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Abstract

Background: The neuropeptide orexin promotes arousal from general anaesthesia, however the neuronal circuits that

mediate this effect have not been defined. We investigated whether orexinergic neurones modulate the basal forebrain

(BF) and locus coeruleus (LC) in emergence from anaesthesia.

Methods: Hcrtcre rats were generated using a CRISPR/Cas9-based approach. Viruses encoding optogenetic probes were

injected into the perifornical lateral hypothalamic (PeFLH) area, optogenetic fibres were embedded in the PeFLH, BF, or

LC, and changes in anaesthesia state under 1.4 vol% or 0.8 vol% isoflurane were determined.

Results: In the PeFLH, 98.8% (0.4%) of orexin-A-positive cells expressed tdTomato, and 91.9% (2.2%) of tdTomato cells

were orexin-A-positive. Under 1.4 vol% isoflurane anaesthesia, compared with control groups, burst suppression ratio

was less, and emergence time was shorter in groups with optogenetic activation of orexinergic cell bodies in the PeFLH

(923 [162] vs 493 [68] s, P¼0.0003) or orexinergic terminals in the BF (937 (122) vs 674 (108) s, P¼0.0049) or LC (913 [128] vs 742

[76] s, P¼0.022). Optical stimulation of orexinergic terminals in the BF and LC also improved the movement scores of rats

under 0.8 vol% isoflurane anaesthesia.

Conclusions: Activation of orexinergic terminals in the FB or LC mediates facilitation of emergence from anaesthesia by

orexinergic neurones during isoflurane anaesthesia.
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Editor’s key points

� Orexin can promote arousal from general anaesthesia,

but the neuronal pathways that mediate this effect are

not clear.

� The involvement of orexinergic neurones in modu-

lating the basal forebrain and locus coeruleus in

emergence from isoflurane anaesthesia were studied

using optogenetic approaches.
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� Optogenetic activation of orexinergic neurones in the

perifornical lateral hypothalamic area or their termi-

nals in the basal forebrain or locus coeruleus facilitated

emergence from anaesthesia.

� These findings provide additional evidence for a selec-

tive role of orexinergic signalling in emergence from

anaesthesia.
d.
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A number of neurotransmitters, including dopamine, hista-

mine, and glutamate, mediate the transition from anaesthesia

to wakefulness.1e4 Among these neural pathways, orexinergic

neurones in the perifornical lateral hypothalamic (PeFLH)

area, also called hypocretin (Hcrt) neurones, potentially trigger

emergence.5e8 Orexinergic neurones project widely to many

brain areas, with particularly dense innervation of nuclei

containing monoaminergic and cholinergic neurones that

constitute the ascending activating system.9e12 These nuclei

include the noradrenergic (NA) neurones of the locus coeru-

leus (LC), serotonergic neurones of the dorsal raphe (DR) nu-

cleus, histaminergic neurones of the tuberomammillary

nucleus, dopaminergic neurones of the ventral tegmental area

(VTA), and cholinergic neurones of the basal forebrain (BF).

The LC and BF are two key arousal nodes that have crucial

effects on the general anaesthetic state.

Located anterior to the hypothalamus and ventral to the

basal ganglia, the BF expresses high levels of orexin re-

ceptors,13 and the BF regulates emergence from propofol and

sevoflurane anaesthesia via orexin modulation.6,14,15 Micro-

injection of orexin into the BF during isoflurane anaesthesia

shortened emergence by increasing cortical acetylcholine

release,5 indicating a potential circuit in which orexin is

involved in promoting arousal.

The LC is an NA structure in the brainstem known to pro-

mote wakefulness and arousal that receives dense afferent

projections from orexinergic neurones.16,17 LC-NA stimulation

can be sufficient to facilitate recovery from isoflurane anaes-

thesia.18 Delivery of orexin-A directly into the LC can increase

wakefulness from a sleep state.19 However, unlike in natural

sleep, whether the LC alsomediates the emergence-promoting

effect of orexin in anaesthesia has not been clarified.20

Previous evidence has relied heavily on pharmacological

approaches, which are unable to determine the role of in-

teractions between orexinergic neurones and other neurones

during arousal in vivo. We took advantage of optogenetics in a

transgenic rat (Hcrtcre) model to investigate arousal from iso-

flurane anaesthesia by orexinergic pathways. By activating

orexinergic cell bodies in the PeFLH or their axon terminals in

the BF and LC, we confirmed the regulatory role of orexinergic

neurones in the BF and LC during emergence from

anaesthesia.
Methods

Animals

Hcrtcre knock-in rats were generated using the CRISPR/Cas9-

based approach.21 Briefly, a single-guide RNA (sgRNA) was

designed using the CRISPR design tool (http://crispr.mit.edu) to

target exon 1 of the Hcrt gene. On-target activity of the sgRNA

was screened using a Universal CRISPR Activity Assay (UCA™;

