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Background: The principal triggers for intervention in the setting of pediatric blunt solid organ injury (BSOI) are
declining hemoglobin values and hemodynamic instability. The clinical management of BSOI is, however, com-
plex.We therefore hypothesized that state-of-artmachine learning (computer-based) algorithms could be lever-
aged to discover new combinations of clinical variables that might herald the need for an escalation in care. We
developed algorithms to predict the need for massive transfusion (MT), failure of non-operative management
(NOM), mortality, and successful non-operative management without intervention, all within 4 hours of emer-
gency department (ED) presentation.
Methods: Children (≤18 years) who sustained a BSOI (liver, spleen, and/or kidney) between 2009 and 2018were
identified in the trauma registry at a pediatric level 1 trauma center. Deep learningmodels were developed using
clinical values [vital signs, shock index-pediatric adjusted (SIPA), organ injured, and blood products received],
laboratory results [hemoglobin, base deficit, INR, lactate, thromboelastography (TEG)], and imaging findings [fo-

cused assessment with sonography in trauma (FAST) and grade of injury on computed tomography scan] from
pre-hospital to ED settings for prediction ofMT, failure of NOM,mortality, and successful NOMwithout interven-
tion. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC)were used
to evaluate each model's performance.
Results: A total of 477 patients were included, of which 5.7% required MT (27/477), 7.2% failed NOM (34/477), 4.4%
died (21/477), and 89.1% had successful NOM (425/477). The accuracy of themodels in the validation set was as fol-
lows:MT (90.5%), failure of NOM (83.8%),mortality (91.9%), and successful NOMwithout intervention (90.3%). Serial
vital signs, the grade of organ injury, hemoglobin, and positive FAST had low correlations with outcomes.
Conclusion:Deep learning-basedmodels using a combination of clinical, laboratory and radiographic features can pre-
dict the need for emergent intervention (MT, angioembolization, or operativemanagement) andmortality with high
accuracy and sensitivity using data available in the first 4 hours of admission. Further research is needed to externally
validate and determine the feasibility of prospectively applying this framework to improve care and outcomes.
Level of Evidence: III
Study Type: Retrospective comparative study (Prognosis/Care Management).

© 2020 Elsevier Inc. All rights reserved.
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Most children who sustain blunt solid organ injuries (BSOI) do not
require significant intervention [1]. Some, however, will require aggres-
sive interventions, such as massive transfusion (MT) and/or surgery as
life-saving measures. Early BSOI clinical practice guidelines used the
grade of solid organ injury to guide management [2]. The management
of BSOI has evolved, however, such that most interventions are now
guided by hemodynamic status [2]. Yet, even with close monitoring of
hemodynamic status, it can be challenging to identify which patients
are more likely to require MT or fail non-operative management
(NOM). There are limitations to using vital signs to evaluate hemody-
namic status and predict impending shock in children. First,
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hypotension in children with traumatic injuries and BSOI may be due to
severe traumatic brain injuries as opposed to hemorrhagic shock [3].
Second, as Partrick et al. highlighted, “children are recognized as having
an increased physiologic reserve and therefore may have nearly normal
vital signs even in the presence of severe shock [4].”

Several recent studies have demonstrated promise using the shock
index- pediatric adjusted (SIPA) score, grading systems, and
thromboelastography (TEG) to predict MT and/or failure of NOM in pe-
diatric trauma patients [2,5–9]. For MT, several different grading sys-
tems have been developed with variable performance. The most
widely recognized is the ABC score, which has been validated in adult
trauma patients. It is comprised of four components with one point for
each of the following: penetratingmechanism, positive focused abdom-
inal sonography for trauma (FAST), systolic blood pressure (SBP) <90,
and heart rate (HR) ≥120. A score higher than two supports the decision
for triggeringMT [5].While it was initially found to be 75% sensitive and
86% specific, later studies have shown that “the ABC score overestimates
the need for transfusion, with a positive predictive value of 50% to 55%
[6].” Additionally, the ABC score relies on the FAST exam, which has
been found to have poor sensitivity in children, and it utilizes vital
sign values based on abnormal adult ranges [2]. Phillips et al. therefore
developed the ABCD score to more accurately assess children who sus-
tain blunt or penetrating injuries. It is comprised of the ABC score with
age-specific SIPA values (abnormal versus normal) replacing heart rate
and systolic blood pressure, together with lactate and base deficit. An
ABCD score > 3 had a sensitivity of 77.4%, specificity of 78.8%, and a
77.6% accuracy in identifying the need for massive transfusion [7].
More recentwork has shown that specific rapid TEG findings are also as-
sociated with the need for massive transfusion in blunt and penetrating
trauma, including: ACT ≥128 s, angle (α) ≤ 65, maximum amplitude
(MA) ≤ 55 mm, and LY30 ≥ 5% [8]. Linnaus et al. similarly found that a
high percentage of children who sustained BSOI injuries and required
transfusion or failed NOM had elevated SIPA values in the trauma bay
[9].

