid and alanine were the primary metabolite predictors for the develop-
ment of HIE, and when combined with clinical data, gave an area under the curve of 0.96 (95% CI, 0.92-0.95).
Conclusions By combining clinical and metabolic data, accurate identification of infants who will develop HIE is
possible shortly after birth, allowing early initiation of therapeutic hypothermia. (J Pediatr 2021;229:175-81).

H
ypoxic-ischemic encephalopathy (HIE) remains a major cause of neurologic disabilities in full term newborn infants.
Intrapartum asphyxia is responsible for 23% of the annual global neonatal deaths, and results in long-term disability in
more than 400 000 children.1 The only treatment widely used to improve outcome in HIE is therapeutic hypothermia.

Therapeutic hypothermia decrease cerebral injury and improves neurologic outcomes.2 To be effective, therapeutic hypother-
mia must be commenced within 6 hours of birth, during a time in which the clinical condition of the infant may be changing
rapidly. No robust, quantifiable measure of hypoxic brain injury is currently validated to help clinicians to make individual
decisions on offering therapeutic hypothermia.3

In high-income countries, despite advanced obstetric care, approximately 2% of all deliveries will have clinical or biochem-
ical evidence of perinatal asphyxia, but only approximately 20% of these infants will have significant hypoxic ischemic injury
and will progress to develop clinical HIE.4 A number of different potential biochemical markers have been proposed, but few
are measurable and none are validated within the 6-hour therapeutic window. Over the last decade, we have studied the meta-
bolic profiles of umbilical cord serum from infants after perinatal asphyxia and have reported metabolite alterations that can
predict the development and grade of encephalopathy, and the neurologic outcome at 3 years.5-8 This exploratory work was
carried out using targeted, semitargeted, and untargeted methods, allowing us to develop a short list of candidate metabolites
showing significant alteration in infants with HIE and perinatal asphyxia that may be useful in the prediction of outcome. In
this study our aim was to validate these metabolites in a second independent cohort and assess their ability to predict HIE in a

clinical context.
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services: Cork University Hospital and Karolinska University
Hospital, with 8000 and 4500 annual deliveries, respectively.
Our aim was to recruit all infants who were at risk of HIE.
Full term infants (>36 weeks of gestation) were recruited to
the study if they had 1 or more of the following: a cord pH
of less than 7.1, an Apgar score of less than 6 at 5 minutes
of life, or the requirement for intubation or cardiopulmonary
resuscitation at the time of delivery. Infants were followed
throughout their neonatal course and the development of
clinical encephalopathy was documented. Grade of HIE
was assigned using a modified Sarnat score and was later
confirmed by analysis of the electroencephalogram record-
ings by a neurophysiologist and expert in neonatal electroen-
cephalograms. The BiHiVE2 study also included recruitment
of healthy control infants who had umbilical cord blood bio-
banked at birth using identical collection, processing, and
storage procedures. These contemporaneous control infants
were recruited before birth, and enrolled if they had unevent-
ful deliveries, Apgar scores of 8-10 at 1 and 5 minutes, and a
normal newborn hospital stay. At discharge, infants were
grouped as having perinatal asphyxia without the develop-
ment of a clinical encephalopathy, having HIE, or controls.
Infants with confirmed sepsis, suspected inborn errors of
metabolism, or coexisting congenital abnormalities were
excluded from analysis. The local hospital ethics committees
approved this study’s recruitment, consent, and sample pro-
cessing procedures.

Mixed arterial/venous umbilical cord blood was drawn for
all infants, immediately after delivery, immediately placed on
ice and centrifuged to retain serum, which was aliquoted and
at stored �80�C. A strict standard operating procedure was
used to ensure that all serum was drawn, processed, ali-
quoted, tracked, and stored within 3 hours of delivery. The
detailed methodology has been previously described. Sam-
ples were transported at constant at �80�C to the Phenome
Centre at the University of Birmingham for metabolite
quantification.

