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Abstract

Background: Bayesian methods, with the predictive probability (PredP), allow multiple interim analyses with interim

posterior probability (PostP) computation, without the need to correct for multiple looks at the data. The objective of this

paper was to illustrate the use of PredP by simulating a sequential analysis of a clinical trial.

Methods:We used data from the Laryngobloc trial that planned to include 480 patients to demonstrate the equivalence of

success between a laryngoscopy performed with the Laryngobloc® device and a control device. A crossover Bayesian

design was used. The success rates of the two laryngoscopy devices were compared. Interim analyses, computed from

random numbers of subjects, were simulated.

Results: The PostP of equivalence rapidly reached the predefined bound of 0.95. The PredP computed with an equivalence

margin of 10% reached the efficacy bound between 352 and 409 of the 480 included patients. If a frequentist analysis had

been made on the basis of 217 out of 480 subjects, the study would have been prematurely stopped for equivalence. The

PredP indicated that this result was nonetheless unstable and that the equivalence was, thus far, not guaranteed.

Conclusions: Based on these interim analyses, we can conclude with a sufficiently high probability that the equivalence

would have been met on the primary outcome before the predetermined end of this particular trial. If a Bayesian

approach using PredP had been used, it would have allowed an early termination of the trial by reducing the calculated

sample size by 15e20%.
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Editor’s key points

� Bayesian statistical methods equate more closely to

how clinicians think and make decisions.

� Unlike frequentist statistics, Bayesian inference up-

dates the probability of an occurrence as more infor-

mation becomes available.
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� Prior beliefs or knowledge is overtly included in a

summation that is updated by new data to create

‘posterior’ beliefs or knowledge, reducing

uncertainty.

� Bayesian predictive probabilities can schematically

describe the "stability" of the data in an interim anal-

ysis by considering all possible future data, and thus

provide support to authors in prematurely stopping a

trial.
rved.
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Table 1 Description of the possible distribution of study re-
sults. CL, Cormack and Lehane grade; LB device, Laryngobloc®
device; P, probability; R device, control device; X, n, number of
patients.

Device LB Total

Success (1) CL 1
e2

Failure (0) CL 3
e4

R Success
(1)
CL 1e2

X11 (P11) X10 (P10) X1. (P1.)

Failure (0)
CL 3e4

X01 (P01) X00 (P00) neX0. (P0.)

Total X.1 (P.1) neX.0 (P.0) N
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Statistical analyses for clinical studies are usually conducted

using the frequentist or classical methods. Frequentist stra-

tegies of monitoring are based on interim P-values, which

cause alpha risk inflation, and the interim analyses strategy

must be planned very carefully before beginning the study.

Moreover, P-value boundaries need complex calculations and

they must be defined beforehand for each interim analysis,

moving us further from any clinical significance.1 Indeed, a

frequentist interim design cannot be modified in the light of

the evidence accumulated during the trial, and the interim

analyses must be done at the time planned. The use of sto-

chastic curtailment,methods allowing a rigorous intermediate

analysis, can be set only at great computational cost and with

heavy consequences on ability to interpret the results that rely

on the null hypothesis test and its limitations.2,3 Any addi-

tional unplanned analysis is ‘forbidden’. This prevents the

trial investigators to take into account any unexpected but

relevant information that occurs during the course of the trial,

such as high efficacy or an important level of adverse effects.4

Indeed, an unanticipated high toxicity rate that modifies the

course of the trial cannot be properly managed in the analysis,

whilst a Bayesian inference on such modified trials is valid.4,5

Bayesian methods are very flexible tools, allowing a much

simpler implementation of sequential analysis.

The use of the principle of Bayesian methods requires to

have some knowledge about the interest parameter (e.g. a

mean difference).6,7 This knowledge is more or less precise,

but is expressed in the form of a probability distribution,

which indicates the probability that the parameter will take on

a certain value. This distribution is called the a priori distri-

bution or simply ‘the prior’. Pathophysiological knowledge of

the phenomenon or previous studies often provides a good

estimate of this prior distribution. This probability distribution

thenmakes it possible to calculate the probability of observing

the data obtained during a clinical trial. This is a calculation

close to, but different from, that of the P-value, which is

traditionally used. The knowledge provided by the data is then

combined with the prior knowledge on the parameter to

obtain a so-called a posteriori or posterior probability distribu-

tion, which contains everything we know about the parameter

of interest (mean difference or any other parameter) after the

study is carried out. This probabilistic knowledge about the

parameter is therefore increased simply by a manipulation on

probabilities.

