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Abstract

Background: Non-human primates are commonly used in neuroimaging research for which general anaesthesia or

sedation is typically required for data acquisition. In this analysis, the cumulative effects of exposure to ketamine,

Telazol® (tiletamine and zolazepam), and the inhaled anaesthetic isoflurane on early brain development were evaluated

in two independent cohorts of typically developing rhesus macaques.

Methods: Diffusion MRI scans were analysed from 43 rhesus macaques (20 females and 23 males) at either 12 or 18

months of age from two separate primate colonies.

Results: Significant, widespread reductions in fractional anisotropy with corresponding increased axial, mean, and radial

diffusivity were observed across the brain as a result of repeated anaesthesia exposures. These effects were dose

dependent and remained after accounting for age and sex at time of exposure in a generalised linear model. Decreases of

up to 40% in fractional anisotropy were detected in some brain regions.

Conclusions: Multiple exposures to commonly used anaesthetics were associated with marked changes in white matter

microstructure. This study is amongst the first to examine clinically relevant anaesthesia exposures on the developing

primate brain. It will be important to examine if, or to what degree, the maturing brain can recover from these white

matter changes.
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Editor’s key points

� The cumulative effects of repeated exposures to keta-

mine, Telazol® (tiletamine and zolazepam), and iso-

flurane on early brain development were evaluated in

an opportunistic analysis of imaging data in rhesus

macaques.

� Diffusion MRI scans from 43 rhesus macaques at either

12 or 18 months of age from two separate primate col-

onies were analysed for brain structural changes.

� Widespread dose-dependent reductions in white mat-

ter structure were observed across the brain as a result

of repeated anaesthesia exposures.

� These findings have important translational and

experimental implications that require determination

of their persistence and possible functional

implications.
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The adverse impact of prolonged general anaesthesia (GA) on

behavioural and brain development was initially not evident

in clinical practice until it first became apparent in animal

studies. In non-human primates (NHPs), these developmental

effects include slower response times and poorer performance

on learning tasks, even 3.5 yr after exposure, and increased

frequency of anxiety-related behaviours.1,2 Rodent models

showed that exposure to a wide range of anaesthetics led to

extensive neuronal apoptosis and persistent neurocognitive

deficits.3e7 These seemingly robust results with animal

models have been met with some scepticism with regard to

the translational implications for clinical practice because

only small decreases in cognitive outcome have been detected

in children exposed to GA.8 However, an increased risk for

more severe cognitive and behavioural conditions attributable

to GA has also been reported.8

Limited neuroimaging data on human participants suggest

that early GA does not produce long-term loss in greymatter in

regions previously identified as vulnerable in laboratory ani-

mals.9 However, GA has been associated with altered func-

tional MRI (fMRI) activation patterns during a response

inhibition task along with smaller white matter (WM) volumes

and disrupted WM microstructure.10,11 These observations on

WM volumes are in keeping with histological studies in ani-

mals, which found widespread apoptosis of both neurones

and oligodendrocytes after long exposures to ketamine, iso-

flurane, or propofol,1,3e7,12e17 with the window of oligoden-

drocyte vulnerability continuing beyond that of neuronal

susceptibility. Because oligodendrocytes play a key role in

producing the myelin sheath around axons, anaesthesia-

induced loss of oligodendrocytes could mediate some of the

adverse neurodevelopmental outcomes observed after GA. In

addition, concerns have been raised about the potential for

developmental neurotoxicity even with ketamine, a sedative

drug that is more widely used in both paediatric practice and

with premature infants in the neonatal ICU.18

Human studies typically have the limitation of being

retrospective and are difficult to control for the initial clinical

condition and subsequent effects of postoperative procedures

during recovery. Animal models allow for more-rigorous

experimental control. In particular, NHP models are invalu-

able for investigating the potential impact of anaesthesia on

neurodevelopment because of their phylogenetic closeness to
humans.19 Prior NHP studies predominantly evaluated expo-

