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Abstract

Background: The US Food and Drug Administration warned that exposure of pregnant women to general anaesthetics

may impair fetal brain development. This review systematically evaluates the evidence underlying this warning.

Methods: PubMed, EMBASE, and Web of Science were searched from inception until April 3, 2020. Preclinical and clinical

studies were eligible. Exclusion criteria included case reports, in vitro models, chronic exposures, and exposure only

during delivery. Meta-analyses were performed on standardised mean differences. The primary outcome was overall

effect on learning/memory. Secondary outcomes included markers of neuronal injury (apoptosis, synapse formation,

neurone density, and proliferation) and subgroup analyses.

Results: There were 65 preclinical studies included, whereas no clinical studies could be identified. Anaesthesia during

pregnancy impaired learning and memory (standardised mean difference �1.16, 95% confidence interval �1.46 to �0.85)

and resulted in neuronal injury in all experimental models, irrespective of the anaesthetic drugs and timing in preg-

nancy. Risk of bias was high in most studies. Rodents were the most frequently used animal species, although their brain

development differs significantly from that in humans. In a minority of studies, anaesthesia was combined with surgery.

Monitoring and strict control of physiological homeostasis were below preclinical and clinical standards in many studies.

The duration and frequency of exposure and anaesthetic doses were often much higher than in clinical routine.

Conclusion: Anaesthesia-induced neurotoxicity during pregnancy is a consistent finding in preclinical studies, but

translation of these results to the clinical situation is limited by several factors. Clinical observational studies are needed.

Prospero registration number: CRD42018115194
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Editor’s key points

� The authors conducted a systematic review of the evi-

dence underlying the warning that exposure of preg-

nant women to general anaesthetics may impair fetal

brain development.

� There were 65 preclinical studies included, while no

clinical studies were identified.
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� Anaesthesia during pregnancy impaired learning and

memory and resulted in neuronal injury in all experi-

mental models, irrespective of the anaesthetic drugs

and timing in pregnancy.

� However, monitoring and strict control of physiological

homeostasis were below standards in many studies

and the duration and frequency of exposure and

anaesthetic doses were often higher than used clini-

cally, which limits translation to humans.
rved.
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In the early 2000s, Ikonomidou and colleagues1 and Jevtovic-

Todorovic and colleagues2 reported that exposure of the

developing brain of rats to general anaesthesia evoked wide-

spread apoptotic neurodegeneration resulting in persisting

learning and memory impairments. These studies opened a

new field of research. Soon, accumulating preclinical evidence

showed that virtually all commonly used general anaesthetics

impair brain development in multiple animal species, both for

exposure before and after birth.2e11 Therefore, in 2016, the US

Food and Drug Administration (FDA) issued a warning that

repeated or lengthy use (>3 h) of general anaesthetics in chil-

dren younger than 3 yr or in pregnant women during the third

trimester may result in impaired neurodevelopmental

outcome of the exposed children.12,13 Research investigating

the hazards of anaesthetic drugs for children is encouraged by

the US SmartTots initiative (https://smarttots.org/), which

aims to improve the safety of paediatric anaesthesia.14,15 In

Europe, the Safetots initiative (https://www.safetots.org/)

emphasises that inappropriate conduct of anaesthesia could

be much more harmful to the developing brain than the

anaesthetic drugs themselves.16e18

Most of the research focused on the effects of anaesthesia

performed shortly after birth. However, although exposure of

the developing brain to anaesthesia before birth occurs much

less frequently, it is not uncommon. A first occasion is for non-

obstetric surgery on the mother, with the fetus being an

innocent bystander, for which an incidence of 0.48e0.73% of

all pregnancies has been reported.19,20 A second situation is

when the fetus itself needs surgery for fetal indications and in

which maternal general anaesthesia is required (e.g. for open

or fetoscopic myelomeningocele repair).21

To date, only narrative reviews on the effects of anaes-

thesia in utero have been published22e24; no recent systematic

reviews including meta-analysis critically analysing the

studies forming the basis of the FDA warning are available.

Here, we systematically review and quantify the effects of

exposure to general anaesthesia on fetal brain development

and its clinical relevance.
Methods

The study protocol was registered and published in the In-

ternational Prospective Register of Systematic Reviews of the

National Institute for Health Research (CRD42018115194). The

guidelines of the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA)25 were followed.
Eligibility criteria

Studies investigating the effects of general anaesthesia during

pregnancy on fetal brain development of humans or other

mammals were eligible, irrespective of the anaesthetic, as long

as it was approved for use in humans. Studies investigating

neuroprotective strategies were also eligible. The comparator

was a group without anaesthesia (for assessing neurotoxicity)

or a group with anaesthesia (neuroprotective strategies). (Pre)

clinical interventional and clinical observational studies were

eligible. Articles from onset of the databases until April 3, 2020

could be included.

Exclusion criteria were in vitro models, chronic exposure,

exposure only during delivery, case reports, abstracts, and

languages other than English, French, Dutch, or German.

