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Abstract

Background: Desflurane and sevoflurane are commonly used during inhalational anaesthesia, but few studies have

investigated their effects on deep cerebral neuronal activity. In addition, the association between subthalamic nucleus

(STN) neurophysiology and general anaesthesia induced by volatile anaesthetics are not yet identified. This study aimed

to identify differences in neurophysiological characteristics of the STN during comparable minimal alveolar concen-

tration (MAC) desflurane and sevoflurane anaesthesia for deep brain stimulation (DBS) in patients with Parkinson’s

disease.

Methods: Twelve patients with similar Parkinson’s disease severity received desflurane (n¼6) or sevoflurane (n¼6) during

DBS surgery. We obtained STN spike firing using microelectrode recording at 0.5e0.6 MAC and compared firing rate,

power spectral density, and coherence.

Results: Neuronal firing rate was lower with desflurane (47.4 [26.7] Hz) than with sevoflurane (63.9 [36.5] Hz) anaesthesia

(P<0.001). Sevoflurane entrained greater gamma oscillation power than desflurane (62.9% [0.9%] vs 57.0% [1.5%],

respectively; P¼0.002). There was greater coherence in the theta band of the desflurane group compared with the sev-

oflurane group (13% vs 6%, respectively). Anaesthetic choice did not differentially influence STNmapping accuracy or the

clinical outcome of DBS electrode implantation.

Conclusions: Desflurane and sevoflurane produced distinct neurophysiological profiles in humans that may be associ-

ated with their analgesic and hypnotic actions.

Keywords: deep brain stimulation; desflurane; microelectrode recording; Parkinson’s disease; sevoflurane; subthalamic

nucleus
Editor’s key points

� Direct comparison of intracerebral neuronal recordings

under desflurane or sevoflurane anaesthesia has not

been reported in humans.

� Microelectrode recordings under equipotent desflurane

or sevoflurane anaesthesia provide an opportunity to

elucidate how these anaesthetics modulate neuronal

firing.
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� Anaesthetic choice did not differentially influence

subthalamic nucleus mapping accuracy or clinical

outcome of deep brain stimulation electrode

implantation.

� Desflurane and sevoflurane produced distinct neuro-

physiological profiles in human subthalamic nucleus

that may be associated with their analgesic and hyp-

notic actions.
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Desflurane and sevoflurane are commonly used volatile an-

aesthetics1; their clinical potencies are measured in minimum

alveolar concentration (MAC) multiples, an indication of

anaesthetic effects on the spinal cord.2 Although it is known

that MAC changes with age,3 it is not clear whether the same

equipotent MAC for different inhalational anaesthetics results

in similar neurophysiological effects. Studies using the surgi-

cal pleth and bispectral indices to evaluate analgesia and

hypnosis indicate different required doses for desflurane and

sevoflurane.4,5 In addition, EEG in humans and rodents has

shown inconsistent effects of these volatile anaesthetics on

grouped neuronal activity. For example oscillations spanning

from theta, alpha, to high gamma bands each correlate with

loss of consciousness and analgesia.6,7 However, direct com-

parison of intracerebral neuronal recordings under desflurane

or sevoflurane anaesthesia has not been reported in

humans.8,9

Deep brain stimulation (DBS) is an effective therapy that

improves motor symptoms in Parkinson’s disease (PD). Pa-

tients are usually awake and under local anaesthesia for the

procedures to ensure accurate electrophysiological mapping

of the subthalamic nucleus (STN) using microelectrode

recording. However, patients that experience off-medication

symptoms such as painful dystonia and respiratory distress

may have difficulty with this lengthy surgical procedure, and

awake intracerebral recording may induce nervousness. For

these reasons general anaesthesia is an alternative choice,

with some studies showing similar effectiveness and safety as

local anaesthesia.10e15 Microelectrode recording under equi-

potent desflurane or sevoflurane anaesthesia provides an op-

portunity to elucidate how inhalational anaestheticsmodulate

neuronal firing and oscillation within the basal ganglia.