sure times far beyond the clinically relevant duration of 4e24

h., however, the median duration of GA in children under 1 yr

is 79 min.20

More systematic research on the unintended consequences

of repeated ketamine exposures is indicated, as it is being used

more in clinical practice, including with premature infants in

neonatal intensive care. The following analysis focuses on the

cumulative effect of multiple exposures to anaesthetics

commonly used in human and veterinarymedicine (ketamine,

Telazol® [tiletamine/zolazepam; Zoetis, Parsippany, NJ, USA],

and isoflurane21e24) administered at doses relevant to neuro-

imaging research in macaques on brain structure. Given pre-

vious reports of anaesthesia-induced loss of oligodendrocytes,

we were specifically interested in assessing the effects on WM

microstructure, which was evaluated via diffusion tensor im-

aging (DTI), as a possible explanation for emotional and

cognitive deficits observed in prior studies.
Methods

Subjects

The analysis focused on two independent cohorts of rhesus

macaques originating from similar neurodevelopmental

studies, but neither had examined the effects of GA as its

primary aim. Only neuroimaging data from healthy animals

were analysed. GA exposure resulted from the need for seda-

tion and immobilisation to acquire imaging data, for sample

collection, or during routine veterinary care. The significant

range in the extent of GA exposure across subjects enabled us

to conduct a secondary analysis of the effect of GA on the

developing brain.

Neuroimaging data on 28 subjects were obtained from the

Wisconsin Neurodevelopment Rhesus Database, Harlow Pri-

mate Laboratory (HPL).25 The research protocol was approved

by the Institutional Animal Care and Use Committee at the

University of Wisconsin. Care and treatment of the animals at

HPLmet and exceeded the guidelines specified in the Guide for

the Care and Use of Laboratory Animals of the National

Research Council.

The second data set (N¼15) was acquired from a study

conducted at the Yerkes National Primate Research Center

(YNPRC).26 All study procedures were performed in accor-

dance with the Animal Welfare Act and Guide and were

approved by the Emory Institutional Animal Care and Use

Committee.

A summary of the subject characteristics is presented in

Table 1.
Anaesthesia exposure

Harlow Primate Laboratory

The subjects were administered a pre-scan dose of ketamine

hydrochloride (10 mg kg�1 i.m.) for transport to the MRI facil-

ity. For infants younger than 6 months of age, GA for scanning

was achieved with isoflurane (1.5 vol%). Monkeys older than 7

months of age were anaesthetised throughout the scan with

dexmedetomidine 0.015 mg kg�1 i.m. The effects were

reversed at the end of the scanning session by administering

atipamezole 0.15 mg kg�1 i.v. Plane of anaesthesia was moni-

tored with a pulse oximeter to track HR and oxygen saturation.

Overall exposure time was ~2 h. A few subjects received



Table 1 Descriptive statistics for the two cohorts of monkeys used in the analysis. Note that for the YNPRC cohort, subjects were
assessed only with either no or four prior MRI scan exposures. Additional exposures to anaesthesia for other reasons were included in
the analyses. HPL, Harlow Primate Laboratory; YNPRC, Yerkes National Primate Research Center.

Number of prior MRI exposures

HPL YNPRC

0 (n¼2) 1 (n¼4) 2 (n¼10) 3 (n¼6) 4 (n¼6) 0 (n¼6) 1 (n¼0) 2 (n¼0) 3 (n¼0) 4 (n¼9)

Age at scan (postnatal
days)

360e363 315e380 313e407 320e393 346e402 531e559 530e555

Weight at scan (kg) 2.06 (0.16) 2.20 (0.09) 2.22 (0.27) 2.11 (0.21) 2.45 (0.22) 2.95 (0.26) 2.99 (1.36)
Mean age at first scan
(postnatal days)

361.5 (1.5) 226.3 (30.4) 115.3 (19.5) 50.7 (17.6) 20.8 (7.1) 541.7 (9.3) 14 (4)

Sex ratio (male:female) 1:1 2:2 5:5 3:3 5:1 3:3 4:5
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additional exposures to ketamine for routine veterinary

procedures.
Yerkes National Primate Research Center

The subjects were transported with their mother from the

YNPRC Field Station to the YNPRC Imaging Center on the day

before being scanned. Initial induction of anaesthesia was

achieved using Telazol(R) (tiletamine HCl and zolazepam HCl)

injection (4.79e5.13 mg kg�1, i.m.) to allow preparation for the

scan (tracheal intubation and placement of an i.v. catheter).