Studies were excluded when there were confounding factors
(e.g. intentional hypoxia) or when outcome parameters were

not directly related to brain development.
Information sources and search strategy

PubMed, EMBASE, and Web of Science were searched with a

search string comprising four concepts: anaesthesia, during

pregnancy, embryo/fetus/newborn, and neurological outcome

(Supplementary material). For every concept, relevant syno-

nyms and subcategories were included in collaboration with

an experienced biomedical librarian.
Study selection

After removal of duplicates, screening for eligible articles

(abstract and full text) was done independently by two au-

thors. Discrepancies were resolved by a third author.
Data extraction

A standardised table was used for the data extraction.

Extracted items included animal species, anaesthesia expo-

sure (drug, dose, duration, frequency), gestational age at the

time of exposure, presence of surgical stimulation, moni-

toring, and outcome parameters.
Data synthesis

Five important outcome parameters were analysed in separate

meta-analyses: learning and memory, apoptosis (e.g. assessed

by quantification of caspase), synapse formation (e.g. assessed

by quantification of synaptophysin), neurone density, and pro-

liferation. Studies were only included in meta-analyses when

quantitative data could be extracted for one or more of these

outcome parameters. Outcome parameters were summarised

as standardised mean differences (SMDs),26,27 with negative

values representing a worse outcome in the anaesthesia group.

SMDs of different studies were combined using a random-

effects meta-analysis.28 A random article effect is added to

take into account that multiple SMDs from the same article

might be present. Heterogeneity was assessed using Cochran’s

c2 test (significant: P<0.1) and the I2 statistic (considerable het-

erogeneity: I2>75%).29e32 Funnel plots were constructed to

assess publication bias. All calculations were performed using

SAS software (SAS System for Windows version 9.4, SAS Insti-

tute Inc., Cary, NC, USA) (details: Supplementary material).

In addition to these meta-analyses reported in the main

body of this article, a narrative synthesis including all eligible

studies and all outcome parameters is reported separately in

Supplementary material.
Outcome

Primary outcome was the overall effect on learning and

memory. Secondary outcomes were the effects on four

markers of neuronal injury (apoptosis, synapse formation,

neurone density, and proliferation). In addition, we performed

subgroup analyses for species, anaesthetic drugs, surgical

stimulation, pregnancy trimester, magnitude of exposure, and

monitoring (Supplementary material). Two exposure cate-

gories were defined, based on the FDAwarning: an exposure of

a single time to a maximum of 1 MAC (minimum alveolar

concentration) for 3 h or less (low exposure) vs exposure to >1
MAC or lasting >3 h or occurring more than one time (high

exposure).12,13 For monitoring, we distinguished two

https://smarttots.org/
https://www.safetots.org/


Records identified through database searching

EMBASE
(n=2173)

Remaining records after 1366 duplicates removed
(n=4601)

Excluded (n=4486)
-Not relevant (n=3900)
-In vitro experiments (n=19)
-Neonatal exposure (n=82)
-Not original research article (n=82)
-Chronic exposure (n=359)
-Anaesthetic not approved for human use (n=2)
-Administration of anaesthetic drugs after
hypoxia (n=29)
-No neurologic outcome (n=13)

Excluded (n=42)
-No full text (n=23)
-Language (n=2)
-Not relevant (n=2)
-In vitro experiments (n=5)
-Neonatal exposure (n=4)
-Not original research article (n=2)
-Chronic exposure (n=1)
-No neurologic outcome (n=3)

Remaining records after screening by title and abstract
(n=115)

Remaining records after full-text assessment
(n=73)

Studies included in narrative synthesis (Supplement 3)
(n=73)

Studies included in meta-analysis (manuscript)
(n=65)

527 standardised mean differences extracted
(Learning and memory: 223)

(Apoptosis: 137)
(Synapse formation: 60)

(Neuron density: 53)
(Proliferation: 54)

PubMed
(n=1843)

Web of Science
(n=1951)
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Fig 1. Flow diagram of study selection. Articles were identified in PubMed, Embase, and Web of Science. Seventy-three articles were

included in the narrative synthesis described in the Supplementary material (Methodology meta-analysis). For use in meta-analysis of the

manuscript, 527 standardised mean differences were extracted from 65 articles.
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categories: use of blood gas analysis plus measurement of BP

(BGBP) vs less monitoring (no-BGBP).
Study characteristics

Study characteristics are described using the subgroups

mentioned above (e.g. the number of studies using rats).

Additionally, for every study the type ofmonitoring which was

applied is indicated in detail using a standardised table

(Supplementary Table S4.1). For every study, it was checked if

the monitoring was in accordance with the standards for

preclinical research in developmental anaesthetic neurotox-

icity,14 adhering to the standards of the ASA for clinical

anaesthesia,33 or both.
Extensive physiological monitoring and tracheal intu-

bation are practically difficult in rodents, but they are

feasible in larger animals such as guinea pigs, pigs, sheep,

and non-human primates.14 The concentration of volatile

anaesthetics and the composition of the carrier gas should

be reported.14 Body temperature should be measured

several times an hour.14 Pulse oximetry should be used in

larger animals.14 End-tidal CO2 should be measured in

larger animals via the tracheal tube and in smaller animals

using anaesthetic chambers.14 In the absence of contin-

uous monitoring of oxygenation and ventilation, the

impact of the anaesthesia protocol on blood gas values

needs to be reported at least once for each anaesthesia

protocol used.14



Table 1 The study characteristics of the 65 included studies.