Machine learning (ML) has the potential to build upon the above
findings by identifying individual and combinations of features associ-
ated with outcomes. Deep learning (DL) is a subset of machine learning,
which does not require extensive feature engineering based on domain
knowledge to extract features from raw data [10]. Instead, DL has the
potential to automatically determine features and combinations of fea-
tures from raw data through linear and non-linear models [10]. There
has been limited application of deep learning thus far in pediatric
trauma outcomes research. This study aimed to develop DL models to
help in decisionmaking for pediatric BSOI by predictingwhich patients:
1) may need massive transfusion; 2) may fail NOM; 3) are at risk for
mortality; or 4) can be successfully managed with NOM without
intervention.

1. Methods

1.1. Setting

Children's Hospital Colorado (CHCO) is a 444-bed, free-standing, re-
gional referral pediatric hospital. It is the only American College of Sur-
geons (ACS) verified Level 1 Pediatric Trauma Center in Colorado and
the adjacent seven states of North Dakota, South Dakota, Nebraska, Kan-
sas, New Mexico, Wyoming, and Montana.

1.2. Data collection and inclusion criteria

This studywas approved by the ColoradoMulti-Institutional Review
Board (COMIRB) with a waiver of informed consent. The institution's
trauma registry was queried for all patients <18 years old with a BSOI
(liver, spleen, or kidney) from 2009 to 2018. Data collection included
demographics (age, gender, race, ethnicity, and insurance type), emer-
gency department (ED) vital signs [heart rate (HR) and blood pressure
380
(BP)], ED SIPA, clinical characteristics [Glasgow Coma Scale (GCS), intu-
bation status, weight, blood products received, and injury severity score
(ISS)], imaging findings [Focused Assessment with Sonography in
Trauma (FAST) findings, as well as organ(s) injured and grade of injury
on computed tomography (CT)], and laboratory findings [serial hemo-
globin values, base deficit, INR, lactate, and TEG] [11]. MT was defined
as receiving >40 cc/kg within 6 h of presentation [7]. All data was de-
identified before the development of the four models.
1.3. Development of the models

Many researchers are applying Deep Neural Networks (DNNs) with
small datasets across various domains. Regression and classification
problems formerly treated by traditional machine learning methods
(like Support VectorMachines, RandomForest, etc.)with a small dataset
are being solved by DNNs with higher accuracy and better generaliza-
tion performance. For example, in domains like materials science,
DNNs with small datasets are being used to predict material defects
[12]. Though DNNs with big datasets is the optimal solution, DNN with
small datasets can be a reasonable choicewhen big datasets are unavail-
able. Various strategies for applyingdeep learning tools to small datasets
include carefully selecting loss function (i.e. hinge or cosine loss for op-
timization), transfer learning, regularization techniques like stochastic
drop-out training to reduce overfitting, and better optimization tools
(i.e. batch normalization and learning rate) for preventing underfitting
[13].

A key question is how to best fit machine learning models to rela-
tively small “training” data sets, so that accurate predictions can be
made on new data. In machine learning jargon, this is the question of
generalization. Per conventional wisdom in machine learning, a model
that is too simple will underfit the true patterns in the training data,
and thus, it will poorly predict on new data. A model that is too compli-
cated will overfit spurious patterns in the training data; such a model
will also poorly predict on new data.