Scans were acquired under isoflurane anaesthesia kept at the

lowest possible concentration (0.8e1 vol%, to effect)

throughout the neuroimaging session. This range of isoflurane

is below that used in previous papers on macaques, which

reported patterns of coherent fMRI blood-oxygen-level-

dependent signal fluctuations similar to those observed in

awake and behaving monkeys.27e30 Average isoflurane con-

centrations were recorded every 15 min during the scan ses-

sion, and HR and oxygen saturation were monitored

continuously. After the scan session and full recovery from

anaesthesia, each infant was returned to its mother, and the

pair was returned to their social group on the following day.

Outside of these scanning sessions, animals were periodically

exposed to anaesthetics (Telazol [~5 mg kg�1 body weight] or

ketamine [~10 mg kg�1 i.m.]) for routine animal care (i.e. semi-

annual physical examinations and tuberculosis screening),
Fig 1. Omnibus of DTI properties FDR corrected p-values from the GLM.

all regions of the brain and all major tracts. HPL, Harlow Primate Labo
care for unexpected injuries common in socially housed pri-

mates (i.e. digit injury), and for collection of experimental

samples at 12 and 18 months of age, as a part of the planned

developmental research study.
Normalised exposure

The analysis focused on exposure to the two major anaes-

thetics, ketamine and isoflurane, which were aggregated into

one total normalised exposure (TNE) index. Cumulative ex-

posures to other anaesthetics, such as dexmedetomidine (HPL

cohort) and Telazol (YNPRC cohort), were not considered

because they were used in only one of the research facilities

and could not be normalised across cohorts. High correlation

with TNE (0.94 for Telazol and 0.73 for dexmedetomidine)

within cohorts precludes adding these two anaesthetics as

covariates into separate models for each cohort to estimate

their effects in the corresponding sample.

Anaesthesia was normalised per session across the scan

sessions, type of anaesthetic, and the two cohorts to generate

a consistent metric. The average anaesthesia exposure per

MRI session in the HPL cohort was used as a reference, where

mean isoflurane per session was 2.0 vol% and mean ketamine

per session was 10 mg kg�1. Thus, TNE was counted as

TNE¼total ketamine�10�1þtotal isoflurane�2�1, where all

anaesthesia exposures were normalised per prior MRI-related

exposure, and then aggregated per subject into a single TNE.
In both cohorts there is widespread significant effect of TNE across

ratory; YNPRC, Yerkes National Primate Research Center.
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This TNE captured the cumulative amount of anaesthesia to

which a monkey had been exposed. Whilst being an estimate

of total exposure, it provided a good approximation of cumu-

lative anaesthetic exposure across the two cohorts

(Supplementary Table S1).

Subjects that had received at least one prior MRI-related

anaesthetic were referred to being in the ‘repeated’-exposure

group, whereas subjects without a prior MRI-related exposure

were assigned to the ‘single’-exposure group.
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To analyse the effect of multiple anaesthesia exposures on
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Fig 4. Visualization of the expected, average effect of the anaesthesia exposure in the HPL (top) and YNPRC (middle) cohort as a percent

change in local FA per MRI session related exposure. For comparison, the mean FA values at 18 months of age in the single exposure group

are shown in the bottom row. Note the different color scale used for each cohort. HPL, Harlow Primate Laboratory; YNPRC, Yerkes National

Primate Research Center.
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procedures are provided in the Supplementary material. Raw

data from theWisconsin cohort are available publicly online at

https://www.nitrc.org/projects/uncuw_macdevmri/.
Results

MRI data were analysed from the two monkey cohorts (HPL

and YNPRC) to determine the summative impact of anaes-

thesia exposure. There was a significant correlation between

TNE and the extent of impact on WM microstructure. Higher

TNE was associated with lower FA and higher AD, MD, and RD,

indicating an overall reduction in the integrity of WM tracts.