Biocytogen Inc., Beijing, China). The T7 promoter sequence

was added to the Cas9 or sgRNA template by PCR amplification

in vitro. A circular targeting vector containing Cre recombinase

andWPRE bGH pAwasmixedwith Cas9mRNA and sgRNA and

then co-injected into the cytoplasm of one-cell stage fertilised

SpragueeDawley (SD) rat eggs. The injected zygotes were

transferred into oviducts of SD pseudopregnant females to

generate F0 rats. F0 rats with the expected genotype confirmed

by tail genomic DNA PCR and sequencing were mated with SD

rats to establish germline-transmitted F1 founders. F1 foun-

ders were genotyped by tail genomic PCR/DNA sequencing,
and Southern blot examination was performed to confirm the

genotype.

We crossed rats with Cre-dependent tdTomato reporter

knock-in (B-Tdtomato cKI rats, SD-Gt (ROSA26)tm1(CAG�LSL-

Tdtomato)/Bcgen) provided by Beijing Biocytogen Inc. (Beijing,

China) for verification of Cre expression. Hcrtcre homozygotes

were mated with wild-type female SD rats to produce

heterozygotes.

All wild-type SD rats uswere provided by the Animal Center

of Fourth Military Medical University (Xi’an, China). Animals

were housed with a constant temperature of 24�C (0.5�C) and
relative humidity of 60% (2%) with a light-controlled schedule

(lights on between 07:00 and 19:00) with free access to food and

water. We selected only male transgenic rats for behavioural

consistency.12Male 10- to 12-week-oldHcrtcre ratswereused for

virusmicroinjection in the PeFLH (APe2.95mm,MLþ1.35mm,

DVe8.2mm), BF (AP 0.00mm,MLþ1.45mm, DVe7.80mm), or

LC (AP e9.75 mm, ML þ1.45 mm, DV e5.30 mm).22 Rats were

randomised by random serial numbers. Sample size was

calculated as described.12 The experimental protocol was

approvedby the Ethics Committee forAnimal Experimentation

and was conducted according to the Guidelines for Animal

Experimentation of our institutes and ARRIVE (Animal

Research: Reporting of In Vivo Experiments) guidelines.
EEG recording

Rats were placed in a horizontal Plexiglas® cylinder (45 cm

long, 30 cm in diameter). Anaesthesia was induced and

maintained by 1.4 vol% or 0.8 vol% isoflurane with 100% O2 at

1.5 L min�1. An anaesthesia monitor (Philips G60; Philips

Goldway, Shenzhen, Guangdong, China)) was connected to

detect the concentration of isoflurane in the cylinder. EEG

signals were continuously recorded through three stainless

steel screws anchored on the skull surface (AP þ2.0 mm, ML

e3.0 mm; AP e7.0 mm, ML þ5.0 mm), by a Powerlab 16/35

amplifier system (PL3516; ADInstruments, Bella Vista, NSW,

Australia) and Labchart Pro version 8.0.10 (MLU60/8; ADIn-

struments). Raw EEG data were digitised at a rate of 1000Hz

and bandpass filtered at 0.3e50 Hz for further analysis. The

total power spectrum, burst suppression ratio (BSR), and po-

wer distribution in each frequency band were completed by

MATLAB (The MathWorks, Inc., Natick, MA, USA). Details of

EEG analysis are presented in the Supplementary Methods.
Optical stimulation

Optical stimulation was performed with blue light (473 nm)

