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Abstract

Background: Atelectasis after cardiac surgery is common and promotes ventilation/perfusion mismatch, infection, and

delayed discharge from critical care. Recruitment manoeuvres are often performed to reduce atelectasis. In severe

respiratory failure, recruitment manoeuvres in the prone position may increase oxygenation, survival, or both. We

compared the effects of recruitment manoeuvres in the prone vs supine position on lung aeration and oxygenation in

cardiac surgical patients.

Methods: Subjects were randomised to recruitment manoeuvres (40 cm H2O peak inspiratory pressure and 20 cm H2O

PEEP for 30 s) in either the prone or supine position after uncomplicated cardiac surgery. The co-primary endpoints were

lung aeration (end-expiratory lung volumemeasured by electrical impedance tomography (arbitrary units [a.u.]) and lung

oxygenation (ratio of arterial oxygen partial pressure to fractional inspired oxygen [PaO2/FiO2 ratio]). Secondary outcomes

included postoperative oxygen requirement and adverse events.

Results: Thirty subjects (27% female; age, 48e81 yr) were recruited. Dorsal lung tidal volume was higher after prone

recruitment manoeuvres (363 a.u.; 95% confidence intervals [CI], 283e443; n¼15) after extubation, compared with supine

recruitment manoeuvres (212 a.u.; 95% CI, 170e254; n¼15; P<0.001). Prone recruitment manoeuvres increased dorsal end-

expiratory lung volume by 724 a.u. (95% CI, 456e992) after extubation, compared with 163 a.u. decrease (95% CI, 73e252)

after supine recruitment manoeuvres (P<0.001). The PaO2/FiO2 ratio after extubation was higher after prone recruitment

manoeuvres (46.6; 95% CI, 40.7e53.0) compared with supine recruitment manoeuvres (39.3; 95% CI, 34.8e43.8; P¼0.04).

Oxygen therapy after extubation was shorter after prone (33 h [13]) vs supine recruitment manoeuvres (52 h [22]; P¼0.01).

No adverse events occurred.

Conclusions: Recruitment manoeuvres in the prone position after cardiac surgery improve lung aeration and

oxygenation.

Clinical trial registration: NCT03009331.
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Editor’s key points

� Pulmonary collapse after cardiac surgery promotes

ventilation/perfusion mismatch, infection, and pro-

longed hospitalisation.

� The authors hypothesised that recruitment manoeu-

vres in the prone positionwould improve lung aeration,

oxygenation after extubation, or both following cardiac

surgery.

� Stable subjects who had undergone uncomplicated

cardiac surgery were randomised to standardised

recruitment manoeuvres in the prone or supine

position.

� Both lung aeration and oxygenation were higher after

recruitment manoeuvres in the prone position,

compared with supine manoeuvres.

� These proof-of-concept data suggest that this recruit-

ment strategy can be explored as an intervention to

reduce pulmonary complications after cardiac surgery.

Atelectasis with associated ventilation/perfusion mismatch is

more common after cardiac surgery with cardiopulmonary

bypass (CPB),1e3 compared with noncardiac surgery.4 Lung

functionmaybe impairedup to 4months after coronary bypass

surgery.5 Prolonged mechanical ventilation as a result of pul-

monary dysfunction, prolongs ICU stay and promotes the

development of multi-organ dysfunction through nosocomial

pneumonia and acute respiratory distress syndrome (ARDS).6,7

After cardiac surgery, early alveolar recruitment manoeu-

vres (RMs) in the supine position are often performed to reduce

hypoxia, atelectasis, and prolonged mechanical ventilation.

RMs typically consist of decrementing PEEP, with inspiratory

peak pressure of 30e45 cm H2O.8e11 Prone positioning after

cardiac surgery has been described in ARDS,12,13 improving

oxygenation, and reducing shunt fraction. In a mixed group of

intensive care patients with severe ARDS, prone positioning

decreased 28 and 90 daymortality.14 The physiological benefits

of combining prone positioning with RMs has been demon-

strated in ARDS patients, but not after cardiac surgery.15,16

We hypothesised that RMs in the prone position is advan-

tageous by improving dorsal lung aeration (measured using

electrical impedance tomography [EIT])17,18 and oxygenation

after extubation, compared with supine position. The aim of

the present study was therefore to study the combined effect

of RMs in the prone position, compared with RMs in the supine

position.
Methods

Study design

The study was approved by the Gothenburg Ethics Committee

(number: 371e17, 26 July 2017) and registered on December 14,

2016, in ClinicalTrials.gov (ID: NCT03009331). Written

informed consent was obtained from all subjects preopera-

tively. Enrolment was between August 2017 and March 2019.