Number of
publications

Animal species
Rat 41
Mouse 14
Non-human primate 5
Sheep 3
Rabbit 1
Guinea pig 1
Human 0
Anaesthetic drug
Sevoflurane 19
Isoflurane 18
Ketamine 15
Propofol 10
Halothane 2
N2O 2
Enflurane 2
Desflurane 1
Neuroprotection: dexmedetomidine 4
Magnitude of exposure
Low exposure:�3 h and �1 MAC and 1
time

31

High exposure: >3 h or >1 MAC or >1
time

46
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According to the guidelines of the ASA for anaesthesia in

humans, minimal monitoring includes the measurement of

inspiratory oxygen and expiratory CO2 concentrations, arterial

BP, and the use of ECG and pulse oximetry.33
Risk of bias

The SYstematic Review Centre for Laboratory animal Experi-

mentation (SYRCLE) risk of bias tool was used to assess the risk

of bias.34 This tool is an adapted version of the Cochrane Risk

of Bias tool modified for animal studies. This instrument as-

sesses selection bias, performance bias, detection bias, attri-

tion bias, reporting bias, and other biases. The SYRCLE’s risk of

bias tool provides signalling questions to evaluate each of

these domains.34
Sensitivity analysis

The studies in which physiological homeostasis was main-

tained usingmethods also applied in clinical anaesthesia were

selected for sensitivity analysis.
Results

Study selection and data extraction

Figure 1 displays the PRISMA flow chart, with 65 articles

included in the quantitative analysis. Study characteristics are

displayed in Table 1, Supplementary Table S2, and

Supplementary Figure S1. Supplementary Table S3 shows the

summary of extracted data for individual articles.
Primary outcome: learning and memory

Learning and memory was assessed in 44 (68%) studies. Most

frequently used tests were the Morris water maze test, fol-

lowed by the radial arm maze test (Supplementary Table S2).
Meta-analysis showed a highly significant impairment (�1.16

[�1.46 to �0.85]) (combined SMD [95% confidence interval])

after prenatal exposure to anaesthesia (Fig 2).
Secondary outcomes

Neuronal injury was evaluated in 48 (74%) studies. Most

commonly used techniques to assess neuronal injury were

histology and immunoblotting of biomarkers (Supplementary

Table S2). Meta-analyses showed significantly more apoptosis

(�1.99 [�2.84 to �1.14], Fig 3), impairment in synapse forma-

tion (�1.06 [�1.62 to �0.51], Supplementary Fig 2), decreased

neurone density (�1.25 [�1.98 to �0.53], Supplementary Fig 3),

and decreased proliferation (�2.04 [�3.01 to �1.07],

Supplementary Fig 4).
Subgroup analysis and clinical characteristics

Species

We could not identify eligible human studies, hence we only

report on animal studies. Most studies were performed in rats,

followed by mice, non-human primates, sheep, rabbits, and

guinea pigs (Table 1). For rats, mice, and non-human primates,

meta-analyses found significant impairments for at least one

outcome parameter per species (Figs 2 and 3, Supplementary

Figs S2eS4, e.g. neurone density for rats: �1.07 [�1.82

to �0.31], learning and memory for mice: �1.03 [�1.86

to�0.19], and apoptosis for non-human primates:�2.20 [�2.93

to �1.46]). No impairments were observed in the meta-

analysis of three included sheep studies (apoptosis: 0.04

[�0.77 to 0.84], Fig 3). There was only one study using rabbits

and one using guinea pigs, therefore no meta-analysis could

be performed for these species.
Anaesthetic drugs

Sevoflurane was the most commonly investigated anaes-

thetic, followed by isoflurane, ketamine, propofol, halothane,

nitrous oxide, enflurane, and desflurane (Table 1). Meta-

analyses found significant impairments for at least one

outcome parameter for sevoflurane, isoflurane, ketamine, and

propofol (Figs 2 and 3, Supplementary Figs S2eS4, e.g. prolif-

eration for sevoflurane: �2.86 [�4.59 to �1.12], learning and

memory for isoflurane:�0.96 [�1.63 to�0.30], neurone density

for ketamine �1.28 [�2.49 to �0.07], and apoptosis for

propofol: �2.94 [�3.99 to �1.88]). No meta-analyses could be

performed for halothane, nitrous oxide, enflurane, and des-

flurane because of the limited number of studies.
Surgery

In 62 (95%) articles, animals were exposed to anaesthesia

without surgical stimulation. Meta-analyses demonstrated

significant neurotoxic effects for exposure to anaesthesia

alone for all outcome parameters (learning and

memory: �1.16 [�1.48 to �0.84], apoptosis: �2.06 [�2.90

to �for all outcome parameters (learning and memory: �1.16

[�1.48 to �0.84], apoptosis: �2.06 [�2.90 to l, halothane,

nitrous oxide, enflurane, and desflurane (Table 1). Meta-

analyses found significant imp35e37 surgery was performed

during anaesthesia, allowing only apoptosis to be included in

a meta-analysis which showed no negative effects (�1.31

[�11.46 to 8.84], Fig 3).