The roles of STN and basal ganglia in the mechanisms of

inhalational anaesthetic agents and loss of consciousness are

not yet well delineated. The effects of desflurane and sevo-

flurane on DBS and STN firing activity also have not been

directly compared. We sought to compare the clinical efficacy

of DBS using desflurane or sevoflurane anaesthesia, and to

investigate the neurophysiological properties of STN neurones

for each anaesthetic. On the basis of previous findings, we

hypothesised that desflurane and sevoflurane would entrain

STN oscillations in different power spectra.
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Methods

Patient data

This study was approved by the institutional review board of

Tzu Chi General Hospital, Hualien, Taiwan (IRB 097e32). From

May 2014 to June 2016, written informed consent was obtained

and data were collected from 12 patients (eight females and

four males; mean age, 58.4 [9.1] yr) with PD who underwent

DBS electrode implantation. Patients with a diagnosis of PD

were recruited based on our prospective follow-up from pa-

tients with a diagnosis of PD scheduled for microelectrode

recording under general anaesthesia. These patients received

desflurane (n¼6) or sevoflurane (n¼6) during microelectrode

recording at the discretion of the anaesthetist. All patients

were evaluated using the Unified Parkinson’s Disease Rating

Scale (UPDRS) under three different conditions: preoperative

on medication (Med on), preoperative off-medication (Med

off), and postoperative with DBS (DBS on). Details regarding

the evaluation procedures (including UPDRS part II and part III)

were as described.11,12
Anaesthetic procedure

Patients received desflurane or sevoflurane anaesthesia with

tracheal intubation. Propofol (1e2.5 mg kg�1) and a neuro-

muscular blocking agent (0.6e1.5 mg kg�1 rocuronium or

0.15e0.2 mg kg�1 cisatracurium) were administered to induce

anaesthesia. After the patient lost consciousness, the anaes-

thesiologist stopped the propofol infusion and started des-

flurane or sevoflurane to maintain unconsciousness. The MAC

was maintained at 1.0e1.2 before neurophysiological re-

cordings to avoid inadvertent patient movement or aware-

ness. Anaesthetic concentration was steadily decreased every

30 min and was kept stable at 0.5e0.6 with age-adjusted MAC

during microelectrode recording (Fig. 1). End-tidal anaesthetic

concentration was 0.7e0.8 when MAC was maintained at

0.5e0.6. After successful STN mapping, MAC was resumed at

1.0e1.2, and the electrodes were implanted. Intravenous an-

aesthetics and analgesics that dampen STN firing were avoi-

ded during surgery. We continuously monitored HR and

averaged HR every 20min at different steady-state MAC levels.
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Patients with a diagnosis of PD did not receive opioids or beta

blockers preoperatively.
Microelectrode recording

Microelectrode recording procedures have been described.11

Starting coordinates for recording were 10 mm above the

planned STN coordinates. The microelectrode was advanced

in 200e500-mm steps and was paused at sites with robust

neuronal firing. The final trajectory for electrode implantation

was selected based on the length of the STN recording and the

presence of kinematic responses.16
Spike activity analysis and power spectrum density
estimation

Spike trains were quantified as amplitude >3.5 standard de-

viations every 1 s of recording. The firing rate was evaluated

over the entire session using 1-s bins. In order to calculate

effects of desflurane and sevoflurane, we analysed percentage

change of firing rates (e.g. firing in dorsal STN in sevoflurane e

firing in dorsal STN in desflurane/firing in dorsal STN in des-

flurane %). To analyse neuronal oscillations, we utilised point

processes to describe spike trains. Point processes were

encoded by the time the spike event occurred and the spectral

analysis could be directly performed.17 The oscillation char-

acteristics were evaluated using the power spectrum density

(PSD) of the spike train with Thomson’s multi-taper

method.18,19 Parameters included the time half bandwidth

product with 3, a length equal to the number of samples in 3 s,

and 50% overlap between windows that produced 1/3 Hz

spectral resolution. Each PSD was normalised by integrating

the 3e100 Hz band (excluding the 48e52 Hz band) to obtain

relative power within the band. We then determined the

normalised spectral power from theta (3e8 Hz), alpha (8e13

Hz), beta (13e30 Hz), and gamma (30e100 Hz) band ranges in

each trace. To analyse the topographical distribution of STN

spike properties, the STN was divided into dorsal (0e50%) and

ventral (50e100%) components.
Background activity

We took the raw trace segments from 0.5 ms before to 2.5 ms

after each spike timestamp and replaced them with a random

spike-free 3 ms consecutive signal from a random location

within the same recorded trace.19,20 The reconstructed novel

trace was defined as background activity, which was extracted

using a full-wave rectification method that removed the DC
Table 1 Subject characteristics of Parkinson’s disease patients unde
anaesthesia. Data are expressed as frequencies for categorical varia
duration, and mean (standard deviation) for height, weight, and BM