Recent deep learning practice appears to eschew this conventional
wisdom that was applicable to traditional statistical machine learning
models. Bornschein et al., in a recent paper from the International Con-
ference on Machine Learning (ICML) showed that one can train on a
smaller subset of the training data while maintaining generalizable re-
sults, even for large overparameterized models [14]. Highly
overparameterized neural networks (where the number of model pa-
rameters exceeds thenumber of training data) can display strong gener-
alization performance, even on small datasets. In our study,we observed
the same generalization behavior. In each of our models, the number of
model parameters exceeded training data size. Due to an imbalanced
data set, models were built by under-sampling the majority class. But
the models performed well on the validation data from the majority
class and did not suffer from overfitting.

Four models were developed: MT, failure of NOM, mortality, and
successful NOM without intervention. Deep Learning models were de-
veloped on Google Cloud Platform using Google Colaboratory (Colab)
using TensorFlow/Keras 2.0. For each model, two experiments were
conducted – a model with a 4-h data set and a model with 24-h data
set. Due to the small sample size and unbalanced dataset (i.e. 21 deaths
vs. 456 survivors), themajority classwas under-sampled to create a bal-
anced set for model training. For the MT model, a training set of 37 was
used and a validation set of 440was used. For the failure of NOMmodel,
a training set of 47 and a validation set of 430were used. For themortal-
ity model, a training set of 30 and a validation set of 447 were used.
Lastly, for the successful NOM without intervention model, a training
set of 66 and validation set of 411 was used. Each deep learning model
consisted of input layers, hidden layers, and output layers. Leaky recti-
fied linear unit (Leaky ReLU) activation functions were used with
hinge loss functions for training and optimization of the classifiers.
Dropout layers were used to regularize and reduce overfitting.
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1.4. Features

The following features were used in the development of the three
models: demographics (gender, age, weight), GCS scores, vital signs
(HR and BP; for pre-hospital, ED arrival, as well as 2 h and 4 h after ED
arrival), SIPA scores (calculated as heart rate divided by blood pressure;
pre-hospital, ED arrival, as well as 2 h and 4 h after ED arrival), ED TEG
values [R-time (R), alpha angle, maximum amplitude (MA), and lysis
at 30 min (LY30)], lab values [hemoglobin (ED arrival, as well as 2 h
and 4 h after ED arrival), INR, base deficit, and lactate], resuscitation
metrics [fluid administered in pre-hospital and hospital settings (cc/
kg) and blood transfusion in pre-hospital and hospital settings (up to
4 h after presentation)], clinical events (intubation in pre-hospital set-
ting or ED, in addition to cardiopulmonary resuscitation (CPR) in the
pre-hospital setting or ED), presence of a head injury, multiple solid
organ injuries, and imaging findings (FAST and CT grade of injury).
Vital signs and laboratory valueswere used as both continuous variables
and categorical variables. Categorical inputswere further converted into
numerical variables (as required by deep learningmodels) as flags with
one or zero value for the following: abnormal, normal, or unknown.
Normality of lab values was determined based on institutional ranges.
An additional set ofmodels were run with the same clinical information
available at 24 h after presentation.
1.5. Statistical analysis

Demographic and outcomes data are presented as medians with in-
terquartile ranges for continuous variables and as frequencies with per-
centages for categorical variables. Accuracy, sensitivity, specificity, and
area under the receiver operating characteristic curve (AUC) were
used to assess performance. Extensive exploratory data analysis includ-
ing calculation of descriptive statistics (mean, median, IQR, minimum,
maximum, and missing data counts) was conducted to study and com-
pare statistics between populations that received an intervention and
the population that was successfullymanaged non- operatively. Statisti-
cal techniques such as t-tests were used to calculate p-values using
scikit-learn python libraries like scipy.stats and stats.ttest_ind. For
each input feature, counts of missing data by outcome for each popula-
tion group were calculated.

Various approaches like Pearson correlations, chi-square, and recur-
sive feature elimination with cross-validation (RFECV) were used for
determining feature importance for each model. This helped to inform
which features could be excluded from themodel when a large number
of observationsweremissing a data input. Deleting data can result in re-
duced statistical power, biased estimators, reduced representativeness
of the sample, or incorrect inferences and conclusions. For handling
missing data, we imputed missing values.
2. Results