Amongst the different Bayesian tools used to monitor a

sequential trial, the predictive probability (PredP) and the

posterior probability (PostP) are of particular interest. They

nevertheless answer different questions. For instance, in an

interim analysis of an equivalence design, the PostP of

equivalence is the probability that the two devices are equiv-

alent, based on the data available at the time of this interim

analysis. In contrast, PredP is the probability that the two de-

vices are considered equivalent on the future, not yet

observed, final observations, as computed in the sample size,

conditional on the observed data at the time of the interim

analysis. In other words, PredP is the probability of observing a

specific future outcome (not necessarily limited to the current

conclusion) based on the current knowledge (as summarised

in the current posterior probability distribution). Interim

analysis then opens the way to early trial stopping for futility

or efficacy. Futility means there is little chance that the study

reaches a predefined effect size with a high probability, and

one can consider to stop the study. Efficacy means that the
study is highly likely to reach a predefined effect size with a

high probability, suggesting the inclusions could be stopped.

As for any Bayesian procedure, PostP and PredP can be

computed at any time in the course of the trial, even if the

times have not been pre-specified in the protocol. Thus, the

Bayesian method allows performance of multiple interim an-

alyses with recurrent interim PostP computation, without the

need to correct for multiple looks at the data.8 Given the

multiple advantages, the US Food and Drug Administration

has issued a guidance for using Bayesian methods in medical

device clinical trials.9 Despite this guidance, Bayesian

methods are still rarely used in current medical research for

Phase III trials, probably because of the lack of physician

knowledge and training.10 However, its use is increasingly

common for early-phase trials in drug development, particu-

larly in oncology.

The aim of this study was to illustrate the use of PredP

during a clinical trial comparing the equivalence of two la-

ryngoscopes. Our hypothesis was that the Bayesian method

would provide better guidance to the timing of study

termination.
Methods

To illustrate our comments, we used the Laryngobloc study

that is currently being submitted for publication (clinical trial

registration ID NCT01632085). The main objective of this RCT

was to demonstrate the equivalence of success between a

laryngoscopy performed with the Laryngobloc® device (LB;

VBM Paris, France) and a control device. As the order of use of

the laryngoscopic devices may influence the evaluation of the

primary outcome because of uncontrollable procedure-

specific criteria (i.e. the assumption that the second laryn-

goscopy may be easier than the first), a two-period two-

sequence crossover design was used. The success rates of the

two laryngoscopy devices were compared. A mixed model

showed that therewas neither period nor order effect.We thus

combined the results of the two periods in a single table

(Table 1).

Two groups were randomised as follows:

(i) R group: a first laryngoscopy was performed with the

control device (i.e. the single-use Macintosh metal blade

(SG Manufacturers, Sialkot, Pakistan) and the reusable

handle). The second laryngoscopy was performed with the

LB, a single-use laryngoscope of the same Macintosh blade

design. This device was named after its single block
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structure with the blade and the handle consisting of

plastic and forming one and the same part, with no hinge,

avoiding folding the blade over the handle.

(ii) LB group: a first laryngoscopy was performed with the LB

and the second onewas performedwith the control device.

A Cormack and Lehane classification Grade 1 or 2 was

considered as a success and a Grade 3 or 4 was considered

as a failure.
Statistical analysis

The hypothesis of the trial was that the laryngoscopy with the

LB and the control device were equivalent in terms of glottic

visualisation success rates with a PostP of equivalence above a

threshold of 0.95. This very high threshold was chosen

because of the need to have a high level of confidence in the

conclusion for this procedure, which is extremely common in

daily clinical practice, in a study with low risk for the patient.

In this paper, for illustrative purpose, we arbitrarily chose a

range of equivalence of plus orminus 10% on the proportion of

laryngoscopy success (Grade 1 or 2). Statistically speaking, this

equivalence is expressed as a proportion of discordant

outcome that must be less than 10% in absolute value. In

Table 1, which displays the parameters for the paired binary

outcomes, equivalence occurs when D¼P10þP01<10%
11 (Fig. 1).