We followed the Consolidated Standards of Reporting Trials

(CONSORT) recommendations on reporting randomised trials.

Inclusion criteria

Adults (age >18 yr) undergoing on-pump cardiac surgery were

considered eligible for the study.
Exclusion criteria

We did not enrol patients after surgery if the following

exclusion criteria were met:

(1) Pulmonary disease, smoking, or former smoker within 5 yr

(2) Haemodynamic instability (norepinephrine [NE] infusion

>0.20 mg kg min�1), milrinone infusion, or pacemaker

dependency

(3) Postoperative bleeding >100 ml h�1, or reoperation

(4) Haemothorax or large pleural effusion using ultrasono

graphy

(5) Pneumothorax or air leak

(6) Postoperative PEEP >12 cm H2O or FiO2 >0.6
Anaesthesia and intraoperative management

Institutional routines were implemented. FiO2 was 0.8 during

induction of anaesthesia and before commencing CPB. Sevo-

flurane was used during surgical preparation and after

weaning from CPB. Apnoea without PEEP was induced during

CPB. Before weaning from CPB, a manual RM was performed,

with the adjustable pressure-limiting (APL) valve set to 30e40

cm H2O, to visually confirm the expansion of the lungs. After

chest closure, FiO2 was 0.5 with a tidal volume (VT) of 6e8 mL

kg�1 of predicted body weight, a ventilatory frequency of

12e14 bpm, and PEEP of 5 cmH2O (Flow-i; Maquet Critical Care,

Solna, Sweden).
Recruitment manoeuvres

The RM consisted of an increase in PEEP from 5 to 20 cmH2O in

three steps over 30 s.19 The ventilator mode was temporarily

switched to pressure control for the remaining part of the RM

with inspiratory pressure of 20 cm H2O above PEEP. The PEEP

level was maintained at 20 cm H2O for 30 s, followed by dec-

rements to 10 cm H2O in five steps over 2 min. Identical RMs

were performed in the Supine (n¼15) and Prone groups (n¼15),

with the timeline described in detail below (Supplementary

Fig. S1 details the experimental procedure including the

S1eS4 time points).
Electrical impedance tomography

A 16-electrode silicon belt (Ref 84 20 0e57, -58, -59; Dr€ager

Medical, Lübeck, Germany) was placed around the thoracic

cage between the sixth and seventh intercostal spaces. This

position avoided interference with the diaphragm and chest

drains (Fig. 1), and was re-verified after each turn. The belt was

connected to the EIT device during the entire procedure. EIT

data were sampled at a rate of 40 Hz (Pulmovista 500; Dr€ager

Medical), and a filter of 50 beatsmin�1 was applied tominimise

cardiac-induced signals. EIT data correspond to signals from a

5e10-cm-thick transverse slice of the lung. Data were

continuously sampled (EIT Diag; Dr€ager Medical).20 For each

registration point, a stable phase of 30 consecutive breaths

(2e3 min) was selected, with the baseline registration (S1) as

reference. EIT images are reconstructed based on relative

voltage deviations caused by tissue impedance variation (DZ),
that is alterations in aeration, with multiple display options.

Based on the tidal image of the reference section, ventilated

area (def. DZ > 15% compared with baseline) was divided into

two equally large surfaces, named regions of interest (ROIs), a

ventral region (the non-dependent zone) and a dorsal region

(the dependent zone). In the baseline registration (S1), tidal DZ

http://ClinicalTrials.gov


Fig 1. Supine and prone positioning. Typical study subject in the

supine and prone positions (note: two chest drains are posi-

tioned to not interfere with the EIT belt). EIT, electrical imped-

ance tomography.
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was calibrated to the VT, enabling calculation of volume

changes in the following registrations (S2eS4). Taking into

account that changes in lung volume and VT distribution oc-

curs in the ventro-dorsal and baso-apical direction,21,22 and

that only a single basal slice of the lung is examined, the

calibrated volume unit is depicted as arbitrary.