Metabolite Quantification
Metabolite biomarkers for validation were identified from
our biomarker discovery work analysis in the BiHiVE discov-
ery cohort recruited using identical recruitment and
laboratory methods from 2009 to 2011.8 Quantification of
metabolites was performed applying 2 complementary assays
(hydrophilic interaction liquid chromatography [HILIC] and
C18 reversed phase) using an electrosprayTSQQuantiva triple
quadrupole mass spectrometer (MS) coupled to an Ultimate
3000 UHPLC (both made by Thermo Scientific, Waltham,
Massachusetts). Full details of the methods applied are
detailed in the Appendix (available at www.jpeds.com). Of
the 33 metabolites of interest, 27 were accurately quantified
using the UHPLC-MS/MS assay. Tetradecadiencarnitine
was excluded as a standard was not commercially available.
PCae (38:0), acetone, 3-hydroxybutyrate, glycerol, and
erythrose-4-phosphate were excluded because they could
not be assayed using the assays outlined with a suitable
validation of the method to demonstrate accuracy and
176
precision of quantification (calibration accuracy, calibration
results, and chromatograms available in the Appendix).
Statistical Analyses and Machine Learning
Nonparametric univariate hypothesis testing (Kruskal-
Wallis) was performed to determine candidate metabolites
that displayed a significant difference across the 3 outcome
groups (HIE vs perinatal asphyxia vs control), with a post
hoc Dunn test to examine between-group differences. Statis-
tical significance was set at a P value of less than .05 after
correction for multiple comparisons using the Holm-
Bonferroni method.10 The linear correlation between all
measured metabolites, and clinical factors (Apgar scores at
1 and 5 minutes), was calculated using the nonparametric
pairwise Spearman correlation coefficient. The resulting cor-
relation matrix is graphically presented in the form of a un-
directed correlation graph, or “spring” graph.11-13 Here, a
network of “nodes” and “arcs” is created such that each
node represents a measured variable (size of node is propor-
tional to each variables’ correlation with HIE classification)
and each arc represents a spring (spring strength is propor-
tional to the correlation between 2 connected nodes). Edges
are only included in the network if the correlation coefficient
is positive, and significant at a critical P value of .001. Once
the network is constructed it is allowed to “relax.” The spring
plot can be viewed as a simple multivariate cluster analysis,
where nodes that cluster close to each other can be considered
to be highly correlated in a multivariate sense. Networks were
constructed using the graph visualization software Graphviz
(AT&T Labs Research, Florham Park, New Jersey) using the
“neato” virtual physics model.14

Logistic regression combined with Least Absolute
Shrinkage and Selection Operator (LASSO) feature selec-
tion15 was used to determine the subset of metabolites
needed to create an effective multivariable model for the pre-
diction of HIE. LASSO is a continuous subset selection algo-
rithm which can lessen, and in some cases remove, the effect
of unimportant predictors. LASSO operates by limiting the
overall magnitude of the coefficients of the model so that
important predictors are included and less important predic-
tors shrink, potentially to zero, with the aim of creating the
most accurate model possible using the least amount of pre-
dictor variables.
To further validate the results from the logistic regression,

complementary classification models were created using the
random Forest (RF) Algorithm.16 RF is a machine learning
method for classification that operate by constructing a
multitude of decision trees during the training phase and
outputting the class that is the mode of the classes of the in-
dividual trees. Input variables were the same as those used for
the logistic regression models. To avoid overfitting and
ensure that the resulting models were robust and generaliz-
able, all model optimization was subjected to 10-fold cross-
validation (averaged over with 10 Monte Carlo repetitions).
The resulting optimal classifier models were assessed using
receiver operator characteristic curve analyses.
O’Boyle et al
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Finally, the feature selection methods described above
were compared with, and integrated with, clinical markers
previously found to be helpful in outcome prediction.17