2.1. Demographics and Clinical Characteristics

A total of 477 pediatric trauma patients sustained BSOI during the
study period. The median age at the time of injury was 10.0 (IQR 6.0,
14.0) years old. Sixty-five percent of injured children were males
(311/477). Two-hundred sixty-one patients (54.7%) had liver injuries,
250 (52.4%) had spleen injuries, and 35 (7.4%) had kidney injuries; a
total of 65 patients had multiple BSOI injuries (13.6%). Twenty-seven
patients (5.7%) required MT. Four patients (0.8%) underwent
angioembolization, and 34 patients failed non-operative management.
Overall, 21 (4.4%) of the patients died. There were 425 (89.1%) patients
who were successively managed nonoperatively and survived. The re-
mainder of the demographic and clinical characteristics is summarized
in Table 1, divided into cohorts by patients who underwent successful
NOM without intervention and survived versus those who did not.
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Correlations between clinical characteristics and outcomes are demon-
strated in Table 2.

2.2. Performance of the 4-h models

For MT, the model achieved 90.5% accuracy, 88.9% sensitivity, and
90.5% specificity with an AUC of 0.90 for the validation set. For failure
of NOM, the model had 83.8% accuracy, 91.7% sensitivity, and 83.5%
specificity with an AUC of 0.88 for the validation set. For the outcome
of mortality, the model achieved 91.9% accuracy, 100.0% sensitivity,
and 91.8% specificity with an AUC of 0.96 for the validation set. Lastly,
for successful NOM without intervention, the model had a 90.3% accu-
racy, 90.4% sensitivity, and 88.2% specificity with AUC of 0.89.

2.3. Massive Transfusion

The clinical characteristicswith the highest absolute correlationwith
MT was if the patient received any blood products within 4 hours (r =
0.68), intubation status (r = 0.48), abnormal LY30 (r = 0.53), and
GCS (r = 0.47). We identified 17 patients (63.0%; 17/27) who met
ABCD criteria who received MT [7]. Another 17 patients (3.8%; 17/450)
who met ABCD criteria did not receive MT [7].

2.4. Failure of NOM

A majority of the clinical characteristics had a low correlation with
failure of NOM. Factorswith thehighest absolute correlationwith failure
of NOMwere LY30 (r=0.43), R (r=0.40), andMA (r=0.38). FAST had
aweak correlationwith failure of NOM(r=0.15). Grade of organ injury
(liver, spleen, and/or kidney) had weak correlation with failure of NOM
(all r's < 0.2).

2.5. Mortality

The clinical factors that had the highest absolute correlations with
mortality were history of CPR in the ED (r = 0.68), history of CPR in
the field (r = 0.66), ED base deficit values (r = 0.65), and ED INR
value (r = 0.61).

2.6. Successful NOM with no intervention

The demographics and outcomes of the patients who were success-
fully treated with NOMwith no intervention and survived versus those
who underwent an intervention (MT, angioembolization, and/or surgi-
cal management) are demonstrated in Table 1. The clinical factors that
had the highest absolute correlation in this model were GCS (r =
0.53), presence/absence of CPR in the ED (r = 0.52), and intubation in
the ED (r = 0.50).

2.7. Review of false positives

In a review of the false positives for all four models, common themes
were identifiedwheremodel prediction incorrectly identified an outcome
or condition. For theMT and failure of NOMmodels, there was a cohort of
patients with severe traumatic brain injuries that affected their hemody-
namic status. Additionally, many patients had concomitant orthopedic in-
juries such as pelvic fractures that contributed to pre-hospital
hemodynamic instability, but did not require MT. For the mortality
model, traumatic brain injury, orthopedic polytrauma, or significant car-
diac and aortic injuries were common in the false positive patients and
likely contributed to their initial hemodynamic instability. Lastly, for the
successful NOM without intervention model, patients classified in the
false positive category were incorrectly classified as successful NOM.
These patients were hemodynamically stable on presentation, and they
had worsening physical exam findings over time or signs of bowel or ret-
roperitoneal organ injury requiring operative management.
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2.8. Review of false negatives

False negatives were reviewed in all four models, where the model
failed to predict an outcomeor condition. TheMTmodel had onepatient
whowas incorrectly classified as not needingMT,who actually required
MT. This patient presented in hemorrhagic shock and required MT for
stabilization. This patient was missing base deficit, lactate, and INR
values. He responded to early implementation of MT, and his ED vital
signs and SIPA were within normal limits for his age. The failure of
NOM model had several false negatives, and common themes in these
patients included initial hemodynamic stability, followed by worsening
physical exam findings or CT findings warranting operative manage-
ment. The mortality model had no false negatives. In the successful
Table 1
Characteristics of children with successful non-operative management (with no MT) vs other