Several EIT-derived variables have been described. Tidal

impedance variation (TIV) is highly correlated with VT, as

measured with syringe technique, ventilator spirometry, and

CT.23,24 A good correlation between end-expiratory lung imped-

ance (DEELI) changes and end-expiratory lung volume (DEELV)
changes, when calibrated against DZ/VT, has been demon-

strated.25e27 Distribution of TIV and DEELI is demonstrated by

applying one ventral and one dorsal ROI. The centre of ventila-

tion (COV) divides the lung into one ventral and one dorsal re-

gion, to obtain twoequalhalves of global TIV. Fromdorsal (0%) to

ventral (100%), a vertical percentage scale is applied to the thorax

diameter, and the horizontal intersection between the regions is

depicted on the scale. Values above 50%mean predominance of

ventral, and values below, of dorsal ventilation.20,28e30
Oxygenation

Arterial blood gases were obtained (Siemens RAPIDPoint 500;

Siemens Healthcare GmbH, Erlangen, Germany) to calculate
the ratio of arterial partial pressure of oxygen to the fraction of

inspired oxygen (PaO2/FiO2).
Radiological Atelectasis Score

Chest X-ray on the second postoperative day, after chest drain

removal, was performed bedside and assessed by a single

blinded radiologist in accordance with the Radiological Atel-

ectasis Score (RAS).31 RAS quantifies atelectasis by a 5-point

score (0, clear lung fields; 1, plate-like atelectasis or slight

infiltration; 2, partial atelectasis; 3, lobar atelectasis; 4, bilat-

eral atelectasis).
Postoperative protocol

The patients were prospectively randomised (closed enve-

lopes) for RM in the supine or PP (150e180�, left side up), after

arrival in the cardiothoracic intensive care unit (CTICU)

(Supplementary Fig. S1). At CTICU arrival, the patients were

placed in a 20e30� head-up position with previous ventilation

(pressure-regulated volume-controlled mode; Servo-U;

Maquet Critical Care), and ventilatory frequency to normo-

capnia (PCO2¼4.7e6.0 kPa). Patients were sedatedwith propofol

infusion (Richmond AgitationeSedation Scale score, �4) to

avoid spontaneous breathing. The time from ICU admission to

time point zero was 25e30 min, during which randomisation,

positioning of EIT belt, EIT signal verification, and assessment

of patient arrival status took place. After time zero, there was a

25-min equilibration period before the first EIT data sampling

period of 5 min, S1. In the Prone group, the proning procedure

plus RM (15 min) and de-proning (5 min) together lasted 20

min. In the Supine group, the RM was performed at the iden-

tical time point, preceded by a 10 min equilibration period.

After a further equilibration period of 5 and 10 min for the

Prone and Supine groups, respectively, there was a measure-

ment period of 5 min (S2). A further equilibration period

started after S2 for 25 min, followed by a measurement period

of 5 min (S3). After S3 the patients emerged from sedation to

facilitate extubation. After extubation, there was a 25 min

equilibration period followed by S4. For all patients, data are

from the supine position (S1eS4). FiO2 was 0.5 at S1 through

S3. At S4, a nomogramwas used to define FiO2.
32 Arterial blood

gases were obtained at the end of S1, S2, S4.
Co-primary outcomes

The primary outcome measures were dorsal VT, dorsal EELV,

and PaO2/FiO2 ratio after extubation (S4).
Secondary outcomes

Secondary outcome measures were COV, RAS, postoperative

oxygen requirement, and safety of the RM and PP (including

oedema of lips; oedema of eyelids; pressure sores, facial

bruising, or both).
Statistical analysis

The ShapiroeWilk test confirmed normal distribution. Ana-

lyses were performed using SPSS ver. 24 (IBM, Chicago, IL,

USA). Two-way analysis of variance (ANOVA) for repeated

measurements (time vs group) evaluated differences between

the groups, and t-test was used for post-hoc analyses

(Supplementary Tables S2 and S3). For other analyses we

performed unpaired t-test as a primary comparison. A P value
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<0.05 was considered statistically significant. Results are pre-

sented as mean with standard deviation (SD). Effect size was

calculated using Cohen’s d.
Sample size estimation

To detect a 20% difference in dorsal VT at S4 between prone vs

supine RM, 14 patients in each group were required (alpha

0.05, power 0.8), by the use of IBM SPSS SamplePower .
Results

Subject characteristics

Informed consent was obtained from 30 patients (Table 1;