Results

Over the recruitment period, 30 208 deliveries were screened.
Of these 287 (0.95%) were inborn, met case recruitment
criteria at birth, and were enrolled in the study with informed
parental consent. We also recruited 224 control infants. Of
the cases, 48 progressed to clinical and electrophysiologic
HIE, 10 had alternative diagnoses (confirmed or suspected
sepsis and neonatal stroke), and 229 did not develop HIE
and were classed as perinatal asphyxia (perinatal asphyxia
group). Of the 48 infants with confirmed HIE, 41 had avail-
able serum suitable for analysis. These 41 infants with HIE
were matched for sex, gestational age, and birth weight
with 41 infants from each of the perinatal asphyxia and con-
trol groups (total n = 123). Of the infants with HIE, 1 had se-
vere HIE, 12 had moderate HIE, and 28 had mild HIE based
on Sarnat grading at 24 hours. Demographic data for each
group are provided in Table I (available at www.jpeds.
com). After metabolite quantification, 2 infants were
excluded owing to failure of accurate quantification in the
processed samples. One infant was excluded from the
analysis owing to incomplete clinical data. Data from the
remaining 120 infants (41 HIE, 39 perinatal asphyxia, and
40 controls) were analyzed.

In the univariate analysis, of the 27 quantifiable metabo-
lites, 15 were validated as being significantly altered across
Table II. Metabolites showing altered expression between c

Metabolites Control Perinatal asphyxia

Palmitoyl L carnitine 0.04 (0.02) 0.08 (0.07)
Phenylalanine 14.57 (2.43) 16.06 (4.42)
Leucine 16.4 (4.11) 19.28 (6.51)
Creatine 3.95 (1.73) 4.61 (1.16)
Butyryl L Carnitine 0.01 (0.01) 0.02 (0.01)
lactic acid 421.63 (209.75) 634.21 (185.72) 7
Oleic acid 110 (64.20) 156.13 (109.5) 1
Succinic acid 0.56 (0.34) 1.15 (0.84)
Uridine 0.7 (0.51) 1.12 (0.69)
Alanine 39.52 (14.56) 44.57 (21.51)
Taurine 22.31 (8.82) 26.34 (9.74)
Decanoyl L carnitine 0.008 (0.0056) 0.02 (0.01)
Tryptophan 14.72 (3.61) 14.41 (4.04)
Acetyl L carnitine 0.73 (0.34) 1.09 (0.73)
Linoleic acid 48.81 (25.12) 62.78 (42.72)
DL Indole 3 lactate 0.48 (0.17) 0.53 (0.23)
Glutamine 1.50 (0.67) 1.63 (0.66)
Isoleucine 12.71 (10.65) 12.69 (9.00)
Kynurenine 2.29 (0.76) 2.22 (0.87)
Methionine 5.04 (0.97) 5.32 (1.67)
Proline 16.86 (3.56) 16.55 (5.73)
Tyrosine 42.45 (10.01) 43.58 (16.32)
Valine 42.65 (8.06) 43.85 (10.52)
Phosphocholine 2.17 (0.81) 2.09 (1.12)
Linolenic acid 3.40 (2.39) 4.82 (6.25)

Median values (IQR) are listed for each metabolite in milligrams per milliliter. All P values are correcte
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the 3 outcome groups (HIE vs perinatal asphyxia vs
control). These metabolites together with associated statis-
tics are displayed in Table II. The metabolites most
significantly altered (based on corrected P values) in both
perinatal asphyxia and HIE were palmitoyl, lactic acid,
succinic acid, and uridine (all P = .0001). The metabolites
that were not significantly altered in perinatal asphyxia,
but were altered in HIE were oleic acid, tryptophan, and
linoleic acid. No metabolite was significantly increased in
the HIE group compared with the perinatal asphyxia
group alone.
A spring correlation graph of the 27 metabolites and the