I2 (%)
Species
Mouse 9 52 78.6*

Rat 34 152 89.8*

Rabbit 1 4 /

Agent
Sevoflurane 16 73 89.5*

Isoflurane 10 49 87.1*

Desflurane 1 2 /

Enflurane 2 24 /

Halothane 1 12 /

Propofol 8 27 89.6*

Ketamine 8 21 89.9*

Surgery
Anaesthesia without
surgery

43 203 88.2*

Anaesthesia with
surgery

2 5

Trimester
1st 4 29 53.2*

2nd 38 157 88.8*

3rd 5 22 89.3*

Exposure
≤3 hours and ≤1 MAC
and single exposure

23 86 83.6*

30 122 89.1*

Monitoring
Blood pressure +
blood gas analysis

13 74 91.1*

Less monitoring 32 134 85.4*

Overall 44 208 88.0*

>3 hours or >1 MAC
or multiple exposures

–1.03 [–1.86, –0.19]

–1.21 [–1.58, –0.85]

/

–1.18 [–1.89, –0.48]

–0.96 [–1.63, –0.30]

/

/

/

–1.42 [–2.26, –0.58]

–1.06 [–1.93, –0.19]

–1.16 [–1.48, –0.84]

/

–2.07 [–3.67, –0.47]

–1.17 [–1.52, –0.81]

–0.54 [–1.23, 0.14]

–0.71 [–1.05, –0.37]

–1.38 [–1.79, –0.96]

–0.99 [–1.47, –0.52]

–1.24 [–1.63, –0.86]

–1.16 [–1.46, –0.85]

3
Exposure

worse
Control
worse

210–1–2–3

Number of Standardized mean difference
[95% Confidence interval]SMD’sarticles

Fig 2. Meta-analysis of all neurobehavioural tests assessing learning and memory. Meta-analysis was performed only when �3 studies

were available for each subgroup. SMD, standardised mean difference. *c2 test of Cochran Q: P<0.1.
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Number of Standardized mean difference
[95% Confidence interval] I2 (%)

Species
Mouse 3 5 89.9*

Rat 18 66 92.5*

Guinea pig 1 5 /

Rabbit 1 4 /

Sheep 3 34 51.2*

Non-human primate† 5 6 0

Agent
Sevoflurane 10 40 93.4*

Desflurane 1 2 /

Isoflurane 11 62 84.5*

Propofol‡ 4 5 25.6*

Ketamine 5 11 0

Surgery
Anaesthesia without
surgery

30 107 89.9*

Anaesthesia with
surgery

3 13 83.2*

Trimester
2nd 19 78 90.6*

3rd 11 37 81.3*

Exposure
≤3 hours and ≤1 MAC
and single exposure

14 39 86.5*

>3 hours or >1 MAC
or multiple exposures

23 81 90.9*

Monitoring
Blood pressure +
blood gas analysis

13 76 91.4*

Less monitoring 18 44 80.4*

Overall 31 120 89.8*

–2.18 [–8.12, 3.76]

–2.09 [–3.20, –0.99]

/

/

0.04 [–0.77, 0.84]

–2.20 [–2.93, –1.46]

–2.06 [–3.98, –0.14]

/

–1.62 [–3.34, 0.10]

–2.94 [–3.99, –1.88]

–1.75 [–2.22, –1.29]

–2.06 [–2.90, –1.22]

–1.31 [–11.46, 8.84]

–1.97 [–3.02, –0.92]

–1.25 [–2.28, –0.22]

–0.97 [–1.84, –0.10]

–2.23 [–3.31, –1.15]

–1.54 [–3.13, 0.05]

–2.22 [–3.10, –1.33]

–1.99 [–2.84, –1.14]

4
Exposure

worse
Control
worse

3210–1–2–4 –3

SMD’sarticles

Fig 3. Meta-analysis of apoptosis in the brain. Meta-analysis was performed only when �3 studies were available for each subgroup. SMD,

standardised mean difference. *c2 test of Cochran Q: P<0.1. yFixed-effects model. zOne random effect.
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I2 (%)

(a) Learning and memory
Volatile anaesthetics (sevoflurane, desflurane, isoflurane, enflurane, halothane)

(b) Apoptosis
Volatile anaesthetics (sevoflurane, desflurane, isoflurane)
≤3 h and ≤1 MAC and single exposure 86.7* 