Desflurane g

Age at onset (yr) 49 (40e56)
Age at surgery (yr) 58 (46e68)
Sex (male/female) 3/3
Height (cm) 163 (156e167
Weight (kg) 60.7 (48e75.6
BMI (kg m�2) 22.9 (19.3e31
Disease duration (yr) 10 (8e15)
ASA physical status (1/2/3) 0/5/1
component and rapid oscillations. Low frequency oscillations

in the rectification data of the frequency domain could be

clearly observed.21,22
Coherence between spike and background activity

The degree of frequency relationships between spike trains

and background activity was evaluated using coherence

analysis.19 20 Coherence is a function of the PSD of x and y (Pxx
and Pyy, respectively) and the cross PSD of x and y (Pxy)

23,24:

Cxyðf Þ¼ jPxyðf Þj2
Pxxðf ÞPyyðf Þ

The coherence function used the Welch method with a

Hanning window (2 s sample numbers) and 50% overlap be-

tween windows that produced a 0.5 Hz spectral resolution.

The significant coherence level in analyses was calculated as

limit ¼ 1�((1�a))1/(N�1)

We separately analysed the four frequency bands. There-

fore, Bonferroni test significance was adjusted to

limit ¼ 1�((1�a)/n)1/(N�1)

where a¼0.99, n denotes the number of independent fre-
quencies under investigation and N is the number of 2 s
consecutivewindows used for the coherence calculation.25

This allows for a confidence value of P<0.025 when
rejecting the null hypothesis of non-significant coherence.
We compared the average of the ratio of significant
coherence, which was computed at every recording depth
for the desflurane or sevoflurane group.
Statistical analysis

No formal statistical power calculation was conducted to

guide sample size. Statistical analyses were performed using

SPSS software 21 (IBM Corp., Armonk, NY, USA) and MATLAB

2018 (The Mathworks, Inc., Natick, MA, USA). The

KolmogoroveSmirnov test was used to test the normality

distribution of continuous variables. If the data were normally

distributed, Student’s t-test was used to compare the two an-

aesthetics. Wilcoxon rank-sum test was performed for vari-

ables without a normal distribution. Significance was set as

P<0.05 (two-tailed) and corrected based on number of com-

parisons. We used false discovery rate (FDR) to correct
rgoing deep brain stimulation under desflurane or sevoflurane
bles, mean (range) for age at onset, age at surgery, and disease
I.

roup (n¼6) Sevoflurane group (n¼6)

49.5 (36e64)
59 (44e69)
1/5

) 162 (159e167)
) 61 (50e83)
.0) 23.0 (19.2e31.2)

9 (5e15)
1/4/1
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significance for multiple comparisons in PSD over different

frequency band oscillations to prevent compounding of the

type I error. We also used Bonferroni post hoc testing to correct

significance for coherence under multiple comparisons

because it was suitable for independent and small size data.

Spearman correlations were used to estimate the strength of

association between STN neuronal activity parameters (spec-

tral density of the four band powers) and clinical scores

collected using UPDRS (rigidity, bradykinesia, axial symptoms,

and tremor) during Med off. P<0.05 was used to indicate a

significant correlation. Data are presented as mean (standard

deviation).
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Results

Patient characteristics are shown in Table 1, with no signifi-

cant differences between the two groups. Intraoperative re-

cordings from 45 microelectrode recording units under

desflurane anaesthesia and 57 units under sevoflurane

anaesthesia were analysed for spontaneous STN unit activity.