select clinical variables (Figure 1) showed that the clinical
measures (Apgar scores) were the most important for the
prediction of HIE vs non-HIE groups (perinatal asphyxia
and controls combined) and they were not highly
correlated with the metabolome. Lactic acid was the most
highly correlated with the occurrence of HIE and was
highly correlated with succinic acid and uridine. Palmitoyl-
L-carnitine, decanoly-L-carnitine, oleic acid, tryptophan,
and alanine were also highly correlated with the occurrence
of HIE. Tryptophan and alanine showed less correlation to
the other metabolites, allowing them to provide additional
weight to the model.
Table III shows predictive values using metabolite data,

clinical data and combined data. Using LASSO logistic
regression, the best prediction of HIE using metabolite data
alone was achieved with a combination of lactic acid,
acetyl-L-carnitine, kynurenine, tryptophan, and oleic acid
(Table III).
ontrols and infants with perinatal asphyxia and HIE

HIE

Control vs perinatal asphyxia Control vs HIE

P value P value

0.07 (0.04) .0003 .0004
14.98 (2.59) .0406 .3970
18.91 (6.66) .0493 .0668
4.82 (0.0012) .0264 .0184
0.02 (0.01) .0031 .0176
25.66 (372.67) <.0001 <.0001
60.57 (111.06) .1354 .0101
1.02 (0.73) <.0001 <.0001
1.24 (0.68) <.0001 <.0001
46.45 (14.62) .03845 .0095
26.10 (8.79) .0055 .0058
0.02 (0.01) .0619 <.0001
13.21 (2.61) .6149 .03328
1.08 (0.52) .0011 .0019
60.66 (37.28) .0968 .0428
0.53 (0.20) .0756 .2164
1.63 (1.01) .7040 .8328
14.04 (7.64) .8406 1
2.11 (0.77) .9345 .4480
5.17 (1.01) .7899 .7177
17.48 (2.83) .5346 .2905
47.24 (11.62) .5384 .4405
41.62 (13.09) .8670 1
2.00 (1.10) .9187 1
4.36 (4.56) .2304 .2310

d for multiple comparisons. Bold indicates values significantly altered (P <.05) between groups.
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Figure 1. Spring-embedded correlation plot as a simple multivariable cluster analysis. Node size is proportional to the
Spearman correlation with HIE score (red = P < .05) and arc being proportional to the Spearman correlation between nodes (with
P < .001). Position of uncorrelated nodes is arbitrary.
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Based on previous findings in a larger cohort, a clinical
model to predict the onset of HIE was built using Apgar
scores at 1 minute, Apgar score at 5 minutes, and lactic
acid.16 The predictive accuracy of this model (Table III)
was similar to the previously reported cohort. The best
prediction using both clinical and metabolite data was
provided using lactic acid, alanine, and Apgar scores at 1
Table III. Summary statistics for logistic regression and RFm
(control and perinatal asphyxia) using metabolite measurem
data

Models Metabolite data

1. Logistic regression
Accuracy (95% CI) 73.7 (60%-87%)
Sensitivity 80%
Specificity 62%
AUC (95% CI) 0.74 (0.67-0.80)

2: RF
Accuracy (95% CI) 68.4 (51%-83%)
Sensitivity 80%
Specificity 46%
AUC (95% CI) 0.67 (0.62-0.71)

178
and 5 minutes (Table III and Figure 2 [available at www.
jpeds.com]). The optimum model for distinguishing
between perinatal asphyxia and patients with HIE
(excluding control infants) was obtained using lactic acid,
alanine, Apgar scores at 1 and 5 minutes, the most
intensive resuscitation required at birth, and the need for
assisted ventilation at 10 minutes of age. This gave an
odels for the classification of HIE vs the non-HIE groups
ents, clinical data, and combined metabolite and clinical

Clinical data Combined data

86.8 (72%-96%) 91.9 (78%-98%)
80% 92.31%
100% 90.91%
0.92 (0.87-0.96) 0.92 (0.87-0.95)

89.5 (75%-97%) 97.3 (86-99%)
84% 96.15%
100% 100%
0.92 (0.89-0.95) 0.96 (0.92-0.95)

O’Boyle et al
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overall accuracy of 86%, area under the curve (AUC) of 0.90
(95% CI, 0.84-0.94); positive predictive value, 80%; negative
predictive value, 92%; sensitivity, 92%; and specificity, 80%.