>3 h or >1 MAC or multiple exposures 91.2* 

Intravenous anaesthetics (propofol, ketamine)
≤3 h and ≤1 MAC and single exposure 40.3* 

>3 h or >1 MAC or multiple exposures //42

(c) Synapse formation
Volatile anaesthetics (sevoflurane, desflurane, isoflurane)
≤3 h and ≤1 MAC and single exposure 37.1* 

>3 h or >1 MAC or multiple exposures 87.2* 

Intravenous anaesthetics (propofol, ketamine)
≤3 h and ≤1 MAC and single exposure 81.3* 

>3 h or >1 MAC or multiple exposures //42

(d) Neuron density
Volatile anaesthetics (sevoflurane, isoflurane)
≤3 h and ≤1 MAC and single exposure //81

>3 h or >1 MAC or multiple exposures 72.9* 

Intravenous anaesthetics (propofol, ketamine)
≤3 h and ≤1 MAC and single exposure 59.7* 

>3 h or >1 MAC or multiple exposures //11

(e) Proliferation
Volatile anaesthetics (sevoflurane, halothane)

//82≤3 h and ≤1 MAC and single exposure

>3 h or >1 MAC or multiple exposures 83.3* 

Intravenous anaesthetics (propofol, ketamine)
≤3 h and ≤1 MAC and single exposure

≤3 h and ≤1 MAC and single exposure 77.3* 

>3 h or >1 MAC or multiple exposures 25 107 −1.28 [−1.75, −0.81]

13 53 −0.61 [−1.23, 0.01]

87.9* 

Intravenous anaesthetics (propofol, ketamine)
≤3 h and ≤1 MAC and single exposure 86.5* 

>3 h or >1 MAC or multiple exposures 91.6* 

11 33 −0.91 [−1.47, −0.34]

5 15 −1.92 [−3.04, −0.81]

8 27 −0.03 [−0.74, 0.67]

20 77 −2.26 [−3.49, −1.02]

6 12 −2.30 [−3.46, −1.14]

6 19 −0.32 [−0.64, 0.01]

7 21 −1.87 [−3.98, 0.23]

7 16 −1.19 [−2.45, 0.06]

4 27 −1.28 [−3.45, 0.88]

6 17 −1.18 [−2.13, −0.24]

6 20 −2.79 [−4.90, −0.67]

4 16 −0.79 [−1.81, 0.23] 54.9* 

>3 h or >1 MAC or multiple exposures //62

4
Exposure worse Control worse

3210–1–2–4 –3

Number of Standardized mean difference
[95% Confidence interval]SMD’sarticles

Fig 4. Meta-analysis of (a) learning and memory and (b) apoptosis for the exposure categories for different anaesthetics. Meta-analysis was

performed only when �3 studies were available for each subgroup. SMD, standardised mean difference. *c2 test of Cochran Q: P<0.1. zOne

random effect.
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Gestational age at exposure

In most studies, pregnant animals were exposed to anaes-

thesia during the second trimester of pregnancy (49 studies),

followed by the third (12 studies), and first (four studies)

trimester equivalent. Meta-analyses showed significant im-

pairments for all outcome parameters in all trimesters, with

learning and memory in the third trimester being the only

exception (e.g. learning and memory during the first

trimester:�2.07 [�3.67 to�0.47], synapse formation during the

second trimester: �1.00 [�1.55 to �0.45], or apoptosis during

the third trimester: �1.25 [�2.28 to �0.22], Figs 2 and 3 and

Supplementary Figs S2eS4).
Magnitude of exposure

The effects of high exposure were investigated more

frequently than those of low exposure (Table 1). Meta-analyses

showed that the average combined SMDs were more negative

in the high exposure group for all outcome parameters (e.g. for

learning andmemory�1.38 vs�0.71, respectively, Figs 2 and 3,

Supplementary Figs S2eS4), suggesting dose-dependent ef-

fects. High exposure resulted in significant impairments for all

outcome parameters (e.g. apoptosis: �2.23 [�3.31 to �1.15]),

except for neurone density (�1.60 [�3.41 to 0.21]). By contrast,

low exposure did not result in significant impairments of

synapse formation (�0.55 [�1.10 to 0.01], Supplementary

Fig. S2) and proliferation (�0.93 [�1.87 to 0.01],

Supplementary Fig. S4). Figure 4 shows the results for volatile

and i. v. anaesthetics separately. For volatile anaesthetics, low

exposure did not result in significant impairments for any

outcome parameter (learning and memory: �0.61 [�1.23 to

0.01], apoptosis: �0.03 [�0.74 to 0.67], synapse

formation: �0.32 [�0.64 to 0.01]), whereas after high exposure

significant impairments were observed for learning and

memory (�1.28 [�1.75 to �0.81]), apoptosis (�2.26 [�3.49

to �1.02]) and proliferation (�2.79 [�4.90 to �0.67]). For i. v.

anaesthetics, impairments were observed both after low

exposure (learning and memory: �0.91 [�1.47 to �0.34],

apoptosis: �2.30 [�3.46 to �1.14], neurone density: �1.18

[�2.13 to �0.24]), and high exposure (learning and

memory: �1.92 [�3.04 to �0.81]).
Monitoring and anaesthesia

Monitoring in accordance with the standards for preclinical

research14 was used in 29 of the 65 (45%) studies. Monitoring

adhering to the guidelines of the ASA for human anaesthesia

was used in only five (8%) studies. Standard ASA monitoring

without ECG was used in four (6%) additional studies. All other

studies used less monitoring (Supplementary Table S4).