The estimation of the Cormack and Lehane score on the first

and second attempts (two successive visualisations, one with

each device, on the same subject) was performed.

A sample size determination was computed using a clas-

sical method, which does not hamper the use of Bayesian

method at the time of analysis.12 A sample size of 457 patients

was required and was increased to 480 to compensate for

potential missing data.
Principles and realisation of the statistical analysis for
the PredP-based interim analysis

We performed a Bayesian analysis for paired categorical data.

In our example, there were four possible results over the two

laryngoscopies, as described in the contingency table (Table 1).
–15 15–10 10 20–5 50
Proportions of discordant pairs

Fig 1. Description of the posterior probability (PostP) of equiva-

lence to illustrate the concepts of the ‘PostP equivalence

threshold’ (0.95) and the ‘equivalence range’ (D¼P10þP01 <10%).

The curve centred on 0 fall within the 10% range almost

completely (95% of the curve) (non-equivalence rejected), whilst

the other would have only 80% of the area under the curve

within the 10% range (non-equivalence not rejected).
In a Bayesian analysis, parameters must be described with

probability distributions (Gaussian distribution for normal

data, for instance). The Dirichlet distribution is one of the

distributions used in the Bayesian analysis of contingency

tables to estimate the parameters (i.e. the probability of being

in a given table cell). This distribution has several parameters,

which, in the case of a contingency table, are the frequencies

in each cell of the table. For a table with frequencies x11, x10,

x01, and x00, the distribution is thus a Dirichlet Di(x11; x10; x01;

x00). Moreover, this distribution can be used as prior and as

posterior distributions, thanks to the properties mentioned

previously that the table frequencies are to be interpreted as

the distribution parameters. The prior distribution was upda-

ted by the interim data to generate an interim PostP distribu-

tion. In the case of a contingency table, the posterior

distribution is very easily derived by adding the observed fre-

quencies to the prior frequencies. In other words, the posterior

distribution for the parameters is easily calculated as the

Dirichlet distribution with the hyperparameters equal to the

prior ‘count’ plus the observed count.

The prior parameter distribution was expressed as a table

containing a ‘number’ of subjects of 0.5 in each cell (Dirichlet

distribution Di[0.5, 0.5, 0.5, 0.5]). This is equivalent to infor-

mation from 2(¼0.5þ0.5þ0.5þ0.5) patients. This is a way to

give a very small weight to the prior so as not to influence

heavily the posterior distribution.

A sensitivity analyses was performed here by varying the

prior distribution Di(x11; x10; x01; x00) using either Di(1, 1, 1, 1),

as a minimally informative prior, or Di(10, 1, 1, 10), favouring

slightly the equivalence assumption. The ‘10’ indicates that

we are confident, before the study, that the equivalence is at

least as high as the equivalence we would get, if out of 22

subjects, 20 are classified the same way with both devices (10

successes on both devices and 10 failures on both devices

also). If the results are roughly the same whatever the prior

distribution (i.e. prior knowledge on equivalence), then it can

be concluded that the data are sufficient to give stable results,

whatever the prior. Thus, different experts, expressing

different opinions through different prior distributions, would

logically agree on the results.

The interim posterior distribution was then used to

compute the PredP over the future unobserved data, in the

following way (described in Fig. 2 and Appendix 1)8:

(i) All possible future data combinations are listed (all pairs

of outcomes for each of the future patients). For example,

if k¼153 patients have already been recruited and

assessed, then m¼480ek¼327 future patients are

contemplated, and there are several million possible

outcome tables for these 327 additional patients. Given

the data at the first interim analysis (for k¼153 patients, in

Table 2), we would expect the outcome for the next 327

patients to be close to (278, 23, 0, 26) rather than, say, (0, 26,

278, 23) or (100, 85, 85,107), which suggests to take account

of the probability of each specific table.

(ii) The probability PT of each of these new tables, conditional

on the prior and the data currently observed, is computed.

Although straightforward, the details of the computation

are out of scope of this paper. The sum of the probabilities

(PT) of all these new tables is naturally equal to 1.