Using machine learning, we examined the ability of RF
plots to improve the prediction of HIE. The use of RF plots
improved the outcome prediction across all models. Feature
selection was repeated. RF selection confirmed the same fea-
tures as identified through logistic regression allowing us to
include the same variables/features in the models, with
improved predictive accuracy (Table III).

When using the metabolite data alone, the optimum
model for the prediction of HIE was created using lactic
acid, tryptophan, kynurenine, acetyl-L-carnitine, and oleic
acid. When using clinically available data alone, the optimum
model for predicting HIE was created using Apgar scores at 1
and 5minutes and lactate levels at birth. Overall, the best pre-
diction of HIE was found using RF analysis of a combined
model of Apgar scores at 1 and 5 minutes, lactic acid, and
alanine levels measured at birth (Table III).

The RF combined model was tested on its ability to specif-
ically differentiate between perinatal asphyxia and HIE. Con-
trol infants were excluded from this analysis and the
predictive value of the model was reassessed. The accuracy
and predictive values remained high, with a sensitivity of
86%, a specificity of 75%, a positive predictive value of
86%, a negative predictive value of 75% and an AUC of
0.93 (95% CI, 0.91-0.95).

Discussion

We have shown that the measurement of additional metab-
olites at birth can be used, in conjunction with clinically
available data, to improve our ability to predict the develop-
ment of HIE. The infant’s condition at birth, combined
with both lactic acid and alanine measurements gave an
AUC of 0.92 (95% CI, 0.87-0.95). This predictive ability
was improved further with the use of machine learning
techniques giving an optimum AUC of 0.96 (95% CI,
0.92-0.95). Importantly we have shown that we can accu-
rately differentiate infants who will progress to HIE from
those with perinatal asphyxia who will recover quickly
and have a normal neonatal outcome.4

The earlier that therapeutic hypothermia can be started,
the better the outcome.18 In the initial hours after birth,
neurologic signs evolve and fluctuate, making prediction of
HIE and assessment of HIE grade difficult.19,20 We know
that using current eligibility criteria, even in expert centers,
we will miss approximately 20% of infants who might benefit
from cooling.21,22 Having some quantitative measure of the
degree of injury would be useful. The outcome following
HIE varies considerably with the grade of encephalopathy.23

A rapid quantitative test that uses the infant’s condition at
birth as well as metabolite quantification might aid these ur-
gent therapeutic decisions.

In an effort to improve prediction, we studied metabolic
phenotyping. Advances in mass spectrometry and nuclear
magnetic resonance spectroscopy can allow a snapshot of
Improvement in the Prediction of Neonatal Hypoxic-Ischemic E
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thousands of metabolites at 1-time point. Because neonatal
HIE is a sudden, acute event associated with recent global
ischemia, we would expect HIE to be associated with wide-
spread cellular hypoxia and metabolic disturbance. A num-
ber of studies have examined this metabolic profile in HIE
using targeted (ie, a small number of predefined metabo-
lites), semitargeted (ie, a large number of metabolites), and
untargeted techniques (ie, all mass/charge ratios analyzed,
no predefined metabolites).7,8,24,25 Studies have used urine,
serum, plasma, or cerebrospinal fluid in both animals and
humans.26 Hence, the metabolites reported and degree of
alteration has varied.
Despite this, a number of characteristic metabolic pheno-

