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Purpose: Biliary atresia (BA) is a fibro-obliterative cholangiopathy that involves both extrahepatic and
intrahepatic bile ducts in infants. Cholangiocyte apoptosis has an influence on the fibrogenesis process of bile
ducts and the progression of liver fibrosis in BA. Human amniotic fluid stem cells (hAFSCs) are multipotent
cells that have ability to inhibit cell apoptosis. We aimed to investigate whether hAFSCs have the potential to at-
tenuate cholangiocyte apoptosis and injury induced fibrogenic response in our ex vivo bile duct injury model of
liver ductal organoids.
Methods: The anti-apoptotic effect of hAFSCs was tested in the acetaminophen-induced injury model of neonatal
mouse liver ductal organoids (AUP #42681) by using direct and indirect co-culture systems. Cell apoptosis and

proliferation were evaluated by immunofluorescent staining. Expression of fibrogenic cytokines was analyzed
by RT-qPCR. Data were compared using one-way ANOVA with post hoc test.
Results: In our injury model, liver ductal organoids that were treated with hAFSCs in both direct and indirect co-
culture systems had a significantly smaller number of apoptotic cholangiocytes and decreased expression of
fibrogenic cytokines, transforming growth factor beta-1 (TGF-β1) and platelet-derived growth factor-BB
(PDGF-BB). Moreover, hAFSCs increased cholangiocyte proliferation in injured organoids.
Conclusion: hAFSCs have the ability to protect the organoids from injury by decreasing cholangiocyte apoptosis
and promoting cholangiocyte proliferation. This protective ability of hAFSCs leads to inhibition of the fibrogenic
response in the injured organoids. hAFSCs have high therapeutic potential to attenuate liver fibrogenesis in
cholangiopathic diseases such as BA.

© 2020 Elsevier Inc. All rights reserved.
Biliary atresia (BA) is an idiopathic cholangiopathy that involves
both extrahepatic and intrahepatic bile ducts in infants. The fibro-
obliteration of bile ducts in BA leads to bile flow obstruction and liver
fibrosis, which progresses rapidly into liver cirrhosis. The progression
of liver fibrosis in BA is accelerated by complicated etiology, including
the progression of disease in intrahepatic bile ducts, persistent inflam-
mation and immune response, and biliary epithelial-mesenchymal
transition [1–4]. Moreover, the fibrogenic cascades in the liver of biliary
atresia are still ongoing even after the surgical treatment, Kasai
portoenterostomy, is performed. The development of a novel therapy
to prevent or reverse the progression of liver fibrosis is essential to im-
prove clinical outcomes in biliary atresia patients.

Cholangiocyte apoptosis has been observed in both extrahepatic and
intrahepatic bile ducts in BA patients [5,6] and is involved in pathogen-
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esis of BA [7,8]. The rhesus rotavirus-induced BA mouse model has
indicated that cholangiocyte apoptosis happens in the early stages of
disease, first involving extrahepatic bile ducts, followed by intrahepatic
bile ducts. Moreover, the apoptosis of intrahepatic cholangiocytes
occurs earlier before liver fibrosis can be observed [9,10]. These findings
suggest that cholangiocyte apoptosis plays an important role in the
initiation of liver fibrogenesis in BA.

Amniotic fluid stem cells (AFSCs) are multipotent cells present in
amniotic fluid [11]. These stem cells has been described as a novel cell
source for stem cell therapy due to their high differentiation and
proliferation potential, lack of tumorigenicity and the possibility to be
collected and expanded for subsequent application in the perinatal
period [12,13]. Various studies have demonstrated that AFSCs reduce
tissue injury, stimulate tissue regeneration, and inhibit cell apoptosis
through their paracrine effects [14–18]. We hypothesized that the abil-
ity of AFSCs inminimizing tissue injury and inhibiting cell apoptosis can
attenuate the initiation of liver fibrogenesis in BA.