from a laser (MBLeIIIe473-100 mV; Thinker Tech Nanjing

Biotech, China). Laser intensity wasmeasured using an optical

power metre (SANWA Electric Instrument, Tokyo, Japan) to

which the fibre was attached to maintain intensity at 10e15

mV. Based on the optimal stimulation frequency from the

in vitro electrophysiological test (Fig. 1g and h), optical activa-

tion was performed by a 473 nm laser at 20 Hz for 10 ms. Each

stimulation cycle was 120 s on and 30 s off. The optical stim-

ulation protocol used for the cell body of orexinergic neurones

was the same as that applied for axon terminals in the BF and

LC.
Examination of induction and emergence times

The methods for determining the durations of anaesthesia

induction and emergence were as previously described.15

http://crispr.mit.edu
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Fig 1. Validation of Hcrtcre rats. (a) Schematic overview of the strategy to knock in the Cre cassette immediately after the target gene by

CRISPR/Cas9 technology. (b) Co-expression of tdTomato and orexin-A in the perifornical lateral hypothalamic area (PeFLH) area. Whole

brain sections (top) show both tdTomato (red) and orexin-A (green) expression in the hypothalamus, especially in the PeFLH area. The

insets show co-localisation of tdTomato and orexin-A in the PeFLH area. (c) Quantification of orexin-A-positive (orexin-Aþ) and tdTomato-

positive (tdTomatoþ) cells (three sections per rat, n¼3 rats). (d) Co-expression of ChR2-mCherry (red) and orexin-A immunoreactivity

(green) in the PeFLH. Arrowheads indicate double labelling of orexin-A and ChR2-mCherry in PeFLH cells. (e) Quantification of orexin-A-

positive (orexin-Aþ) and ChR2-mCherry (mCherryþ) cells (three sections per rat, n¼3 rats). Data are expressed as mean (standard deviation

[SD]). (f) Depolarisation and spiking of ChR2-expressing orexinergic neurones after illumination (at 473 nm) in current-clamp mode. This

depolarisation coincided with an inward current in voltage-clamp mode (bottom). (g) Stimulation by blue light at different frequencies in

brain slices in vitro activated orexinergic neurones (n¼5 cells in five different slices, n¼4 rats); blue bars represent 10 ms light pulses. (h)

Fidelity of responses of ChR2-expressing orexinergic neurones to light pulses. E1, exon 1; E2, exon 2; PeFLH, perifornical lateral hypo-

thalamic area; 50UTR, 50 untranslated region.

Activation of orexinergic terminals - 281



282 - Wang et al.
Briefly, we counted the time from onset of anaesthetic

administration to loss of righting reflex (LORR) and the time

from the end of anaesthesia administration to recovery of

righting reflex (RORR).When rats were placed in the horizontal

cylindrical observation cage under anaesthesia (Fig 2b), LORR

was checked by turning the cage 90� every 15 s. The time of

LORRwas determinedwhen a rat did not turn itself prone onto

all four limbs. After termination of anaesthesia, RORR was

checked by turning the cage 90� every 30 s until the animals

placed all four feet on the floor. A heating pad was taped to the

bottom of the cage and was maintained at 37.5�C.
Arousal scoring

Arousal responses were scored using the adaptation

method.23,24 Movement of whiskers, head, and limbs were

marked as 0 (without), 1 (slightly), or 2 (forcefully), respec-

tively, according to the intensity of movement. Righting scores

were marked as 0 and 2, respectively, if prone or extremities

were touching the floor. Walking scores were marked as 0, 1,

and 2, referring to rats that stood but did not walk, rats that

crawled but without their abdominals leaving the floor, and

rats that walked with their abdominals off the floor,

respectively.
Statistical analysis

Prism 7.0 (GraphPad Software Inc., San Diego, CA, USA) was

used for statistical analysis. Data are expressed as the mean

(standard deviation). Statistical significance was assessed us-

ing Student’s t-test for comparison of two groups, one-way

analysis of variance (ANOVA) or two-way ANOVA followed by

Bonferroni’s test for three or more groups, and

ManneWhitney U-test for behavioural scoring. A P value <0.05
was considered statistically significant.