Both groups showed similar motor disabilities before bilateral

STN-DBS, which were all significantly improved by DBS

treatment (Table 2). STN-DBS effectiveness did not differ be-

tween groups. Both anaesthetics produced similar decreases

in HR from the conscious baseline to at 1.0e1.2 MAC

(Supplementary Fig. S1). However, HR in the sevoflurane group

was significantly higher than HR in the desflurane group at

0.5e0.6 MAC.
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Spike firing rate, power spectral density, and
coherence

We evaluated neuronal spike firing rate characteristics

(Table 3). The mean firing rates were 47.4 (26.7) Hz and 63.9

(36.5) Hz (P<0.001) for desflurane and sevoflurane, respec-

tively. Regional STN analyses showed higher firing rates in the

ventral STN than the dorsal STN for the desflurane group

(P<0.001), but no differences for the sevoflurane group

(P¼0.209). The dorsal and ventral STN firing rates under sev-

oflurane anaesthesia were 62.8% and 11.30% greater than

those under desflurane anaesthesia (P<0.001 and P¼0.013,

respectively).

We examined the oscillatory features of themicroelectrode

recording signals using PSD, which was divided into theta,

alpha, beta, and gamma band oscillations. No significant dif-

ference was observed at the theta, alpha, and beta bands

(Fig. 2). However, the gamma band power was higher for sev-

oflurane than for desflurane (P¼0.002). There was small

insignificant increase in theta band power for desflurane

anaesthesia (8.2% [0.5%]) compared with sevoflurane anaes-

thesia (7.0% [0.3%]) (P¼0.051). We further analysed PSD within

the dorsal and ventral STN. Only the gamma frequency oscil-

lation in dorsal STN was higher in the sevoflurane group

(P¼0.004). Beta frequency oscillation did not differ between

groups.

Coherence measures the correlation between spiking

neuronal activity and background oscillations within a fre-

quency domain. We compared the proportion of coherence

that were above the significance level (95% interval) between

desflurane and sevoflurane in each power band. There was a

higher proportion of significant coherence within the theta

frequency for desflurane anaesthesia (13.3% in desflurane vs

6.1% in sevoflurane group). In contrast, there was greater

coherence within the alpha, beta, and gamma frequencies



Table 3 Comparison of firing rate in dorsal and ventral subthalamic nucleus regions between desflurane and sevoflurane groups. Data
are expressed as mean (95% confidence interval).

Desflurane group (n¼6) Sevoflurane group (n¼6) P-value Different percentagea (%)

Dorsal 40.4 (37.9e42.7) 65.8 (60.8e70.8) <0.001 62.8
Ventral 53.8 (49.9e57.7) 61.0 (57.4e64.6) 0.013 11.3
P-value <0.001 0.209

a ([MeanSevoflurane Group e MeanDesflurane Group]/MeanDesflurane Group) � 100%.
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under sevoflurane anaesthesia (desflurane vs sevoflurane;

alpha, 12.6% vs 18.2%; beta, 7.4% vs 15.7%; gamma, 8.3% vs

12.9%) (Fig. 3).

Spearman correlations between individual power bands

and motor disabilities indicated a strong negative correlation

between axial scores and theta frequency oscillation under

sevoflurane anaesthesia (r¼�0.97, P¼0.033). No correlations

were found between individual band power and tremor, ri-

gidity, or bradykinesia severity for either anaesthetic.
Discussion

Desflurane and sevoflurane, both halogenated ethers, share

similar chemical structures, and would presumably produce

comparable effects on neuronal activity. However, 0.5e0.6

MAC reduced STN neurone firing rates under desflurane

compared with sevoflurane anaesthesia. Under sevoflurane

anaesthesia, gamma frequency oscillations predominated. In

contrast, similar PSD and coherence analyses indicate that

desflurane anaesthesia entrained the lower gamma power

band and higher theta power band. These neurophysiological

phenomena support previous research4,5 indicating that des-

flurane produces stronger effective analgesia than sevoflurane

anaesthesia. In addition, patients receiving desflurane had

significantly lower HRs compared with those receiving sevo-

flurane at 0.5 MAC. This suggests that these two anaesthetics

have different neuro-autonomic effects. Although the precise

underlying mechanisms of inhalational anaesthesia are not

yet fully understood, it is essential to establish the neuronal

networks that underlie anaesthetic hypnosis, analgesia, and

immobility.26

We analysed PSD to evaluate the effects of desflurane and

sevoflurane on oscillation frequency bands within the STN.