Liver ductal organoids are mini-organ structures composed of
cholangiocytes that harbor liver progenitor cells [19,20], which
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recapitulate the functionality of in vivo bile ducts and are suitable for dis-
ease modeling. In this study, we utilized our ex vivo bile duct injury
model of liver ductal organoids combined with the co-culture systems
to investigate an anti-apoptotic potential of human amniotic fluid
stem cells (hAFSCs) in the injured organoids.
1. Material and methods

1.1. Liver ductal organoid culture

We derived liver ductal organoids from intrahepatic bile ducts of neo-
natal mouse pups (AUP #42681) and cultured according to a method re-
cently developed in our laboratory [21]. Briefly, intrahepatic bile ducts
were isolated from the liver by digestion using tissue dissociation cocktail
(StemCell Technologies, Cambridge, MA) and cultured in Matrigel dome
(CORNING, Corning, NY). Mouse HepatiCult organoid growth medium
(StemCell Technologies, Cambridge, MA) supplemented with penicillin–
streptomycin (100 U/ml) was used as the culture medium.
1.2. Injury model in liver ductal organoids

Weused our recently developed a a novelmodel of injured liver duc-
tal organoids to investigate cholangiocyte apoptosis with relevance to
biliary atresia [21]. Briefly, injury was induced in liver ductal organoids
on day 4 of culture by administrating acetaminophen (3 mg/ml)
(Sigma-Aldrich, St. Louis, MO), a hepatotoxicity agent that induces cell
apoptosis [22,23], in the culture medium for 24 h. In the direct co-
culture system of hAFSCs, the organoids and hAFSCs were co-cultured
in Matrigel dome for 4 days before injury induction, whereas in indirect
co-culture system, the transwell membrane insert containing hAFSCs
Fig. 1. Injurymodel of liver ductal organoids. (A) Liver ductal organoidswere cultured inMatrige
in culture medium for 24 h. For direct co-culture system, hAFSC were co-cultured with the org
hAFSC were cultured on transwell membrane insert placed above the Matrigel dome containin
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wasplaced above the organoids inMatrigel domewithout direct contact
on day 4 of culture during the injury induction (Fig. 1).
1.3. Direct and indirect co-culture of hAFSCs and liver ductal organoids

To assess the effect of hAFSCs in the injured organoids, we
established the direct and indirect co-culture systems of hAFSCs and
the organoids (Fig. 1). The direct co-culture system, in which the
organoids were co-cultured together with hAFSCs in the Matrigel
dome, was developed tomimic in vivo stem cell transplantation. The in-
direct co-culture system using transwell membrane insert, in which
hAFSCs do not have direct contact with the organoids, was developed
to evaluate the paracrine effect of hAFSCs. Cholangiocyte apoptosis in
the injured liver ductal organoids was evaluated by immunofluorescent
staining of cleaved caspase-3, themarker of cell apoptosis (Fig. 2). In ad-
dition, we assessed cholangiocyte proliferation by immunofluorescent
staining of the organoids using cell proliferation marker Ki67 (Fig. 2).

hAFSCs were purchased from Celprogen (Celprogen, Torrance, CA)
and were cultured in human amniotic fluid expansion media with
serum (Celprogen, Torrance, CA) in an incubator at 37 °C and 5% CO2.
After reaching 80–100% cell confluency, hASFCs were collected and
suspended in Matrigel at a density of 500 cells per well together with
liver ductal organoid of 200 fragments per well. hAFSCs were co-
cultured with liver ductal organoids in Matrigel dome and maintained
in an incubator at 37 °C and 5% CO2.

Indirect co-culture system of hAFSCswith liver ductal organoids was
established using a transwell membrane insert (6.5 mm diameter,
0.4 μmpore size, COSTAR, CORNING, Corning, NY). hAFSCs were seeded
at a density of 10,000 cells on transwell membrane insert and placed
above the Matrigel dome containing liver ductal organoids in each
well without direct contact.
l dome for 4 days before induction of injury by administration of acetaminophen (3mg/ml)
anoids in Matrigel dome for 4 days before inducing injury. For indirect co-culture system,
g the organoids on day 4 of culture during the injury induction.

Image of Fig. 1


Fig. 2.Cholangiocyte apoptosis and proliferation in liver ductal organoids. (A) Representative images of liver ductal organoids in brightfield and immunofluorescent double staining of (A-I
cell apoptosis marker cleaved caspase-3 (red), and (A-II) cell proliferation marker Ki67 (green). Nuclei were stained with DAPI (blue). (B) Percentage of cleaved caspase-3 positive cell in
each organoid. (C) Percentage of Ki67 positive cell in each organoid. Data are presented as mean ± SD. **p < 0.01, ***p < 0.001.
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1.4. RT-qPCR