The methods for surgical procedures, in vitro electrophysi-

ological recording, EEG analysis, and immunohistochemistry

are provided in the Supplementary Methods.
Results

Generation of Hcrtcre knock-in rats

Hcrtcre rats, in which Cre is driven by an ~108 kb fragment of the

Hcrt gene promoter, were generated using CRISPR/Cas9 tech-

nology (Fig. 1a). To verify the selectivity of this transgenic rat,

we crossed Hcrtcre rats with Cre-dependent tdTomato reporter

knock-in rats (B-Tdtomato cKI rats). Of their offspring, 98.8%

(0.45%) of orexin-A-positive cells expressed tdTomato in the

lateral hypothalamus (n¼3), whereas 91.9% (2.2%) of tdTomato

cells were orexin-A-positive (n¼3; Fig. 1b and c). Most of the

orexin-A-positive cells were located in the PeFLH. Stereotactic

injection of ChR2-mCherry inducible adeno-associated virus

rAAV-EF1f-DIO-ChR2-mCherry into the lateral hypothalamus

in Hcrtcre rats, and immunohistochemical staining of the hy-

pothalamic sections with an antibody against orexin were

performed (Fig. 1de1e). We found that 95.1% (2.8%) of orexin-

A-positive cells co-expressed ChR2-mCherry (n¼3). In

contrast, 93.2% (3.0%) of ChR2-mCherry-expressing cells were

orexin-A-positive (n¼3). No mCherry fluorescence was

observed in wild-type rats after virus transduction, confirming

that expression was exclusive to Cre-expressing neurones.

After 3 weeks of virus expression in Hcrtcre rats, blue light

(473 nm) stimulation of the PeFLH in brain slices in vitro

effectively activated light-sensitive channel-expressing
neurones. ChR2-expressing orexinergic neurones showed

robust depolarisation and spiking after 500 ms illumination

(473 nm) in current-clamp mode and an inward current in

voltage-clamp mode (Fig. 1f). Optical stimulation at 1e30 Hz

evoked spiking at different frequencies in current-clampmode

(Fig. 1g). The fidelity of the response of orexinergic neurones to

light pulses at frequencies reached up to 20 Hz (Fig. 1h).
Optical stimulation of cell bodies of orexinergic
neurones in the PeFLH promotes arousal from
anaesthesia

To activate the cell bodies of orexinergic neurones, the ChR2-

mCherry virus or its control were injected into the PeFLH, and

an optical fibre was inserted above the injection site (Fig. 2a).

Animals were placed into a horizontal cylindrical cage for

isoflurane anaesthesia (Fig. 2b), and 10min optical stimulation

was delivered at 40 min after the start of anaesthesia (Fig. 2c).

During optical stimulation, there was a significant change in

the EEG pattern and power spectrum in the ChR2-mCherry

group. EEG burst suppression during 1.4 vol% isoflurane

maintenance was largely and promptly decreased by optical

stimulation (Fig. 2d). Statistical analysis of a total of 20 min of

EEG recordings (optical stimulation for 10 min and 5 min

before and after photostimulation) demonstrated a significant

decline in the BSR during optical activation (from 59.6% [10.3%]

to 4.9% [5.0%], F(19,190)¼9.655, P＜0.0001; Fig. 2e). Photo-

stimulation of orexinergic neurones in the PeFLH was also

given at the same time as the onset of isoflurane and ended

until LORR, which had no effect on anaesthesia induction

time. However, when stimulation was started at the end of

isoflurane inhalation and continued until RORR, optical acti-

vation of the orexinergic neurones shortened arousal time (923

[162] s vs 493 [68] s, t(10)¼5.469, P¼0.0003; Fig. 2f).
Orexinergic neurones have strong projections to BF
and LC

To verify projections of orexinergic neurones, we injected

ChR2-mCherry virus into the PeFLH. After 3 weeks, the virus

was densely expressed in the BF, LC, and some other areas,

indicative of strong orexinergic innervations to these nuclei

(Fig. 3a). To stimulate orexinergic terminals, we injected ChR2-

mCherry virus into PeFLH and inserted optical fibres into BF or

LC. Four weeks after virus injection, fluorescence-labelled

varicosities were observed in BF and LC (Figs 3b and 4a,

Supplementary Fig. 2A). However, statistical comparison

indicated that the optical density in the LC was slightly less

than that in the BF (194 [12] vs 231 [2], P¼0.0167, t(8)¼3.014;

Supplementary Fig. 2b, left).
Optical stimulation of orexinergic terminals in the BF
facilitates emergence from isoflurane anaesthesia

Photoactivation of orexinergic terminals in the BF during 1.4

vol% isoflurane maintenance caused a significant decline in

BSR (Fig. 3c). Averaged BSR gradually decreased during the first

2 min of optogenetic stimulation, remained at a significantly

low level for 6 min, and then gradually returned to baseline

(from 66% [8%] to 5% [6%], F(19,200)¼4.765, P＜0.0001; Fig. 3d).