Supplementary Fig. S2), who were randomised to either RM in

the prone (n¼15) or supine position (n¼15).More patients in the

Supine group had an isolated valve procedure, but the duration

of CPB (P¼0.182), cross-clamp time (P¼0.506), ventilatory set-

tings (Supplementary Table S2), and ICU stay (prone: 23 h [7], vs

supine: 25 h [8]); P¼0.40) were similar between groups.
Table 1 Subject characteristics. Data are presented as mean
(standard deviation) or (range), except as noted. Vasopressor
treatment refers to low-dose norepinephrine (0.05e0.20 mg kg
min�1). CABG, coronary artery bypass graft; CPB, cardiopul-
monary bypass.

Supine
(n¼15)

Prone
(n¼15)

Female sex, n (%) 4 (27) 4 (27)
BMI, kg m�2 28.3 (4.5) 29 (3.1)
CABG, n 9 11
Valve, n 5 0
CABGþvalve, n 1 4
CPB time, min 68.3 (34.7) 83.3 (24.4)
Aortic cross-clamp time, min 50.0 (27.1) 56.3 (21.2)
Vasopressor treatment, n (%) 8 (53) 8 (53)
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Co-primary outcomes

Lung aeration

The dorsal regional VT increased in both groups (Fig. 2), but to a

greater extent in the Prone group (P<0.001). The dorsal regional

VT was higher in the Prone group at S2 (P¼0.043) and S4

(P¼0.001) compared with the Supine group, but no difference

was seen at S3 (P¼0.065). There were no differences between

groups in ventral regional VT (P¼0.169).

Bothdorsal andglobalDEELVwerehigher in the Prone group

(Fig. 3) compared with the Supine group at all time points

(S2eS4, P¼0.001). After extubation, the dorsal and globalDEELV
was sustained above baseline only in the Prone group (P<0.001).
Ventral DEELV was higher in the Prone group at S2 (P¼0.039).
Oxygenation

In both groups, lung oxygenation improved after RM (Fig. 4);

however, it was more pronounced in the Prone group at S2

(P¼0.007) and S4 (P¼0.041).
Secondary outcomes

Centre of ventilation

COV shifted from ventral to dorsal regions after RM in both

groups (Fig. 5), but was more pronounced in the Prone group

(P¼0.011). Dorsal ventilation was significantly more pro-

nounced in the Prone group at S4 (P¼0.045).
Radiological Atelectasis Score

RASs were similar for the Prone and Supine groups (1.6 [0.7]

and 1.8 [0.5], respectively; P¼0.41).
Postoperative oxygen requirement

The mean duration of nasal oxygen delivery was shorter in

participants randomised to prone RM (33 h [13]) compared

with supine RM (52 h [22]; P¼0.010).
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Fig 3. Effect of recruitment manoeuvres on end-expiratory lung volume. Global, changes in global end-expiratory lung volume; Ventral,

changes in ventral end-expiratory lung volume; Dorsal, changes in dorsal end-expiratory lung volume. S1, before the recruitment

manoeuvre; S2, immediately after the recruitment manoeuvre; S3, 30 min after the recruitment manoeuvre; S4, 30 min after extubation

during spontaneous ventilation; a.u., arbitrary unit. Values are mean (SD). *P<0.05, **P<0.01, ***P<0.001. Filled boxes: Prone group; open

circles: Supine group.
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Haemodynamics