Total RNA was extracted from the organoids using Trizol reagent
(Invitrogen, Carlsbad, CA) followed by complementary DNA (cDNA)
synthesis using qScript cDNA SuperMix (Quantabio, Beverly, MA) and
S1000 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA). Real-time
PCR was performed using advanced qPCR Master Mix and CFX384
Real-Time System (Bio-Rad Laboratories, Hercules, CA). The housekeep-
ing gene Gapdhwas used to normalize the expression of each gene. The
sequence of the primers using in this study were listed below:

Tgf-β1: sense 5′-ATTCCTGGCGTTACCTTGG-3′ and antisense 5′-
AGCCCTGTATTCCGTCTCCT-3′; Pd g f-bb: sense 5′- GGGGCTTCCAGGAGTGATACCA-
3′ and antisense 5′-GCCCGAGCAGGTCAGAACAAA-3′; Gapdh: sense 5′-
TGAAGCAGGCATCTGAGGG-3′ and antisense 5′-CGAAGGTGGAAGAGTGGGAG-3′.

1.5. Immunofluorescent staining

Liver ductal organoids fixed with 4% paraformaldehyde and perme-
abilized with 1% Triton X-100 were used for immunofluorescent stain-
ing. After blocking with 5% bovine serum albumin, the organoids were
double immunostained with primary antibodies for cleaved caspase-3
(1:200) (Cell Signaling Technology, Danvers, MA) and Ki67 (1:200)
(Invitrogen, Carlsbad, CA), TGF-β1 (1:200) (Invitrogen, Carlsbad, CA)
and PDGF-BB (1:200) (Invitrogen, Carlsbad, CA). Then the organoids
were incubated with Alexa Fluor-conjugated secondary antibody
(Invitrogen, Carlsbad, CA) (1:400) and DAPI (Vector Laboratories)
(1:400). Leica SP8 lightning confocal microscopy (Leica Microsystems,
Wetzlar, Germany) was used for imaging.

1.6. Statistics

GraphPad Prism 8 (GraphPad Software, San Diego, CA) was used for
statistical analyses. Results are reported as means ± SD and compared
13
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using one-way ANOVA with Bonferroni correction. Differences were
considered statistically significant when P < 0.05.

2. Results

2.1. hAFSCs reduced cholangiocyte apoptosis in the injured liver ductal
organoids

We found that co-culture of hAFSCs in both direct and indirect sys-
tems significantly reduced apoptotic cholangiocytes as shown by signif-
icantly decreased number of cleaved caspase-3 positive cells in the
injured organoids compared to injured organoids without hAFSC treat-
ment (Fig. 2A, B). These findings indicate that hAFSCs can protect liver
ductal organoids against the injury through a paracrine effect.

2.2. hAFSCs increased cholangiocyte proliferation in the injured liver ductal
organoids

hAFSCs administration in both direct and indirect co-culture systems
significantly enhanced the proliferation of cholangiocytes in injured
organoids as shown by an increased number of Ki67 positive cells com-
pared to injured organoids without hAFSC treatment (Fig. 2A, C).

2.3. Fibrogenic response in liver ductal organoids is attenuated by hAFSC

Direct and indirect co-culture of hAFSCs with liver ductal organoids
significantly decreased the mRNA expressions of Tgf-β1 and Pdgf-bb
(Fig. 3A), the potent cytokines involved in the stimulation of
fibrogenesis. Protein expressions of these cytokines were confirmed by
immunofluorescent double staining of TGF-β1 and PDGF-BB (Fig. 3B),
which also showed consistent results with decreased cytokines expres-
sion in injured organoids and increased with hAFSCs direct/ indirect co-
culture. These findings indicate that hAFSCs have the ability to decrease
fibrogenic response in these injured organoids.

Image of Fig. 2


Fig. 3. Fibrogenic response in liver ductal organoids. (A) mRNA expressions of fibrogenic cytokines, Tgf-β1 and Pdgf-bb. Data are presented as mean ± SD. **p < 0.01, ***p < 0.001
(B) Representative images of immunofluorescent double staining of TGF-β1 (green) and PDGF-BB (red). Nuclei were stained with DAPI (blue).
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3. Discussion

In this study, we tested the anti-apoptotic effect of hAFSCs in our in-
jury model of liver ductal organoids by using the co-culture system,
whichmimics in vivo stem cell transplantation. Our results demonstrated
that co-culture of hAFSCs with the organoids in both direct and indirect
co-culture system could attenuate cholangiocyte injury by reducing cell
apoptosis and promoting cell proliferation,which led to the decreased ex-
pression of fibrogenic cytokines in injured cholangiocytes (Fig. 4).