Tracheal intubation and controlled positive pressure

ventilation were used in only 10 (15%) studies. Nine of these

studies were performed in larger animals and one in rats38

(Supplementary Table S4.2). In the remaining 55 (85%)

studies, animals were breathing spontaneously; 54 of these

were performed in rats and mice. Attempts to confirm

adequate minute ventilation were done by analysing arterial

(17 studies) and venous (six studies) blood gas samples. Three

studies claimed to have achieved adequate ventilation by

referring to previous studies that had demonstrated normal

blood gas values when following a specific anaesthesia pro-

tocol.3,39e41 In the remaining 29 (45%) studies, no attempt was

made to confirm adequate ventilation. Pulse oximetry was
used in 20 (31%) studies. In six (9%) studies, pregnant animals

were excluded when oxygen saturation was <95% for >5 min.

Inspiratory oxygen concentration ranging from 21% to 100%

was used (Supplementary Table S4).

Arterial BP was measured in 26 (40%) studies. One study

claimed to have achieved normotension by referring to pre-

vious studies that had demonstrated adequate BPs for the

specific anaesthesia technique used.3,39e41 BP was taken into

account for further decision making in 10 (15%) studies. In six

studies, pregnant rats were excluded and replaced when sys-

tolic BP was <80% of baseline value for >5 min. In four studies,

vasopressors were administered in case of hypotension

(Supplementary Table S4).

Less monitoring was used in studies investigating the ef-

fects of i. v. anaesthetics when compared with models

studying volatile anaesthetics (Supplementary Table S4).

The average of the combined SMDwas less negative for the

BGBP group when compared with the no-BGBP group for all

outcome parameters (e.g. apoptosis: �1.54 vs �2.22, respec-

tively, Figs 2 and 3, Supplementary Figs 2e4). Significant im-

pairments were observed for all outcome parameters for the

no-BGBP group (learning and memory: �1.24 [�1.63 to �0.86],

apoptosis: �2.22 [�3.10 to �1.33], synapse formation: �1.08

[�1.82 to �0.34], neurone density: �1.28 [�2.49 to �0.07], and

proliferation: �2.28 [�3.58 to �0.97]). In the BGBP group, sig-

nificant differences were observed only for learning and

memory (�0.99 [�1.47 to �0.52]), but not for all other outcome

parameters (apoptosis: �1.54 [�3.13 to 0.05], synapse

formation: �0.92 [�1.88 to 0.03], neurone density: �1.19 [�2.41

to 0.02], and proliferation: �1.43 [�10.64 to 7.79]).

Supplementary Fig 5 shows that low exposure with BGBP

monitoring does not result in significant impairments for all

available outcome parameters (learning and memory: �0.49

[�0.95 to�0.02], apoptosis:�0.07 [�0.97 to 0.83]), whereas high

exposure with no-BGBP monitoring results in significant im-

pairments for all outcome parameters (learning and

memory: �1.37 [�1.89 to �0.86], apoptosis: �2.27 [�3.48

to �1.05], synapse formation: �2.13 [�4.26 to �0.01],

proliferation: �3.17 [-4.90 to �1.43], not enough studies could

be included for neurone density).
Neuroprotection: dexmedetomidine

Four studies investigated the neuroprotective effects of dex-

medetomidine in rats. Dexmedetomidine was administered i.

p. 15 min before the start of �1 MAC sevoflurane/isoflurane/

propofol anaesthesia and in three studies repeated every 2

h.40,42e44 The anaesthesia plus dexmedetomidine group was

compared with anaesthesia without dexmedetomidine. Meta-

analysis showed a significant improvement in learning and

memory (0.79 [0.13 to 1.45], Fig 5), but a non-significant

decrease in apoptosis (1.38 [�1.53 to 4.30]). Not enough

studies could be included to perform meta-analyses for syn-

apse formation, neurone density, and proliferation.
Risk of bias

Supplementary Table S5 displays the evaluation of every item

of the SYRCLE risk of bias tool. Randomisation was mentioned

in 51 out of the 65 studies (78%), but in none of these studies

were more details provided about the method (e.g. a random

number generator) or allocation concealment. In six (9%)

studies, neurocognitive assessment of the parental animals

was used to ensure equal groups at baseline. Random housing
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was described in none of the studies. Investigators were not