There was no difference in duration of NE infusion in the

CTICU between the Prone group (171 [128] min) and the Supine

group (264 [171] min; P¼0.24), or in MAP and HR, 5 min before,

during, and 5 min after the RM (P¼0.40; Supplementary

Table S3).
S1 S2 S4
0

20

40

60

80

P
ao

2/
F

iO
2

*

*

P=0.028

Fig 4. Effect of recruitment manoeuvres on PaO2/FiO2 ratio. S1,

before the recruitment manoeuvre; S2, immediately after the

recruitment manoeuvre; S4, 30 min after extubation during

spontaneous ventilation. Values are mean (SD). FiO2, fraction of

inspired oxygen; PaO2, arterial partial pressure of oxygen (kPa),

*P<0.05. Blue, supine. Purple, prone.
Safety of prone positioning

There were no adverse events associated with the RM or PP,

with no accidental extubation or need for reintubation within

24 h.
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Fig 5. Effect of recruitment manoeuvres on centre of ventilation.

S1, before the recruitment manoeuvre; S2, immediately after

the recruitment manoeuvre; S3, 30 min after the recruitment

manoeuvre; S4, 30 min after extubation during spontaneous

ventilation; TIV, tidal impedance variation. Values are mean

(SD). *P<0.05. Filled boxes: Prone group; open circles: Supine

group.
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Discussion

Our RCT found that an early postoperative RM in the prone

position was superior to supine RM, as assessed by recruit-

ment of dorsal atelectatic areas, dorsal redistribution of VT,

and improved lung oxygenation. The beneficial effect of prone

RM remained after extubation and presumably until the sec-

ond postoperative day, as suggested by the shorter duration of

postoperative oxygen supplementation. Prone RM was not

associated with any adverse events.

This is the first investigation to demonstrate the superiority

of RM in the prone position in cardiac surgical patients.

Beneficial effects of RM in the supine position in cardiac sur-

gery patients were recently demonstrated by Costa Leme and

colleagues.10 Among patients with hypoxaemia, the use of an

intensive and extended alveolar recruitment strategy resulted

in less severe pulmonary complications and shorter ICU and

hospital stay.10 Similar to our study, there was an increase in

compliance of the dependent lung regions in the intensive

strategy group, demonstrated by EIT. Their study was the first

to demonstrate a positive clinical outcome attributed to

postoperative RM.10 These beneficial effects seen after cardiac

surgery were absent in patients undergoing abdominal sur-

gery.33 One explanation is that the post-cardiac surgery lungs

are more vulnerable and prone to atelectasis formation

resulting from the inflammatory effect of the CPB, open chest

surgery, and ischaemiaereperfusion injury,2 amplified by

postoperative gravitational forces of the heart and medias-

tinum on nearby pulmonary segments.3 In other words,

different genesis of atelectasis may affect lung recruitability.

The patients in the present study were not hypoxaemic before

inclusion as in the study by Costa Leme and colleagues.10

However, we have shown that the improved oxygenation of

an RM, in the Supine group and even more pronounced in the

Prone group, persists after extubation also in uncomplicated

post-cardiac surgery patients, confirming previous studies

showing improved oxygenation with early RM in cardiac sur-

gery patients up to 3e5 days after extubation.2,34 The shorter

duration of supplemental postoperative oxygen in our Prone

group supports the superiority of a prone RM.

Although improved outcome of PP in ARDS patients is not

associated with increased oxygenation, 35 in post-cardiac

surgery patients, improvement in postoperative oxygenation

results in earlier extubation, and ICU and hospital discharge.

Extended and prolonged RMs in ARDS in the Alveolar

Recruitment for Acute Respiratory Distress Syndrome Trial

(ART) had harmful acute effects on oxygenation or haemody-

namics, and in 16% of the patients the RM had to be inter-

rupted. Furthermore, therewas increasedmortality in the lung

recruitment and titrated PEEP group.36,37 Regarding the Prone

group in our study, a shorter and less extended RM compared

with that in the ART study was a safe procedure with no dif-

ference in MAP, HR, or postoperative NE infusion time,

compared with the Supine group (Supplementary Table S3).

The PP per se in post-cardiac surgery and ARDS have negligible

or favourable effects on haemodynamics.12,38 In patients with

Acute Respiratory Failure (ARF) after cardiac surgery, PP

reduced atelectasis and improved oxygenation.12 Data on the

persisting effects of PP and RMs on lung volumes and

oxygenation after extubation are lacking. Poor lung oxygena-

tion postoperatively may increase ICU stay and pulmonary

complications.