types have been identified. The accumulation and delayed re-
covery of Krebs cycle intermediates (eg, fumarate, succinate,
malate, and alpha keto-glutarate) have been described in a
number of animal models.26-28 These energy metabolites
are a product of the shift toward anaerobic conditions, illus-
trated by the accumulation of lactate and mitochondrial
dysfunction leading to disturbance of the Krebs.
A small number of studies have examined metabolic alter-

ations in human infants, showing patterns of metabolite al-
terations are similar to those found in animal studies. In
the BiHiVE discovery cohort, using a quantitative direct
injection-MS/MS and liquid chromatography MS/MS
approach we have previously shown significant alterations
in HIE and perinatal asphyxia in 29 serum metabolites
from 3 distinct classes; amino acids, acylcarnitines, and
glycerophospholipids.9 Next, a 1D 1H-NMR spectroscopy
method was used to specifically characterize primary energy
metabolites.8 In the same perinatal asphyxia cohort, a
broader untargeted analysis of cord blood was performed
using direct infusion Fourier-transform ion cyclotron
resonance mass spectrometry.24 Twenty-nine putatively an-
notated metabolic features were significantly different in
perinatal asphyxia after false discovery correction
(q < 0.05), with 8 of these also significantly altered in HIE.
Pathway analysis revealed HIE was associated with significant
perturbation of the tryptophan and pyrimidine pathways.
This work has allowed us to build a short list of putative

metabolites, which we have now quantified in a separate vali-
dation cohort, the BiHiVE 2 cohort, using a targeted MS
method. Of these, 15 of 27 candidate metabolites were
confirmed to have altered expression, providing confidence
that the alterations are likely to be reliable. Of these, lactic
acid and alanine were the metabolites that aided the most
to the differentiation of infants with HIE from the other
groups.
Lactic acid is the primary end product produced by the

fermentation of pyruvate to yield 2 adenosine triphosphate
molecules during anaerobic metabolism. Studies have shown
strong correlations between lactate and pH or base deficit in
umbilical cord blood samples and postnatal infant sam-
ples.29,30 We have shown that, although a number of Krebs
cycle metabolites were altered, lactate was the most affected,
and in predictive modeling at the time of birth additional
Krebs cycle metabolites such as succinate and fumarate did
ncephalopathy with the Integration of Umbilical Cord 179
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not add to the predictive ability of the model. For improve-
ment of our predictive power, alanine provided the most
additional information.

Alanine is a nonessential amino acid and plays a key role in
gluconeogenesis in mammals. The breakdown of muscle with
release of adenosine triphosphate and glucose produces py-
ruvate, which is transaminated to alanine to enable transport
to the liver for further gluconeogenesis.31 In addition, during
anaerobic metabolism, lactate is converted to pyruvate,
which is again transaminated to alanine for transport to the
liver. This catabolic mechanism, the glucose-alanine cycle be-
tween tissues and liver improves the efficiency of adenosine
triphosphate production from amino acids and pyruvate.
Thus, during anaerobic metabolism it is not surprising that
we see a rise in circulating alanine.

An additional source of alanine is the breakdown of tryp-
tophan. Tryptophan is an essential amino acid that is
degraded to produce alanine by the kynurenine pathway.31

Alanine is converted to pyruvate, which in low energy states
will convert to acetyl-coenzyme A and feedback into the
Krebs cycle to support energy production. There is increasing
interest in the role of kynurenine pathway dysregulation in
the development of neurologic disorders owing to the neuro-
toxic effect of the downstream product quinolinic acid.32,33

The regulation of this pathway is very different in the devel-
oping brain and levels of kynurenine are much higher in the
fetus and newborn.34,35 Alterations have been reported in a
rat model of perinatal asphyxia.36 Of the 5 metabolites
adding most to the predictive model, 3—tryptophan, kynur-
enine, and alanine—lie on this pathway. Thus, the kynure-
nine pathway seems to be giving us additional information
regarding the state of tissue energy production beyond
disruption of the Krebs cycle.