Count Successful NOM without Interv

Demographics
Age (years), median(IQR) 425 11 (6.0,14.0)
Gender, Male/Female 425 273 M/152 F

Clinical Characteristics
GCS, median (IQR) 425 15.0 (15.0,15.0)
Injury severity score, median (IQR) 424 12.0 (9.0,17.0)
Liver grade, median (IQR) 229 3.0 (2.0,3.0)
Spleen grade, median (IQR) 219 3.0 (2.0,3.0)
Kidney grade, median (IQR) 31 3.0 (2.0,3.5)
Multiple organ injuries, n(%) 423 49 (11.6%)
Head injury, n(%) 425 42 (9.9%)
Isolated BSOI, n(%) 423 222 (52.5%)
Pulmonary contusion, n(%) 416 120 (28.8%)
Major orthopedic injury, n(%) 423 140 (33.1%)
Pancreatic injury, n(%) 423 8 (1.9%)
Intestinal injury, n(%) 423 2 (0.5%)
Intubated field, n(%) 425 30 (7.1%)
Intubated ED, n(%) 425 34 (8.0%)
CPR in field, n(%) 425 2 (0.5%)
CPR in ED, n(%) 425 0 (0.0%)
Any blood transfused, n(%) 425 49 (11.53%)
Received blood transfusion pre-hospital, n(%) 425 22 (5.18%)

Labs & Work-up
INR, median(IQR) 191 1.2 (1.1,1.3)
Lactate, median(IQR) 59 2.5 (1.3,3.7)
Base deficit, median(IQR) 124 −5.0 (−7.0,-3.0)
Pre-hospital SIPA, median(IQR) 393 1.0 (0.9,1.2)
ED SIPA, median(IQR) 425 0.9 (0.7,1.1)
R-time, median(IQR) 9 4.5 (4.2,5.0)
Angle, median(IQR) 9 67.5 (61.1,69.3)
MA, median(IQR) 9 59.9 (56.6,61.9)
LY30, median(IQR) 4 0.0% (0.0, 3.0%)

Abnormal Values
Abnormal INR value, n(%) 425 74 (17.4%)
Abnormal Base Deficit, n(%) 425 84 (19.8%)
Abnormal Lactate, n(%) 425 34 (8.0%)
Abnormal Pre-hospital SIPA, n(%) 425 204 (48.0%)
Abnormal ED SIPA, n(%) 425 109 (25.6%)
Abnormal R time, n(%) 425 3 (0.7%)
Abnormal MA, n(%) 425 2 (0.5%)
Abnormal LY30, n(%) 425 3 (0.7%)
Abnormal Angle, n(%) 425 1 (0.2%)
Abnormal Hemoglobin in ED, n(%) 425 117 (27.5%)
Abnormal Hemoglobin at 2 h, n(%) 425 387 (91.1%)
Abnormal Hemoglobin at 4 h, n(%) 425 374 (88.0%)
Abnormal ED HR, n(%) 425 243 (57.2%)
Abnormal ED BP, n(%) 425 183 (43.1%)
FAST positive, n(%) 425 83 (19.5%)

Outcomes
Hospital length of stay days, median(IQR) 425 3.0 (2.0,5.0)
Ventilation days, median(IQR) 425 0.0 (0.0,0.0)
ICU length of stay, median(IQR) 425 0.0 (0.0,1.0)
Required orthopedic surgery, n(%) 425 46 (10.8%)

Abbreviations: Glasgow coma score (GCS), International Normalized Ratio (INR), Interquartile
index- pediatric adjusted (SIPA), R-time (R), MA (Maximum amplitude), thromboelastography
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NOM model, most false negatives were patients who were initially he-
modynamically unstable. Several of these patients also had traumatic
brain injuries and orthopedic injuries, which affected their initial hemo-
dynamic status. Over time, they were managed with blood transfusion
or intravenous fluid administration and ultimately stabilized.
2.9. Comparison of 4 h and 24-h models

The DLmodels were runwith data available at 24 h after ED presen-
tation for comparison with the models described above (4-h models).
The sensitivity of the MT, failure of NOM, mortality models in addition
to the successful NOM without intervention model are presented in
outcomes [required intervention (MT or surgery) or mortality].