blinded, but in 35 (54%) studies the outcome assessors were

blinded. Animals/areas in brain regions were selected

randomly for outcome assessment in 23 (35%) studies. Missing

outcome data were mentioned in 11 (17%) articles. Another

important source of bias was the statistical analysis of the

offspring born to one mother being considered as an inde-

pendent observation. To overcome this, in eight (12%) articles,

clustering of fetuses per doe was taken into account.37e39,45e49

In the funnel plots (Supplementary Fig 6), there is asymmetry

for all outcome parameters, clearly suggesting the presence of

publication bias.
Sensitivity analysis

After selecting studies using both positive pressure venti-

lation and standard ASA monitoring with or without ECG,

eight (12%) studies were withheld: one in rabbits,37 three

in sheep,36,50,51 and four in non-human primates.6,8,10,52 In

those, low exposure did not result in more apoptosis (0.32

[�0.42 to 1.06], Supplementary Fig 7), but high exposure

resulted in a non-significant increase in apoptosis (�0.90

[�1.92 to 0.13]).
Discussion

Principal findings

Fetal exposure to general anaesthesia results in impaired

learning and memory, neuronal injury, or both in several

experimental animal species, irrespective of the anaesthetic

drug or gestational age. However, most experiments were

done under general anaesthesia without concomitant surgical

intervention, a situation rarely encountered in clinical

anaesthesia. For volatile anaesthetics, these effects were re-

ported only after exposure to >1 MAC, lasting >3 h or when

given more than once. For i. v. anaesthetics, neurotoxicity was

observed at lower doses/durations/frequencies. Furthermore,

conduct of anaesthesia and monitoring were often below

preclinical standards and far below the standards usually

applied in the clinic. Dexmedetomidine attenuated

anaesthesia-induced neurotoxicity. These findings are

corroborated by the narrative synthesis (Supplementary

material).
Methodological issues limiting clinical
translation

As no clinical studies are available, it is important to investi-

gate whether and to what extent these preclinical observa-

tions can be translated to the clinical scenario.

It would be crucial to use animal species having a brain

development comparable to humans, for which rodents are

less than ideal. Rodents are often used because of the avail-

ability of validated neurobehavioural tests, similar brain his-

tology, and an extensive knowledge of molecular pathways.14

However, the brain growth spurt during which the brain is at

its peak growth and most vulnerable to external factors (e.g.

anaesthesia)53e56 occurs perinatally in humans but postnatally

in rodents. In contrast, guinea pigs, sheep, and non-human

primates are prenatal brain developers.14,39,53,55,57e59 Hence,

to translate findings from animal experiments to the human

setting, the effects of anaesthesia on fetal brain development
should more appropriately be investigated in animals that

develop their brain in the perinatal period, such as rabbits or

pigs. However, we identified only one study in rabbits37 and

none in pigs.

In all except three articles, animals were exposed to a

surgical level of general anaesthesia without surgical stimu-

lation. In reality, pregnant women are exposed to anaesthesia

almost exclusively to allow surgery (except situations inwhich

sedation is needed on the ICU).19

Positive pressure ventilation and standard ASA monitoring

are used routinely in pregnant women but were used in only a

minority of studies, probably because most studies used ro-

dents, in which these are practically difficult to perform.

Likewise, the guidelines for monitoring in preclinical research

were followed only in about half of the studies. Isoflurane

causes respiratory depression resulting in hypoxaemia,

hypercarbia, or both, both of which can induce apoptosis and

impair neurocognitive outcome.60e63 Positive pressure venti-

lation decreases apoptosis and improves neurocognitive

outcome.64 Inmany of the included studies, it is not possible to

distinguish if the observed neuronal injury was a direct effect

of the anaesthetic or the indirect result of respiratory

depression.

For volatile anaesthetics, we found that only repeated ex-

posures, doses of >1 MAC or durations of >3 h resulted in

neurological impairments. This corroborates the FDA warning

against repeated and lengthy use (defined as >3 h) of anaes-

thesia in young children and during pregnancy.12,13 However,

repeated exposure during pregnancy is uncommon in

humans.19 The use of doses >1 MAC has been advocated in

major fetal surgery (e.g. for meningomyelocele repair, to

induce uterine relaxation).65 However, these surgeries are also

feasible using lower doses of volatile anaesthetics in combi-

nation with tocolytic agents.66 Non-obstetric surgery during

pregnancy rarely lasts >3 h.19 Furthermore, we suggest that

the duration of general anaesthesia should be interpreted in

relation to the duration of pregnancy and life expectancy,

which are considerably shorter in almost all investigated an-

imal species than in humans. Taking these considerations into

account, a 3 h anaesthetic in rats, mice, non-human primates,

sheep, rabbits, and guinea pigs would correspond to 37, 43, 5, 6,

27, and 12 h, respectively, of anaesthesia in humans.67

Therefore, even in the low exposure groups, the animals

were exposed to relatively longer durations of exposure than

what is typically encountered during surgery in pregnant

women. Unfortunately, no studies are available investigating

the animal equivalent of 3 h in humans (15 min for rats or 13

min for mice67).