(iii) For each of the possible new tables, the posterior proba-

bility of equivalence PE based on this possible new table

can be calculated, usually by simulation. In our example,
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All possible future data
combinations are listed
(all possible pairs of
outcome for each future
patient).

This generates several
million potentials
‘future observed’ tables

The PredP of equivalence
is the cumulated sum of
PT on each potential future
table for which PE is
larger than a pre-
specified threshold (0.95)

The probability PE is
computed for each
potential future table.

The probability PT of
occurrence of each of
these tables, conditional
on the current data
observed, is computed.

PE>0.95PEPT

00.93210.1254

10.96810.1365

10.99680.0342

00.04710.0065

0...

1...PredP of
equivalence

Fig 2. Diagram describing the computation of predictive probabilities. In the ‘future observed’ tables, S is success and F is failure. PE,

posterior probability of equivalence for each table; PredP, predictive probability; PT, probability of occurrence of each of these tables.
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PE is the posterior probability that the true value of P10þP01
is less than 10% for this conjectured new table.

(iv) The decision rule is to claim equivalence if, for any new

table, PE is greater than 0.95. All possible tables with PE
>0.95 are kept and those with PE <0.95 are discarded. The

sum of probabilities PT of tables for which PE >0.95 is the

predicted probability of concluding equivalence at the end

of the study.

The PredP of equivalence is the probability of concluding

equivalence at the end of the study, considering all possible

future data. It may allow early termination of the trial because

of futility or efficacy. A stopping rule is defined before the start

of the study. It is predefined by a lower limit (for futility) and an

upper limit (for efficacy). If the PredP of equivalence is above or

below these thresholds, the study may be stopped. If this

probability falls between these two thresholds, the inclusions

must continue until the next equivalence PredP calculation is

performed with which this interpretation rule will be

reused.13,14 In our study, the lower and upper bounds were set

at 0.10 for futility and 0.99 for efficacy. Those thresholds were
motivated by the low risk of the study for the patients, a quick

patient enrolment, and the need for high level of certainty for

this very common medical procedure. PostP and PredP were

computed using the ‘two patients’Di(0.5, 0.5, 0.5, 0.5) prior and

by increasing the number of subjects included (the number of

patients was retrospectively and arbitrarily chosen) until

PredP exceeded the efficacy or the futility bound.

An interim analysis could have occurred, for instance, after

153, or after 217, or after 352, or after 409 patients had been

assessed or any other number of patients, allowing equiva-

lence or futility to be declared, or inclusion to be continued

until the next interim analysis or full sample size is reached.
Results

This distribution of success and failure in the R and LB groups

(with 153 patients) is presented in Table 2. The predefined

threshold of PostP (0.95) was reached during the first interim

analysis with 153 patients (a¼131, b¼11, c¼0, and d¼11). But,

the PredP based on the same data, predicting the results on the



Table 2 Description of result distribution at the time of pre-
dictive probability computation (n¼153). CL, Cormack and
Lehane grade; LB, Laryngobloc; R, control.

Laryngoscopy LB group

Success CL 1e2 Failure CL 3e4

R group Success CL 1e2 131 11
Failure CL 3e4 0 11
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complete sample of 480 subjects, was only 0.675 (Table 3).

Computations, with the prior Di(0.5, 0.5, 0.5, 0.5) of PostP and of

PredP for the set of arbitrarily chosen numbers of subjects

included computed, are described in Table 3. The predefined

bound of efficacy of PredP (0.99) was reached with 409 patients.

Considering the sensitivity analysis, whatever selected

prior, we could not conclude with a sufficiently high proba-

bility that the upper efficacy bound of 0.99 for the PredP would

be met on the primary outcome by the end of the study with

only 153 or 217 patients. The results of the sensibility analysis

done by modifying the prior distribution parameters are

described in Table 3. The PredP increased with the rise of the

sample size, and it increased more rapidly with the optimistic

prior (Di[10, 1, 1, 10]). The study could be stopped before 352

subjects when using this optimistic prior, whilst a larger

sample size would be required before stopping accrual if one

uses a neutral prior (Di[1, 1, 1, 1]).
Discussion

According to the interim analyses described, we concluded

that the study could be stopped somewhere between 352 and

409 patients. Indeed, as the PredP exceeded our efficacy bound

in this range of sample size, the PostP predicted to be above the

predefined bound of equivalence by the end of the study. It

would thus be useless to continue the accrual, and stopping

the study should be considered.