The EIT technique has previously been used to optimise

PEEP in respiratory failure18 and after cardiac surgery.8,9,11,39 It
reveals atelectasis perioperatively,40 and may substitute, and

be preferred to, thoracic CT.8,18,30,41 In contrast to CT, EIT

provides irradiation-free, online, continuous bedside mea-

surements. The lung ultrasound score is not recommended for

quantification of bedside lung recruitment.42 In a study using a

similar RM to ours,11 regional ventilation measured by EIT

compared with respiratory compliance, was considered a

better variable to detect ‘best PEEP’. The best PEEP according to

maximum dorsal EELV was about 10 cm H2O, the level we

chose after the RM. The EIT-derived EELV has been used as a

surrogate for true measurement of functional residual capac-

ity (FRC), with good accuracy.26,27 The EIT technique has also

been used in spontaneously breathing patients after cardiac

surgery,43 and during general anaesthesia,29 to detect benefi-

cial effects in EELV and ventilation distribution. In two recent

studies, EIT in the PP was successfully used in ARDS patients,

with44 or without extracorporeal membrane oxygenation

(ECMO),45 to measure DEELV and VT distribution and to iden-

tify patients likely to benefit from PP.

Most patients after cardiac surgery have basal and dorsal

atelectasis.8,9,11,12,39 In the present study, PP plus RM improved

dorsal VT in the extubated patients to a larger extent compared

with supine RM, most likely as a result of redistribution from

ventral and apical areas. Redistribution from apical to basal

regions during a PEEP trial, using one apical and one basal EIT

belt,39 has previously been shown. The increase in dorsal VT is

expected to improve the dorsal ventilation/perfusion ratio,

reflected by better lung oxygenation and a shorter post-

operative requirement of nasal oxygen delivery, seen in the

Prone group.

The increase in dorsal DEELV and the improved lung

oxygenation, persisting after extubation, was significantly

more pronounced in the Prone group, indicating an

improvement in alveolar recruitment, FRC, and dorsal aera-

tion.26,41,46 In a previous study in post-cardiac surgery pa-

tients, an early open lung concept strategy improved FRC

averaged over the first 5 postoperative days.34 In the present

study, all patients in the Prone group were responders in

dorsal VT, oxygenation, and dorsal DEELV, between S1 and

S4, whereas 10, 12, and two patients, respectively, were re-

sponders in the Supine group (Supplementary Fig. S3). We

speculate that the decrease in ventral DEELV below zero, in

both groups after extubation, is not harmful, but reflects the

return to EELV levels before induction of anaesthesia, and

the cessation of the ventral overdistension caused by posi-

tive pressure ventilation.

A limitation of the present study is that ventilation distri-

bution is based on a single lung slice.27,40 Hence, it is debatable

whether EIT data represent global aeration. However, cardiac

surgery predominantly causes dorso-basal atelectasis, well

correlating to the selected EIT belt position.3 A second limita-

tion is the lack of FRC measurement after extubation. How-

ever, there is a good correlation between regional and global

DEELV and FRC.26,27 A third limitation is that we did not study

the aeration beyond 30 min after extubation. Nevertheless,

studies after cardiac surgery using the ‘open lung tool concept’

improved FRC for 5 days,34 and decreased pulmonary com-

plications and ICU or hospital stay,10 which is supported by

less postoperative oxygen supplementation in the Prone group

of the present study. A fourth limitation is that the assessor

was not blinded for the intervention. However, the EIT data

were collected and presented by the dedicated software20 at

identical time points in all patients. Future studies will clarify

whether this new strategy for alveolar recruitment has long-
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term beneficial effects on lung volumes and oxygenation in

post-cardiac surgery patients.

In summary, early after cardiac surgery, a lung RM in the

prone position improves lung oxygenation, dorsal tidal venti-

lation, and dorsal end-expiratory lung volumes, compared

with a lung RM in the supine position. Dorsal alveolar

recruitment is accompanied by an improved dorso-basal

ventilation/perfusion relationship. These beneficial effects on

lung volumes and function are maintained after extubation.
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