For i. v. anaesthetics, low exposure was found to result in

neurological impairments, whereas for volatile anaesthetics,

only high exposure impairedneurological outcome.Notably, i. v.

anaesthetics were administered in sedative doses, whereas the

doses used for volatile anaesthetics resulted in surgical levels of

general anaesthesia (Supplementary Tables S1 and S3). Thus, i.

v. anaesthetics could bemore harmful to the brain than volatile

anaesthetics. In contrast, two studies directly comparing vola-

tile with i. v. anaesthetics (at similar depths of anaesthesia)

found that propofol was less harmful than isoflurane.8 45 The

reasons for these conflicting observations are purely specula-

tive. In fact, there might be a certain degree of ‘autoregulation’

of the depth of anaesthesia when volatile anaesthetics are

inhaled spontaneously (a negative feedback mechanism with

the animal stopping inhalation and limiting further uptake of
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Fig 5. Meta-analysis of the neuroprotective effect of adding dexmedetomidine to general anaesthesia. Meta-analysis was performed only

when �3 studies were available for each subgroup. SMD, standardised mean difference. *c2 test of Cochran Q: P<0.1.
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anaesthetics when levels of anaesthesia become too deep).68

This mechanism does not exist for i. v. anaesthetics. There-

fore, it is possible that respiratory depression was more pro-

nounced in the group of i. v. anaesthetics. This remained

unrecognised, as in the studies using i. v. anaesthetics less

monitoring was used than in the group of volatile anaesthetics.

The arguments above illustrate that the translational value

of many preclinical studies is limited because they do not

reflect the clinical scenario in women undergoing surgery. To

estimate the effects of clinical anaesthesia on fetal brain

development, only studies investigating low exposure in the

selected studies of the sensitivity analysis should be consid-

ered (Supplementary Fig. S7). These three studies show that a

clinically relevant exposure to general anaesthesia during

pregnancy does not result in more apoptosis. Therefore, it can

be concluded that for typical surgeries during pregnancy using

clinically relevant exposures and standard physiological

monitoring, anaesthesia-induced neurotoxicity is most prob-

ably less severe. Notably, research into anaesthetic neuro-

toxicity has not been stimulated by clinical observations, but

by observations from the laboratory.61,69 As a matter of

concern, the animal data still warrant caution for the excep-

tional cases in which pregnant women need to undergo long

and complex surgeries (such as fetal myelomeningocele repair

or cardiac surgery) or even week long deep sedation on the ICU

(e.g. when requiring extracorporeal membrane oxygenation

for the treatment of adult respiratory distress syndrome

caused by influenza or COVID-19).70,71

Risk of bias was high in most studies. A specific source of

bias is that in all except eight articles, offspring born to one

mother were statistically analysed as independent observa-

tions. However, offspring born to the same mother share ge-

netics and environmental influences. Most likely,

physiological disturbances in one pregnant animal during

anaesthesia affect all fetuses.72 Appropriate statistical

methods (i.e. a mixed-effects model) need to be used for

sample size calculation and to analyse these clustered

data.73e77 When ignoring clustering, the chance of false posi-

tive findings increases.76
Strengths and limitations

This review has a number of limitations. First, no clinical data

were available. Second, some conclusions need to be inter-

preted cautiously because of the wide variety of methods used

to assess learning, memory, and neuronal injury, and the

resulting high statistical heterogeneity. We attempted to

reduce the latter by repeating the meta-analysis and only

including the latency time of the Morris water maze test and

apoptosis in the hippocampus (Supplementary Figs 8 and 9).

This was in vain however, potentially because a relatively high

number of SMDs were included in the meta-analysis. The

Cochran’s c2 test has excessive power to detect clinically un-

important heterogeneity whenmany studies are included.30,31

The strength of this review is that it identifies a number of

methodologic problems with currently available translational

studies that should be addressed in future research, including

analysis of more clinically relevant scenarios in appropriate

models, and the need for clinical studies.
Conclusions

In laboratory animals, anaesthesia during pregnancy results in

neuronal injury leading to impairments of learning and

memory irrespective of animal species, type of anaesthetic,

and timing during pregnancy. Notably, human data are not

available. Translation of the laboratory findings to the human

setting is complicated by several confounders. Rodents (the

most frequently used animal species) have brain development

that significantly deviates from that in humans. In most

studies, anaesthesia was performed without surgical stimu-

lation. Physiologic monitoring and control of homeostasis

were below preclinical14 and clinical standards33 in many

studies. The duration and frequency of exposure and the

anaesthetic doses were often much higher than in clinical

routine. In studies more closely mimicking the clinical setting,

the results suggest that neurological outcome was not

impaired by fetal exposure to maternal anaesthesia. This

systematic review and meta-analysis suggest that
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anaesthesia-induced neurotoxicity during pregnancy is a

consistent finding in laboratory conditions. Neuro-

developmental effects are much smaller in models mimicking

typical clinical situations and applying routine monitoring

standards. Clinical observational studies are needed for

confirmation. Future animal studies should focus on models

appropriately reflecting typical clinical situations, applying

surgical stimulation, and using physiological monitoring.
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