ention Count Other Outcomes (Required intervention or Mortality) p-Value

52 9.5 (5.5,1.0) 0.2516
52 38 M/14 F 0.2072

52 3.0 (3.0,15.0) <0.0001
52 34.0 (25.0,45.0)
32 3.0 (2.0,5.0) 0.2745
31 3.0 (2.0,4.0) 0.2552
4 3.5 (2.8,4.3) 0.9102
52 14 (26.9%) 0.5117
52 34 (65.4%) <0.0001
52 8 (15.4%)
51 30 (58.8%)
52 26 (50.0%)
52 7 (13.5%)
52 12 (23.1%)
52 31 (59.6%)
52 33 (63.5%)
52 15 (28.8%)
52 15 (28.8%)
52 46 (88.46%)
51 15 (28.8%)

47 1.5 (1.3,2) <0.0001
29 4.4 (2.8,8.2) <0.0001
45 −9.0 (−14.0,-6.0) <0.0001
50 1.4 (1.2,1.9) 0.2731
52 1.3 (1.0,1.8) <0.0001
14 5.8 (4.5,7.3) <0.0001
14 57.5 (45.5,67) <0.0001
14 55.0 (50.1,62.1) <0.0001
13 0.0 (0,2.5%) <0.0001

52 43 (82.7%) <0.0001
52 41 (78.8%) <0.0001
52 28 (53.8%) <0.0001
52 42 (80.8%) 0.2731
52 40 (76.9%) <0.0001
52 6 (11.5%) <0.0001
52 7 (13.5%) <0.0001
52 12 (23.1%) <0.0001
52 5 (9.6%) 0.1541
52 30 (57.7%) <0.0001
52 42 (80.8%) 0.0199
52 43 (82.7%) 0.2769
52 45 (86.5%) <0.0001
52 36 (69.2%) <0.0001
52 19 (32.7%) 0.0404

52 8.0 (2.0,16.0)
52 2.0 (0.8,5.0)
52 3.0 (1.0,6.3)
52 4 (7.7%)

range (IQR), Cardiopulmonary resuscitation (CPR), Emergency Department (ED), Shock
lysis at 30 min (LY30), Heart rate (HR), Blood pressure (BP), Intensive care unit (ICU).



Table 2
Top 25 Features associated with outcomes based on absolute Pearson's correlation coefficient values.

Massive transfusion features R Failed NOM (required surgery)
features

R Mortality features R Non-operative management without
intervention features

R

Required pRBCs at 4 h 0.68 LY30 0.43 CPR in the field 0.68 GCS 0.53
Required FFP at 4 h 0.65 Abnormal LY30 0.42 CPR in the ED 0.66 CPR in ED 0.52
Required Platelets at 4 h 0.58 R-time 0.40 Base deficit 0.65 Intubated in the ED 0.50
Abnormal LY30 0.53 MA 0.38 INR 0.61 Intubated in the field 0.49
Intubated in the ED 0.48 Angle 0.38 Lactate 0.58 ED SIPA 0.48
GCS 0.47 Abnormal INR 0.35 GCS 0.54 CPR in the field 0.48
Intubated in the field 0.45 ED SIPA 0.34 Intubated in the ED 0.53 Abnormal INR 0.47
Abnormal MA 0.43 CPR in the ED 0.32 Intubated in the field 0.53 Abnormal lactate 0.42
INR 0.43 Abnormal MA 0.32 Required FFP at 4 h 0.50 Abnormal base deficit 0.42
ED SIPA 0.42 Abnormal base deficit 0.32 Required pRBCs at 4 h 0.49 LY30 0.41
Base deficit 0.42 Base deficit 0.29 Head injury 0.46 Abnormal LY30 0.40
Head injury 0.41 ED blood pressure 0.29 ED SIPA 0.42 ED blood pressure 0.38
Received pRBCs pre-hospital 0.40 Abnormal lactate 0.28 ED blood pressure 0.38 R time 0.36
Angle 0.39 GCS 0.28 Required platelets at 4 h 0.36 MA 0.35
Abnormal angle 0.38 Abnormal ED SIPA 0.27 Pre-hospital blood pressure 0.35 Angle 0.35
CPR in the ED 0.37 Intubated in the ED 0.26 Pre-hospital SIPA 0.31 Lactate 0.35
Abnormal base deficit 0.37 Abnormal angle 0.26 R-time 0.31 Base deficit 0.35
ED blood pressure 0.37 Abnormal R-time 0.26 Abnormal INR 0.31 Abnormal ED SIPA 0.34
Abnormal INR 0.37 Intubated in the field 0.26 Abnormal base deficit 0.29 Abnormal MA 0.30
Abnormal R-time 0.37 Lactate 0.23 Abnormal lactate 0.28 INR 0.29
Lactate 0.35 Blood pressure at 4 h 0.23 Received blood pre-hospital 0.27 Blood pressure 4 h after presentation 0.28
Received blood pre-hospital 0.34 INR 0.21 Presence of intestinal injury 0.27 Abnormal angle 0.26
Received FFP pre-hospital 0.34 CPR in the field 0.21 Hemoglobin in ED 0.26 ED heart rate 0.25
MA 0.34 Heart rate at 4 h 0.19 Failure of non-operative management 0.26 Abnormal R time 0.25
Pre-hospital SIPA 0.32 Abnormal Pre-hospital SIPA 0.17 Hemoglobin at 2 h 0.24 Heart rate at 4 h 0.21