Photostimulation of orexinergic terminals in the BF promoted

arousal, shown as a shorter time to RORR compared with the

control group (937 [122] s vs 674 [108] s, t(10)¼3.594, P¼0.0049)
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but had no effect on isoflurane anaesthesia induction (Fig. 3e

and Supplementary Fig. 1A).

To determine whether stimulation of orexinergic terminals

in the BF under lighter anaesthesia could induce a visible

behavioural manifestation of emergence, we administered 0.8

vol% isoflurane (100% 1.5 L min�1 in O2) (Fig. 3f). During optical

stimulation of BF, EEG recordings of the ChR2-mCherry group

were indicative of a change from an anaesthesia state to an
awake-like state (Fig. 3g), which returned to an anaesthesia

state after cessation of stimulation. We compared the power

distribution in each frequency band during the 5min period of

anaesthesia before optical stimulation and the last 5 min

during stimulation. Optical stimulation in ChR2-mCherry rats

produced a decrease in delta power (63% [3%] vs 42% [8%];

P¼0.0002), whereas the power in theta (16% [2%] vs 22% [4%];

P¼0.0172), beta (4.3% [0.8%] vs 11% [4%; P¼0.0045), and gamma
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(6.1% [1.7%] vs 14.2% [3.3%]; P¼0.0006) bands markedly

increased (Fig. 3h). There was no difference in the EEG power

spectrum in the mCherry animals with stimulation

(Supplementary Fig. 1B). Upon optical stimulation, the arousal

score wasmuch higher in the ChR2 than in the mCherry group

(P¼0.002, Fig. 3i). Movements of the legs, head, and whiskers of

ChR2 animals were clearly observed, whereas those behav-

iours were hardly observed in mCherry animals upon stimu-

lation. Righting was observed in all ChR2 animals but not in

mCherry animals. Moreover, five out of six ChR2 animals

walked on their paws with their abdomen off the floor,

whereas no walking was seen in the control group (Table 1).
Optical stimulation of orexinergic terminals in the LC
promotes arousal from isoflurane anaesthesia

Photostimulation of orexinergic terminals in the LC also

reduced BSR during 1.4 vol% isoflurane anaesthesia (from 63%

[5%] to 27% [21%], F(19,180)¼1.939, P¼0.034; Fig. 4c). However,

reduction in BSRwas less than that induced by activation of BF

orexinergic terminals or orexinergic cell bodies (e2.0 [0.2] vs

e0.5 [0.1], t(32)¼3.187, P¼0.019; e2.0 [0.2] vs e0.5 [0.2],

t(32)¼3.442, P¼0.009; Fig. 4h). Photostimulation of orexinergic

terminals in the LC also facilitated arousal from general

anaesthesia (913 [128] s vs 742 [76] s, t(10)¼2.586, P¼0.0217), but

no effect on induction of anaesthesia was observed (Fig. 4d

and Supplementary Fig. 1C). The reduction of RORR induced by

LC activation, comparable with that induced by activation of

BF orexinergic terminals, was less than that of orexinergic cell

body activation (493 [68] s vs 742 [76] s, t(32)¼3.514, P¼0.008;

Fig. 4i).

During anaesthesia maintenance induced by 0.8 vol% iso-

flurane, optical stimulation of LC orexinergic terminals altered

EEG patterns in the ChR2-mCherry group from an anaesthesia

state to an awake-like state (Fig. 4e). EEG recordings returned

to baseline, indicative of an anaesthesia state, after the stim-

ulation. Specifically, optical stimulation in ChR2-mCherry rats

produced a decrease in delta power (52% [7%] vs 31 [4%],

P¼0.0003), whereas the power in the beta (7.0% [2.0%] vs 16.7%

[2.0%], P<0.001) and gamma (6.8% [1.8%] vs 21.7% [2.7%],

P<0.0001) bands increased (Fig. 4f). There was no significant

difference in the EEG power distribution in the mCherry ani-

mals with stimulation (Supplementary Fig. 1C). Upon optic

stimulation, rat movements were increased in the ChR2-

mCherry rats (P¼0.002; Fig. 4g). Generally, optical stimulation

increased leg, head, and whisker movements in ChR2-

mCherry rats and induced the righting response. Unlike in

the BF terminal activation group, however, only three out of

six animals in the LC activation group stood and walked on

their paws (Table 2).
PeFLH-LC and PeFLH-BF pathways have different
efficacies in facilitating emergence