There was not a significant interaction with age or sex.

Figure 1 shows false-discovery-rate-corrected P-values for

the effect of TNE on the omnibus of DTI properties. Significant

effects were found throughout the brain with local P-values

<0.01. Additional details on the local P-values for TNE are

presented in the Supplementary material. Supplementary

Figures S3 and S4 show that when DTI properties were

tested separately, effects of anaesthesia exposure remain

highly significant across the four diffusion indices and were

evident in all of the analysed brain tracts.

Figure 2 illustrates the effects of anaesthesia exposures

used to acquire prior MRI scans. The TNE is plotted with

respect to mean FA across two tracts (splenium and lateral

portion of the left uncinate fasciculus). In both monkey co-

horts, there was a negative relationship between TNE and

mean FA for each tract, with more pronounced effects in the

YNPRC cohort that experienced repeated anaesthesia sessions

of longer duration (Supplementary Table S1). There were two

outliers in the YNPRC cohort; excluding those two subjects did

not affect the findings.

Local FA tract profiles were compared between single- and

repeated-exposure groups from the YNPRC cohort (Fig. 3).
Whilst the shape of the tract profiles is similar, the profile for

the longer-exposure group is shifted lower, in keeping with

predictions from the previously discussed effects on tract

integrity. Supplementary Figure S5 shows the same anaes-

thesia effects for AD, MD, and RD, indicating an overt decrease

in overall diffusion across these tracts.

To illustrate the effect of repeated GA exposure onWM, the

calculated effect (beta-TNE) was visualised by scaling it rela-

tive to prior anaesthesia for a single MRI session (Fig. 4). For the

HPL cohort, the anticipated decrease in FA was 2e7% per scan

session. For the YNPRC cohort, which had longer exposures,

the reduction was 10e20% per scan-related exposure. These

effects were not localised, but rather were widespread across

the brain. Figure 5 illustrates the statistical significance of the

effects of TNE as determined from post hoc testing for each

tract and each property.
Discussion

Multiple exposures to general anaesthetics commonly used in

human and veterinary medicine, with exposure durations of

~2 h typical for MRI sessions, had substantial effects on WM

integrity of the developing brain. Total normalised exposure

time was associated with magnitude of decrease in AD, MD,

and RD, and FA, indicative of widespread impacts on WM

integrity.

Alterations in DTI measures were evident inmonkeys up to

18 months of age, which is roughly equivalent to early school

age in humans. The possible persistence of these effects needs

to be examined in future research at older ages. Both the

duration and magnitude of the effects are concerning, given

that WM integrity has been related to cognitive ability, lan-

guage, and visualespatial working memory in children at

older ages.31e34 The effects observed in monkeys may help

https://www.nitrc.org/projects/uncuw_macdevmri/
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explain later neurocognitive deficits after early anaesthesia

exposures. However, because we did not directly assess

cognitive performance or social interactions, the implications

for neurobehavioral competence still need to be investigated.
The effect sizes of TNE on the DTI parameters were

noticeably different between the two cohorts. Procedural dif-

ferences between the two facilities may explain the different

effect sizes. The most parsimonious explanation is more
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frequent and longer scan exposures for the YNPRC monkeys,

whereas ketamine and other sedatives were not used as

regularly during routine veterinary procedures at the HPL,

except for neuroimaging scans during the first year of life. The

YNPRC monkeys were also exposed to Telazol (containing

tiletamine, a ketamine-like N-methyl-D-aspartate receptor

antagonist35 that might enhance TNE, whereas the dexmede-

tomidine administered to HPL monkeys may buffer against

ketamine-induced injury to neuronal stem cells.36

Although the final-scan age for the YNPRC group was 18

months and for the HPL group was 12 months, this age dif-

ference is unlikely to explain the variation in the effects of

anaesthesia exposure. The expected maturational change in

diffusion properties from 12 to 18 months of age in monkeys37

is considerably less than the observed effects of anaesthesia

exposure. Other differences, including type of scanner, DTI

acquisition protocols, age at first exposure, use of multiple

anaesthetic drugs, and husbandry, are detailed further in the

Supplementary material. Because of these procedural differ-

ences, statistical evaluations were conducted separately for

each cohort. The fact that the results were congruent in mul-

tiple analyses despite procedural differences provides addi-

tional confidence that the conclusions generalise.