If the PostP of equivalence of 0.95 had been considered

alone or if a frequentist analysis had beenmade on the basis of

217 out of 480 subjects, the study would have been prema-

turely stopped for equivalence. The PredP indicated that this

result was nonetheless unstable and that the equivalence was,

thus far, not guaranteed on the target sample size. The

observed equivalence may be attributable to a random varia-

tion that had only a small probability of being confirmed on

the final sample.

The sensitivity analysis showed that the PredP increased

with increasing sample size, and it increased more rapidly

with the optimistic prior (Di[10, 1, 1, 10]) favouring the
Table 3 Description of interim analyses, which could have occurred
terior probability of equivalence (PostP) and the predictive probabi
various prior. Di, Dirichlet distribution.

Number of
subjects included

Patient
distribution

PostP from
a Di(0.5, 0.5, 0.5, 0.5)

153 131, 11, 0, 11 0.999
217 189, 15, 0, 13 0.999
352 311, 23, 1, 17 0.999
409 365, 26, 1, 17 0.999
hypothesis of equivalence. It thus showed that an informative

optimistic prior might have further reduced the effective

sample size than using the original prior. In case of prior in-

formation, the gain in sample size can be substantial.

PredP is effective and a flexible solution for interim analysis

of clinical trials. Our example illustrated this use of the PredP

for clinical trial monitoring. PredP provides a way to monitor

the probability that a trial will be conclusive (or not).

PredP has several advantages for interim analyses of clin-

ical trials. One of the most appealing aspects of PredP is that it

allows for early stopping of a trial that shows either a very

efficient or a very inefficient device or drug. This does not

mean that any trial using PredP will systematically have a

lower sample size than the same trial run without PredP, but it

may potentially allow for this possibility. In contrast, if PredP

suggests that more patients need to be enrolled, then it may be

far easier to enrol in a current study than to add enrolment

after the maximum enrolment has completed and after the

data are analysed. This feature is particularly attractive,

considering the economic aspect of a trial management and

the growing pressure to finish studies as quickly as possible, in

competition with other centres. Finally, the ethical issue may

be the most important one in trials involving new drugs or

devices in a population of sick patients.

The use of PredP can be summarised as follows: if the PostP

of the outcome is high and the PredP is also high, then the data

can be considered as ‘stable’, the trial is conclusive and posi-

tive, and there is no need to continue the trial. If, in contrast,

the PostP of the outcome is high but the PredP is not large

enough, this means that the current evidences are poor, the

data are ‘unstable’, and the trial must be continued to the next

PredP computation. Our work demonstrates the particular

interest of the use of the PredP, where the PostP of equivalence

between the LB and R groups is rapidly high (0.999), suggesting

clearly a trend, with a PredP that reached the efficacy bound in

the range of 352 and 409 included patients. To make a long

story short, the PredP can be seen as an index of the long-run

stability of the PostP.
Conclusions

Using the PredP in the course of the trial may play the role of

an internal reproducibility check and can be used as a tool in

the current debate on the reproducibility crisis.15,16 The

interim PredP value must be interpreted for what it is: a pre-

diction of the future, and the better the prediction, the better

the trial. If the PredP is high and if the final PostP, computed on

the complete sample, is high, then the results can be consid-

ered, loosely, as reproducible. It is not as strong an argument

as an independent confirmative trial, but it is nevertheless a

positive argument. PredP can be used with any type of data,
if accrual was allowed to continue to the target value. The pos-
lity (PredP) of declaring equivalence are specified according to

PredP from
a Di(0.5, 0.5, 0.5, 0.5)

PredP from
a Di(1, 1, 1, 1)

PredP from
a Di(10, 1, 1, 10)

0.675 0.676 0.830
0.776 0.777 0.893
0.974 0.974 0.992
0.996 0.995 0.999



Monitoring of trials by predictive probabilities - 555
even though it is easier to apply on qualitative data than on

continuous or survival data. Whatever the context (superior-

ity, non-inferiority, or equivalence, for independent or paired

data), a Bayesian approach using PredP can be a useful

approach to monitoring of a clinical trial.
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