Compared with the BF, the LC is smaller with fewer but clus-

tered neurones. To avoid insufficient stimulation of terminals,

we tested the arousal efficacy of the PeFLH-LC and PeFLH-BF

pathways by a retrograde approach. We injected AAVretro-

ef1a-DIO-ChR2-mCherry virus into the LC or BF of Hcrt-cre rats

(300 nl per rat, n¼5), which provided retrograde access to

orexin cell bodies. We put optical fibres into the PeFLH, which

specifically activates the orexinergic PeFLH-LC or PeFLH-BF

projections (Fig. 5a). Four weeks after virus microinjection,

photostimulation at either PeFLH-LC or PeFLH-BF orexin
innervations reduced the BSR (Fig. 5bee). Activation of PeFLH-

BF innervations was more powerful than of PeFLH-LC in

reducing burst suppression waves (e0.34 [0.04] vs e0.18 [0.09],

P＜0.001, F(2,17)¼75.17; Fig. 5f).
Discussion

Orexin is an important excitatory transmitter25 involved in

various neural functions such as sleep, food intake, depres-

sion, and facilitation of arousal from general anaesthesia.8,26,27

To further confirm the regulatory effects of orexinergic neu-

rones on the BF and LC during anaesthesia emergence, we

used optogenetic approaches in transgenic Hcrtcre rats. Acti-

vation of orexinergic neuronal cell bodies or their terminals in

the BF and LC shortened the time to RORR and induced a

decrease in the BSR under 1.4 vol% isoflurane anaesthesia.

Under 0.8 vol% isoflurane anaesthesia, optical stimulation of

orexinergic terminals in the BF and LC reduced the delta power

percentage in EEG recordings and promoted movement re-

covery in anaesthetised rats.

A variety of experiments using pharmacological methods

have revealed the emergence-promoting effects of orexinergic

neurones in general anaesthesia induced by sevoflurane, iso-

flurane, propofol, or ketamine.6,14,15,28,29 Before optogenetics,

selectively stimulating specific orexinergic neural elements

with a temporal resolution relevant to anaesthesia or wake-

fulness episodes and achieving spatial selectivity to probe

those terminals surrounding cells were difficult tasks. The

current experiments did not concentrate on the ligands or

receptors of the orexinergic system, but rather observed high-

resolution EEG changes during anaesthesia and accurately

activated both orexinergic neurones in the PeFLH and their

terminals in the BF and LC by optogenetic approaches during

maintenance and recovery of anaesthesia. We found that

orexinergic terminals in the BF and LCwere not involved in the

induction process of isoflurane anaesthesia under current

conditions, which is consistent with previous research.15

suggesting that the neural substrates governing transitions

into and out of the anaesthetised state are not identical.

Although stimulation of either the orexinergic cell body or

its terminals in the BF and LC was able to shorten emergence

time and decrease BSR, the emergence-promoting efficacy of

orexinergic cell body activation was more obvious. Compared

with terminal activation, orexinergic cell body activation

resulted in a longer-lasting decline in EEG burst suppression

and shorter time to RORR, suggesting that there could also be

other nuclei or neural circuits involved in the effect. Indeed,

orexin neurones also project to the ventral tegmental area,

pedunculopontine tegmental nucleus (PPTg), central nucleus

of the amygdala (CeA) etc.,9 some of which are also involved in

emergence from general anaesthesia. How these various

pathways correlate with each other remains unknown.

Promotion of emergence efficiency was different between

BF and LC activation. Under 1.4 vol% isoflurane anaesthesia,

the BSR of BF orexinergic terminal optical stimulation

decreased to a greater extent than that of LC orexinergic ter-

minal optical stimulation. Furthermore, the RORR reduction

revealed that rats with BF terminal stimulation took less time

to recover from anaesthesia than those with LC stimulation.