Abbreviations: packed red blood cells (pRBCs), frozen fresh plasma (FFP), thromboelastography lysis at 30 min (LY30), international normalized ratio (INR), Shock index–pediatric ad
justed (SIPA), cardiopulmonary resuscitation (CPR), maximum amplitude (MA), Glasgow Coma Score (GCS), emergency department (ED).
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Table 3. The four-hour models outperformed the 24 models for all
outcomes.

3. Discussion

The present study demonstrates the potential utility of using deep
learning to identify children with BSOI at risk for poor outcomes, within
4 hours of presentation. To date, there are limited studies usingmachine
and deep learning techniques in the pediatric trauma literature. The
present study demonstrates the feasibility and efficacy of its use with
high accuracy, sensitivity, and specificity for all four outcomes in a
small dataset. Future work to build upon this model using a larger
data set could lay the foundation for prospective validation of the deep
learning-based approach.

Over the past decade there has been an evolution in the management
children with BSOIs. In the past, grade of injury based on CT findings
guided management. Nowadays, hemodynamic status is recognized as a
more individual-specific means to tailor therapy to the degree of solid
organ injury and the needs of the child. For example, many institutions
previously performed serial hemoglobin/hematocrit studies to assess for
ongoing hemorrhage, in addition to vital signsmonitoring. Recent studies
have shown, however, that repeat or serial hemoglobin levels following
BSOI are of limited utility [15,16]. Additionally, a prior study by Acker
et al. demonstrated that pediatric BSOI patients who failed non-
operative management did so at a median of 4 h from the time of injury
Table 3
Demonstration of the 4 and 24 h deep learning models (validation set).

Outcome Model Accuracy Sensitivity Specificity AUC

Massive transfusion 4 Hours 90.5% 88.9% 90.5% 0.90
24 Hours 90.0% 88.9% 90.0% 0.90

Failure of NOM/need surgery 4 Hours 83.8% 91.7% 83.5% 0.88
24 Hours 82.4% 91.7% 82.1% 0.87

Mortality 4 Hours 91.9% 100.0% 91.8% 0.96
24 Hours 91.9% 100.0% 91.8% 0.96

Successful NOM without
intervention

4 Hours 90.3% 90.4% 88.2% 0.89

24 Hours 86.9% 86.8% 88.2% 0.88
383
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[1]. Our findings corroborate the lack of utility of trending hemoglobin lab
values beyond 4 hours, as the serial hemoglobin values poorly correlated
with failure of NOM,mortality, and successful NOMwithout intervention.
Moreover, our models demonstrate that the clinical history and labora-
tory values available at 4 hours outperformed the models that utilized
clinical history and laboratory values available at 24 h. Thus, the informa-
tion available within 4 hours of presentation is often adequate for
decision-making in this critically ill patient population.

