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Two decades ago, Jevtovic-Todorovic and colleagues1 pub-

lished the seminal observation that neonatal rodents devel-

oped neuroapoptosis and long-term cognitive deficits after

administration of a mixture of general anaesthetics including

midazolam, nitrous oxide, and isoflurane. Subsequent work

has confirmed these findings in rodents and extended them to

include most of the currently used anaesthetics.2 The neuro-

toxic effects of anaesthetics appear to be dependent on the

developmental time point of administration, number of ex-

posures, and dose and duration of each exposure.3,4 Most

importantly, studies in non-human primates in which physi-

ological and biochemical parameters can be closely monitored

confirm the long-term behavioural changes associated with

neonatal anaesthetic administration and do not identify a

confounding physiologic variable (i.e. hypotension or hypo-

xaemia) as the cause of neurotoxicity.4,5 The results of these

animal model studies led the US Food and Drug Administra-

tion (FDA) to place a ‘black-box’ safety warning on a long list of

anaesthetic agents regarding their use in neonates.

Human data have been more complex with several epide-

miologic studies showing that prolonged and repeated

anaesthetic exposures are associated with persistent behav-

ioural changes,6,7 but prospective trials showing that single

brief exposures produce no discernible effect.8,9 Unfortu-

nately, the critical question of whether long or repeated
general anaesthetic exposures are neurotoxic in human neo-

nates is difficult to address, since infants needing general

anaesthesia often have underlying conditions and require

surgeries that can predispose to cognitive deficits. Efforts to

address neurotoxic effects of prolonged and repeated human

neonatal exposure to general anaesthesia have focused on the

approach of identifying either a non-neurotoxic anaesthetic or

a mitigating (neuroprotective) agent that could be used in

clinical trials as a comparator to currently used agents.

The search for a non-toxic anaesthetic or mitigating agent

would be facilitated by understanding the underlying

biochemical mechanisms of anaesthetic-induced develop-

mental neurotoxicity (AIDN) in animals. Regrettably, there is

no consensus on mechanism or even whether neuronal

apoptosis is causal of the persistent cognitive/behavioural

deficits.10 It is hypothesised that anaesthetic effects on syn-

aptic activity at a critical time in nervous system development

promote apoptotic death of neurones and glia, and loss of

synaptic connectivity. Since most anaesthetics produce their

anaesthetic effect by activating postsynaptic gamma-

aminobutyric acid A (GABAA) receptors or blocking N-

methyl-D-aspartate (NMDA)-type glutamate receptors, these

two neurotransmitter receptors have been a major focus of

investigation.

Neurosteroids are endogenous brain metabolites of

cholesterol that modulate inhibitory neuronal tone and are

thought to act as endogenous regulators of mood.11 The neu-

rosteroids are efficacious modulators of GABAA receptors that

act at specific binding sites to either enhance (3a-OH
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neurosteroids) or inhibit (3b-OH and 3b-sulfated neuro-

steroids) GABA-activated currents.12,13 The 3a-OH neuro-

steroid alphaxalone (Althesin™) is an effective i.v. anaesthetic

that was used clinically from 1970 to 1984; it was withdrawn

from clinical use because the excipient used to solubilise it,

cremophor, produced infrequent but serious anaphylactoid

reactions.14 A neurosteroid anaesthetic has never been clini-

cally reintroduced, in part because propofol has occupied its

clinical niche. Surprisingly, neurosteroid anaesthetics had not

been previously evaluated in AIDN studies. Two papers by

Atluri and colleagues15 and Tesic and colleagues16 published

in the British Journal of Anaesthesia have addressed the effects of

neurosteroids on AIDN, making several important observa-

tions that could help to unravel the Gordian knots of mecha-

nism and prevention of AIDN.