To investigate whether fibreoptic light effectively activated a

sufficient number of neurones in the BF and LC, we assessed c-

Fos expression in these two areas after optical stimulation. As

shown in Supplementary Fig. 2CeE, c-Fos expression in BF and

LC was significantly enhanced by optical activation. In



C

D EPeFLH - BF

AAVretro-DIO-ChR2-mCherry1.4% ISO

500

0

A
m

pl
itu

de
 (��

V)

–500
–5 0 5 10 15

PeFLH - LC

AAVretro-DIO-ChR2-mCherry1.4% ISO

500

0

A
m

pl
itu

de
 (�

V)

–500
–5 0 5 10 15

Fr
eq

ue
nc

y 
(H

z) 50
40
30
20
10

–5 0 5 10 15

30
20
10
0

Time (min)

Fr
eq

ue
nc

y 
(H

z) 50
40
30
20
10

0 0
–5 0 5 10 15

30
20
10
0

Time (min)

A B
AAVretro-DIO-ChR2-mCherry

or AAVretro-DIO-mCherry
L-ITR

PeFLH
BF

Hcrtcre Rat

R-ITRWPREChR2-mCherry

Ef1�

Gas Filter
Canister

Gas
Analyser

Soda lime

Unilateral
Optical Fiber EEG Signal

Isoflurane

F
0.2

�B
SR

 (B
SR

 st
im

 o
n–

B
SR

be
fo

re
 s

tim
)

0.0

–0.2

–0.4
***

**
**

control PeFLH-BF PeFLH-LC

Fig 5. Optical stimulation of orexinergic cells projecting to basal forebrain and locus coeruleus elicit differential promotion of arousal. (a)

Diagram of virus injection and fibre embedding. (b) Schematic diagram of the apparatus used for behavioural observation, optical fibre

stimulation and EEG signal recording during anaesthesia. (c) Representative photomicrographs of virus expression and fibre location. (dee)

Representative EEG traces and power spectrograms during optical stimulations in an AAVretro-CHR2 expressed rat. (f) The decreases of BSR

during optic stimulations (n¼5). One-way analysis of variance (ANOVA) followed by post hoc Bonferroni’s test was used, F(2,17)¼75.17,

P<0.0001. Data are presented as mean (SD). ISO, isoflurane; BSR, burst suppression ratio; BF, basal forebrain; LC, locus coeruleus; PeFLH,

perifornical lateral hypothalamic area; SD, standard deviation.

Activation of orexinergic terminals - 289



Table 1 Arousal behaviour scores after stimulation of orexin terminals in the basal forebrain. The arousal behaviour scores. Leg, head,
and whisker movements, and the righting and walking status were scored for each animal. Comparison of the total scores of two
groups, ChR2 vs mCherry, using two-tailed ManneWhitney U-test, P¼0.0022.

Animals Leg movement Head movement Whisker movement Righting Walking Total score

1-ChR2 2 2 2 2 2 10
2-ChR2 2 2 2 2 0 8
3-ChR2 2 2 2 2 2 10
4-ChR2 2 2 2 2 2 10
5-ChR2 2 2 2 2 2 10
6-ChR2 2 2 2 2 2 10
1-mCherry 0 0 0 0 0 0
2-mCherry 0 1 0 0 0 1
3-mCherry 0 0 0 0 0 0
4-mCherry 1 0 1 0 0 2
5-mCherry 0 0 0 0 0 0
6-mCherry 0 0 0 0 0 0

Table 2Arousal behaviour scores after stimulation of orexin terminals in the locus coeruleus. The arousal behaviour scores. Leg, head,
and whisker movements, and the righting and walking status were scored for each animal. Comparison of the total scores of two
groups, ChR2 vs mCherry, using two-tailed ManneWhitney U-test, P¼0.0022.

Group Leg movement Head movement Whisker movement Righting Walking Total score

1-ChR2 2 2 2 2 2 10
2-ChR2 2 2 2 2 2 10
3-ChR2 2 2 2 2 0 8
4-ChR2 2 2 2 2 1 9
5-ChR2 2 2 2 2 1 9
6-ChR2 2 2 2 2 2 10
1-mCherry 0 0 0 0 0 0
2-mCherry 0 0 0 0 0 0
3-mCherry 0 0 0 0 0 0
4-mCherry 0 0 1 0 0 1
5-mCherry 0 0 0 0 0 0
6-mCherry 0 0 0 0 0 0
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comparison, there were more c-Fos-expressing cells in the BF

than in the LC (Supplementary Fig. 2F). We also assessed c-Fos

expression after optostimulation in the AAVretro experiment.