Desflurane produced stronger power and coherence over the

theta frequency oscillation. Increased theta band oscillations

have been reported during deep sleep or deep desflurane

anaesthesia,27,28 and surgical pleth and bispectral indices

suggest that desflurane produces analgesia and hypnosis

more effectively than sevoflurane.4,5 Therefore, the increased

theta band oscillation and greater proportion of coherence

within the theta band under desflurane anaesthesia might

indicate the theta band oscillation as a neurophysiological

biomarker of analgesia and hypnosis. In contrast, sevoflurane

produced a higher power gamma band oscillation in the dorsal

STN and a greater proportion of coherence over the gamma

band. Recordings from STN have been shown to correlate with

painful stimuli in patients with a diagnosis of PD.29 These

physiological observations using microelectrode recording are

similar to findings showing that pain intensity was encoded by

gamma oscillations in EEG over the prefrontal cortex.30

Neuronal oscillations in STN correlate with cortical activity

from EEG in patients with a diagnosis of PD.31 These data
suggest that the association of sevoflurane with reduced

analgesia and gamma oscillations might be used as a surro-

gate marker for pain perception during volatile anaesthesia.

Taken together, we propose that at 0.5e0.6 MAC desflurane

anaesthesia produces more analgesia and hypnosis than

sevoflurane.

We did not observe a difference in beta band oscillation

between the two anaesthetics. The pathologically enhanced

beta band oscillation activity across the cortico-basal ganglia

pathway is a neurophysiological characteristic associated

with PD, and beta band oscillation has been suggested for

locating the sensorimotor STN.32e34 This lack of difference in

beta band oscillations between groups indicates that anaes-

thetic choice would not reduce STN identification accuracy

and proper electrode implantation.

DBS produced similar improvements in motor capabilities

for each anaesthetic. Correlations assessing the association

between neurophysiological and clinical parameters have only

identified correlation between axial symptoms and beta band

oscillations under sevoflurane anaesthesia. Correlations be-

tween neurological and neurophysiological PD characteristics

have been shown.35e37 Given the implication that volatile

anaesthetics modulate inherent STN neuronal firing and os-

cillations, we did not uncover a significant relationship be-

tween band power and motor disabilities.38

Although we found that desflurane and sevoflurane pro-

gressively decreased HR to similar levels at 1.0e1.2 MAC,

desflurane resulted in a larger HR reduction at the 0.5e0.6 MAC

level. Previous studies have shown that desflurane produces

more neurocirculatory responses, whereas sevoflurane ex-

hibits more stable haemodynamics, and the change of HR

remained steady between MAC 1.0e1.2 and 0.5e0.6.39,40 In

addition, desflurane increased basal HR when we increased

MAC to higher steady state (1.0e1.2 MAC). HR has been used as

a surrogate for analgesia quantification using surgical stress

index or analgesia nociception index.41,42 Previous work also

explored the interaction between HR and brain oscillations.43

Whether the differential effect on HR and autonomic ner-

vous system is directly from the volatile anaesthetic or via the

change of brain oscillation warrants further research to iden-

tify the relationship. This suggests that either oscillatory po-

wer from brain recordings or a HR-based index provides better

analgesia monitoring.

This study had several limitations. First, patients were not

randomised to the desflurane and sevoflurane groups. Despite

this, the groupswerewellmatched indisease severity, including

motor disability and psychiatric features, which should mini-

mise confounding effects in the correlations between pheno-

typic differences and neurophysiological features. Second, the

study did not include a quantitative analysis of neuronal char-

acteristics under MAC levels of anaesthesia within the same

patients. The surgical and recording procedures and
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concentration and dose of the anaesthetics remained the same

for each patient during microelectrode recording to reduce

confounders. This suggests that the findings are secondary to

differences between desflurane and sevoflurane. Third, the

relatively small study size limits our ability to detect small

neurophysiological differences between anaesthetics.

In conclusion, anaesthesia with desflurane or sevoflurane

is feasible for STN mapping and implanting DBS electrodes to

ensure optimal clinical outcomes. However, desflurane and
sevoflurane differentially influenced STN firing activity and

entrained different brain oscillation bands that may

contribute to their hypnotic and analgesic actions. The HR

findings further suggest that these anaesthetics do not share

similar physiological effects, even at equivalent MAC. Future

studies using intraoperative microelectrode recording pa-

rameters under inhalational anaesthesia should be cautiously

used to design stimulation strategies or predict STN-DBS

benefits.
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