Various experimental models of tissue injury have demonstrated
that the protective effects of AFSCs against injury are mediated through
their anti-inflammatory and anti-apoptotic properties [14–18]. For ex-
ample, in a rat model of neonatal intestinal injury, Zani et al. revealed
that AFSCs reduce intestinal inflammation by stimulating the
cyclooxygenase-2 (COX-2) pathway, thereby decreasing enterocyte ap-
optosis and promoting epithelial regeneration by upregulation of Wnt
signaling [14]. A recent study by Koike et al. has also illustrated that
AFSCs reduce intestinal inflammation and damage induced by ischemia
and reperfusion through tumor necrosis factor-induced protein 6 (TSG-
6) [24]. In a renal ischemia and reperfusion injury model, Monteiro
Carvalho Mori da Cunha et al. demonstrated that AFSCs protect renal
14
damage, increase cell proliferation and reduce renal interstitial fibrosis
in the long term [25].

Our results in the injury model of liver ductal organoids are consis-
tent with those of Zani et al. and Monteiro Carvalho Mori da Cunha
et al., indicating that AFSCs have the ability to minimize cell injury and
apoptosis and increase cell proliferation. Furthermore, the protection
against injury by AFSCs leads to inhibition of the fibrogenic response
in injured cholangiocytes as shown by the decreased expression of
fibrogenic cytokines TGF-β1 and PDGF-BB. Previous studies have dem-
onstrated that these cytokines play an important role in liver
fibrogenesis by activating hepatic stellate cells to transdifferentiate
into myofibroblasts, which produce collagen and extracellular matrix
components in the liver [26–28]. Moreover, the increased expression
of TGF-β1 in intrahepatic bile ducts correlates with the increased sever-
ity of liver fibrosis in BA patients [29]. Thus, the results from our study
suggest that hAFSCs have the potential to intervene the fibrogenic cas-
cade at an earlier stage of liver fibrosis in BA. However, the mechanism
of hAFSCs in reducing cholangiocyte injury and apoptosis needs to be
further explored.

In amousemodel of carbon tetrachloride-induced liverfibrosis, Peng
et al. demonstrated the benefit of AFSCs in amelioration of liver fibrosis

Image of Fig. 3


Fig. 4. Summaryfigure. After exposure to acetaminophen, the injured cholangiocytes underwent apoptosis and increased the expressions of potentfibrogenic cytokines that can initiate the
fibrogenesis process. Co-culture of hAFSCs with liver ductal organoids attenuates the cholangiocytes from injury by decreasing cell apoptosis and promoting cell proliferation, which leads
to inhibition of the fibrogenic cytokine expressions in injured cholangiocytes.
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by decreasing collagen deposition in the liver [30]. This indicates that
AFSCs may play different roles in different stages of liver fibrosis. They
can minimize cholangiocyte apoptosis and the fibrogenic cascade at an
early stage and decrease collagen deposition in the later stage of liver
fibrosis.

A recent study by Babu et al. has demonstrated that liver organoids
from BA patients exhibited abnormal growth and decreased expression
of cell proliferationmarker Ki67 [31]. This finding indicates that the pro-
liferation of intrahepatic bile ducts of BA patients is impaired. Our study
found that hAFSCs could increase proliferation in the injured organoids.
Therefore, hAFSCsmay also have the potential to stimulate proliferation
of intrahepatic bile ducts in BA.

We believe that our study is the first step towards the application of
hAFSCs as a treatment to prevent the progression of biliary atresia into
liver cirrhosis. We also created the indirect co-culture system of hAFSCs
with liver ductal organoids using transwell membrane insert to demon-
strate the paracrine effect of hAFSCs. In this indirect co-culture system,
we found that hAFSCs can interact with the organoids without direct
contact and reduce thefibrogenic response of injured organoids through
a paracrine effect. These findings are essential for further investigation
of the application of hAFSC in in vivo disease models, including the ad-
ministration route of hAFSCs and the possibility of using hAFSC condi-
tioned medium and extracellular vesicles as a treatment for BA.

4. Conclusions

Our study demonstrated that hAFSCs attenuate the injury of liver
ductal organoids and its fibrogenic response through a paracrine effect
by decreasing apoptotic cholangiocytes and promoting cholangiocyte
proliferation (Fig. 4). hAFSCs have the potential to diminish bile duct in-
jury and its fibrogenic cascade that leads to the progression of liver fi-
brosis in cholangiopathic diseases such as BA.
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