As shown in Supplementary Fig. 3A and B, more c-Fos-positive

cells were found in the BF than in the LC (Supplementary

Fig. 3C). Compared with activation of the PeFLH-LC orexin

pathway, photostimulation at PeFLH-BF induced a larger

number of c-Fos-expressing cells in the PeFLH. As the PeFLH to

LC is 3e4 times farther than the PeFLH to BF in distance, and

there were fewer virus-positive terminals in the LC

(Supplementary Fig. 2B), the difference in activation of BF and

LC could be attributed to the discrepancies in the quantity of

orexin fibres and distance from the PeFLH. This experiment

provides additional evidence for the differential efficacy of

arousal between BF and LC.

In addition to the difference in the quantity of projections

from PeFLH to BF and LC, the downstream regulation of

these two nuclei may also contribute to the discrepancy in

arousal. Both the BF and LC, known to play important roles

in attention and arousal, have widespread outputs to the

cerebral cortex. The LC is a NA structure in the brainstem

known to promote wakefulness, and cholinergic neurones in

the BF also send ascending projections to activate the
cortex. However, anatomical and functional differences of

the projections from these two areas into cerebral cortex

have been identified.30 The BF projections are highly selec-

tive to individual cortices, whereas the LC projects diversely

into multiple cortices, indicating that they may modulate

cortical activity to a different extent. A recent study from Pal

and colleagues31 noted the differential roles of cholinergic vs

NA processes in the promotion of arousal from sevoflurane

anaesthesia. They demonstrated that cholinergic stimulation

of the prefrontal cortex, but not of the parietal cortex,

restored wake-like behaviour during continuous exposure to

sevoflurane anaesthesia, whereas NA stimulation of the

prefrontal and parietal areas resulted in EEG activation but

failed to produce any signs of wake-like behaviour. As in our

experiment, although photostimulations of orexinergic ter-

minals either in BF or LC induced a pro-arousal effect under

isoflurane anaesthesia, the effect of stimulation of BF was

stronger than that of LC. The differential activation efficacy

of the cortices and the small quantity of neurones of the LC

may also increase the variability of response to optical

stimulation. Taken together, these results imply that

different nuclei activating diverse cortices lead to different

awakening effects.
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We cannot exclude the possibility of retrograde depolar-

isation of hypocretin cell bodies after photostimulation in

either BF or LC terminals. It is worth emphasising that we

applied the same duration and intensity of optical stimulation

at the PeFLH, BF, and LC, whereas the strength of pro-arousal

effects was different among diverse stimulation targets, indi-

cating the reliability of our results. Nevertheless, whether

optical stimulation of the terminal projection area might

involve the excitability of their perikarya is an important

question. To stimulate the terminals and electrophysiologi-

cally record the change in excitability could answer this

question.

The BF contains three types of neurones: cholinergic, glu-

tamatergic, and gamma-aminobutyric acid (GABA)ergic,32

which play different roles in sleep-arousal regulation.33e37

Although we have confirmed the role of the PeFLH-BF cir-

cuitry in facilitating emergence from anaesthesia, we have not

revealed the cell type of BF neurones in this regulatory

pathway. Given the differences in the distance from PeFLH to

BF and to LC, AAV virus transfected in the PeFLH may take

different times to get full expression in these two areas. We

did not check the time-dependent increase of AAV virus

expression in LC terminals or AAV retrovirus expression in

PeFLH cell bodies. Hcrt-cre rats were killed in the fifth week

after virus injection for confirmation of virus expression and

fibre location, immediately after completion of photo-

stimulation experiments. Whether the virus has reached full

expression in both BF and LC at this time point was not clear.

These limitations of the current study deserve further

exploration.

In summary, our results show that the BF and LC are ef-

fectors for orexin-mediated anaesthesia-to-wake transitions

during isoflurane anaesthesia, and that BF possibly plays a

more potent role in facilitation of emergence.
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