The duration of GA episodes was normalised to the average

duration per imaging session as used for the HPL cohort.

Although this approach precluded quantifying the impact of

any specific anaesthetic drug, it enabled us to examine typical

GA episodes used in monkey imaging research. The study

designs and the sample sizes did not permit interrogation of

the contribution of each anaesthetic separately in the statis-

tical analysis. Instead, we focused on an integrated metric

(TNE) over multiple anaesthetic episodes from birth to last

scan.

A limitation of our study is the lack of longitudinal follow-

up to addresswhether the effects onWMdescribed here at just

one early juvenile age persist at later ages, or whether there is

sufficient neuroplasticity to overcome alterations in the

developmental trajectory of myelination. Prior research on

oligodendrocyte precursors identified reactive proliferation in

isoflurane-exposed infant monkeys that might serve as a

compensatory mechanism.12 However, the total brain volume

of monkeys at the ages they were scanned is already close to

adult size, and the rate of myelination slows down. Additional

brain maturational changes, particularly involving develop-

ment of WM, occur during the pubertal transition between 3

and 4 yr of age and through late adolescence (up to 6 yr). These

include cortical thinning and growth of WM,38 but full recov-

ery would require that the observed effects of anaesthesia

were attributable only to slowing of the pace of maturation,

rather than an irreversible effect.

We also assessed the impact of a single vs repeated expo-

sure to isoflurane, which was the primary anaesthetic used at

the YNPRC, which indicated that inhibition of WM might

already be initiated after the first session. The literature is

inconsistent about whether one exposure is sufficient to

induce a large effect.8 Two recent papers on anaesthesia

exposure in macaques focused on longer exposures for 4e5 h

during the first month of life.39,40 Only multiple bouts of GA

induced a long-lasting effect on the development of motor

reflexes and anxious emotional behaviour.39 Further research

is needed to resolve the significance of anaesthesia duration

and repeat exposures.

There exist important limitations of this study, as it was

opportunistic and based on a post-hoc analysis of previously
acquired DTI scans. Thus, it was not possible to titrate expo-

sure to anaesthesia in a dose-escalation manner in advance,

requiring the surrogate index of TNE. In addition, data were

pooled from two different cohorts of monkeys in different

facilities. However, the use of MRI data acquired with different

experimental designs did provide the opportunity to deter-

mine if the conclusions generalise. Finally, all exposures to

anaesthesia were weighted equally, even though earlier ex-

posures at younger agesmight potentially have a larger impact

than later ones. Ideally, a future prospective study either

would include a sham condition or separately administer

anaesthesia to monkeys without the additional procedures

required for MRI scanning.

Our findings from two different MRI studies of developing

monkeys provide confirmatory evidence that repeated expo-

sure to general anaesthetics used to acquire neuroimaging

data can cause a large reduction in overall WM integrity. They

also raise concerns about the potential for overuse of sedatives

in veterinary practice when it is possible to conduct certain

procedures on conscious animals, such as routine collection of

blood samples or annual physical examinations. In vivo brain

scanning under GA is an integral aspect of many NHP models

of psychiatric and neurological conditions, and thus, the ef-

fects of repetitive anaesthetic exposure may be additive and

interact with the effects of main variables. Therefore, it needs

to be included in analyses as a confounder. If the effects on

WM translate to young children and the types of anaesthesia

used in clinical practice, there are also important implications

for the use of anaesthesia during formative periods when

maturational trajectories and regulatory set points for brain

development are being established.
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