Differences between our discovery and validation cohort
findings do exist; a number of the metabolites from our dis-
covery cohort did not show significant alterations in the vali-
dation cohort. This finding may be due to differences in the
assay technique, biological variability between individual in-
fants, or difference in the severity profile of the HIE cohort.
In the original discovery cohort, a greater proportion of in-
fants had severe HIE, whereas in our validation cohort,
only 1 infant was graded as having severe HIE. We have pre-
viously shown that the profile in infants with severe HIE is
different, with more severe perturbations.5 This result may
explain why not all 27 metabolites were altered in this valida-
tion cohort. It is likely that, in a more severely affected
cohort, the alterations seen would be more significant.

There are limitations to our study. Althoughwemaintained
a strict standard operating procedure for the collection and
processing of blood, umbilical cord blood can be difficult to
collect. Not all infants with perinatal asphyxia were recruited
to the study.However we did recruit 48 infants withHIE from
an inborn population of 30 000 infants, close to our expected
rate of 2 per 1000 deliveries. We chose serum for this study
because our previously reported metabolite alterations were
also in serum, and we wished to attempt to replicate this
work. Further study is required to see if plasma sample
180
patterns will be similar. Although umbilical cord blood can
suffer from hemolysis, we have examined this in our samples,
collected using the same standard operating procedures, and
shown that, although someKrebs cyclemetabolites are altered
by hemolysis, alanine and lactate were not.37

Through a process of biomarker discovery and validation,
and building on supportive preclinical data, we have shown
that the most predictive metabolites for the development of
HIE were lactic acid, acetyl-L-carnitine, kynurenine, trypto-
phan, and oleic acid. Activation of tryptophan breakdown
through the kynurenine pathway to alanine seems to occur
predominantly in those infants who progress to HIE. Metab-
olites in umbilical cord blood were not sufficiently predictive
on their own, but when combined with clinical data could
accurately predict the development of HIE. The metabolites
that added most to the combined model were alanine and
lactic acid. Developing this knowledge into a rapid bedside
test would have the potential to quickly identify those infants
who will progress to HIE and allow timely intervention. n
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Figure 2. A, Plot showing the coefficients of the predictors included in themodel as the shrinkage factor increases in the LASSO
model to distinguish between HIE and non-HIE groups. At an optimum shrinkage factor of (X), 4 variables were included in the
final model (shown in red) = Apgar 1, Apgar 2, lactate and alanine. B, Elbow plot showing the average levels of deviance for
models built to classify between HIE and non-HIE groups using each possible value of the shrinkage factor (logLambda = x-axis).
The number of included variables for each value of lambda is shown on the top axis. The lowest levels of deviance were observed
in the model using 4 predictor variables; shrinkage factor = 3.2-3.7.

Table I. Demographics details and comparisons of all 3 study groups

Characteristics

HIE Perinatal asphyxia Control

P value(n = 41) (n = 40) (n = 40)

Gestational age (wk) 40.0 � 1.3 40.2 � 1.1 40.2 � 1.3 .9895
Sex (M/F) 23/18 22/19 23/18 .9721
Birth weight (g) 3624 � 491 3635 � 486 3649 � 597 .9569
Mode of delivery .0216
Unassisted vaginal 11 (27) 18 (44) 24 (58)
Assisted (ventrose) 20 (48) 13 (31) 6 (15)
Assisted (forceps) 4 (10) 4 (10) 5 (12)

Emergency caesarean delivery in labor 6 (15) 6 (15) 6 (15)
1-minute Apgar score 2 (1.0-3.5) 6 (5-8) 9 (8.5-9.0) <.0001
5-minute Apgar score 5 (4-6) 9 (8-10) 10 (9-10) <.0001
Maternal ethnicity .1158
Caucasian 38 36 37
African 1 3 1
Asian 1 2 3

Maternal age (y) 31.0 � 5.1 31.0 � 5.5 31.0 � 5.1 .6386

Values are mean � SD, median (IQR), or number (%).
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