Our study sheds additional light on the benefits of using TEG to iden-
tify severely injured pediatric traumapatients. The use of TEG and its as-
sociation with MT and mortality has primarily been explored in the
adult literature. Specifically, Coleman et al. found that adults with
blunt solid organ injuries were hypercoagulable upon admission, as
demonstrated in their ED TEGs [17]. Over half of the study patients
had evidence of fibrinolysis shutdown on admission. TEG may help
with the early identification of patients with severe blunt solid organ in-
juries, who will require an intervention and are at risk for poor out-
comes. Specifically, in this study, we found that LY30 had a positive
correlation with the need for MT and failure of NOM. Future work
with an increased number of patients and universal TEG measurement
would be logical next steps to building upon these initial findings.

As a result of this study, we recommend routine laboratory evalua-
tion of BSOI patients with ED hemoglobin, base deficit, lactate, INR,
and TEG. While many of these features (i.e. laboratory studies) showed
moderate correlationwith outcomes, only a few had strong linear corre-
lations. The deep learning models further demonstrated that the best
steps in the clinical management of select patients who need MT,
angioembolization, and/or surgical management is complex. The Pear-
son correlations provided some insight into the linear correlations be-
tween clinical characteristics and outcomes; however, in real life, all
outcomes are not linearly correlated with inputs. The advantage of
deep learning is that it transforms raw inputs intomeaningful outcomes
by learning the complex relationships between combinations of inputs
and outcomes. Thus, improvements in the accuracy of the models will
arise from larger volumes of empirically validated data across a variety
of clinical domains [18].

There are various options to deploy machine learning models into
production at scale, to use them in real-world clinical applications.



N. Shahi, A.K. Shahi, R. Phillips et al. Journal of Pediatric Surgery 56 (2021) 379–384
One common approach is to save the models and build an application
with Representational State Transfer (REST) endpoints to deploy the
models using a cloud provider. TensorFlow Serving is another option.
It is an efficient model server that can sustain a high load and has a
model repository to automatically deploy the latest versions. Integration
of the models in either the electronic medical record or a cloud-based
platform could allow for easy access and rapid application in the pre-
hospital or trauma bay setting.

There are multiple limitations to our study. First, this was a retro-
spective single center study. Second, deep learning models typically re-
quire large datasets, and our dataset only had 477 patients. Third, there
was missing data in our cohort. For example, several patients did not
have available pre-hospital vital sign data and only 23 patients had
available TEG data.
4. Conclusion

Deep learningmodels showpromise in the early identification of pe-
diatric blunt trauma patients at risk for adverse outcomes. One advan-
tage of deep learning models is that they do not require specific
components used by traditional scoring systems to predict need for
MT or mortality. In this preliminary, single-center study of children
with BSOI, applying a DL based algorithm helped correctly identify pa-
tients who were successfully treated without intervention. The MT
model identified patients needing emergent intervention with higher
sensitivity and specificity compared to existing approaches like ABCD
[7]. There is no widely used predictive model for the failure of NOM.
The failure of NOMmodel had high a sensitivity of 91.7% and specificity
of 83.5%. The mortality model provided high sensitivity, specificity, and
accuracy. As such, it could be envisioned as an early warning system to
alert clinicians of impending deterioration. Considering nearly 90% of
patients were successfully managed non-operatively, the successful
NOMwithout intervention DLmodel might be a useful tool for identify-
ing the majority of patients who can be successfully managed with
fewer resources in less intensive clinical settings, thus lowering the
cost of care.

Our models demonstrated that clinical findings within 4 hours of
presentation could be used for critical clinical decision making for pedi-
atric BSOI patients as model performance did not improve with trended
data from the first 24 h following admission. This suggests that serial
blood draws beyond 4 hours may not be needed. Similarly, a positive
FAST exam did not make a significant difference in prediction perfor-
mance. Conversely, considering the relatively high correlation between
TEG and outcomes, we hypothesize that inclusion of TEG may help to
identify those patients at greatest need for an emergent intervention.

Further researchwith a larger population, with less emphasis on the
FAST exam and universal application of TEG, is needed to further vali-
date the feasibility of applying a DL framework to the management of
pediatric trauma patients with BSOIs. Denser patient data, including
continuous physiological data and natural language processing of se-
384
mantic data, are next steps to improving themodels. In our false positive
and false negative analysis, the presence of a severe traumatic brain in-
jury or pelvic/femur fracture were important factors that affected initial
hemodynamic status. Futuremodels with input signals for comorbid in-
juries may further improve the performance and utility of DL models.
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