In a 2018 paper, Atluri and colleagues15 reported that the

3b-OH neurosteroid, (3b,5b,17b)-3-hydroxyandrostane-17-
carbonitrile, induced anaesthesia/sedation comparable with

that of ketamine in 7-day-old neonatal rats but did not pro-

duce the neuroapoptosis or persistent impaired spatial

learning observedwith ketamine. This was an intriguing result

because it showed that a 3b-OH neurosteroid that neither

enhances GABAA receptor currents nor inhibits NMDA recep-

tor currents produces anaesthesia, suggesting a novel anaes-

theticmechanism. The anaesthetic effect was attributed to 3b-
OH blockade of T-type calcium channels, which is further

supported by recent studies reported in this issue of the British

Journal of Anaesthesia performed in mice with targeted deletion

of the Cav3.1 T-type calcium channel subtype.17. The results

also suggested that an anaesthetic without a GABAergic or

NMDA blocking mechanism of action might be free of associ-

ated AIDN. An editorial accompanying the paper focused on

the many practical obstacles for the development of 3b-OH as

a safe and ‘non-neurotoxic’ anaesthetic.18 Perhaps more

germane to the question of AIDN is the absence of an impor-

tant control in the study. The comparator to 3b-OH was an

equi-effective dose of a non-GABAergic anaesthetic, ketamine,

rather than a GABAergic neurosteroid anaesthetic. This left

unaddressed the important question of whether 3b-OH is non-

neurotoxic because it lacks a GABAergic effect or if neuro-

steroids as a class do not produce substantial AIDN.

This issue was addressed in a recent paper by Tesic and col-

leagues16 comparing the anaesthetic and neurotoxic effects of

two neurosteroids, alphaxalone and CDNC24, with the

GABAergic anaesthetic propofol in neonatal rats. Alphaxalone

and CDNC24 both activate GABAA receptors, but only alphax-

alone blocks T-type Ca2þ channels. Both of these neurosteroids

and propofol produced anaesthesia/sedation in neonatal rats.

However,neitherof theneurosteroidsproducedneuroapoptosis

whereas propofol did. These results indicate that neurosteroids

as a class do not produce neuroapoptosis in neonatal rats

regardless of whether they activate GABAA receptors.

There are several mechanisms that could explain the

observation that neurosteroids are anaesthetics but do not

produce AIDN. The authors propose that neurosteroids are

less efficacious activators of inhibitory synaptic currents than

propofol or other GABAergic anaesthetics, allowing them to

produce anaesthesia but not to achieve higher neurotoxic

levels of activity. This idea is based on their data comparing

the effects of neurosteroids and propofol on synaptic GABAA

currents in brain slices. Alphaxalone, CDNC24, and propofol

all increased the duration of spontaneous inhibitory post-

synaptic currents, which is a direct effect on GABAA receptors.

However, the two neurosteroids, but not propofol, also
reduced the frequency of spontaneous inhibitory postsynaptic

currents, a presynaptic effect likely mediated by neurosteroid

action on voltage-gated Ca2þ channels or the synaptic release

machinery. The authors proposed that the presynaptic effects

of neurosteroids limit the total inhibition produced at

GABAergic synapses, thus preventing neuroapoptosis.

Although plausible, this hypothesis requires that the inhibi-

tory synaptic activity required to produce anaesthesia is less

than is required to produce neuroapoptosis, since the pre-

synaptic effects of neurosteroids would otherwise prevent

them from being anaesthetic. This explanation also requires

that the concentrations of neurosteroid needed to inhibit

presynaptic activity are higher than the concentrations that

produce GABAA receptor activation. Implicit to this proposed

mechanism is that there is a distinct presynaptic target that

mitigates neurotoxicity and a GABAA receptor target that

mediates anaesthesia and neurotoxicity. Thus, neurosteroids

would be both neurotoxic anaesthetic agents and neuro-

protective agents. In principle, these effects could be phar-

macologically separated as they are mediated by different

target sites and proteins.

I suggest two additional mechanisms that could plausibly

explain the results. The first is that neurosteroids and propofol

both produce anaesthesia by activating GABAA receptors, but

that neurosteroids also interact with a separate target that

results in neuroprotection. The presynaptic target proposed by

Tesic and colleagues16 is actually a ‘special case’ of this

explanation. A second alternative explanation is that propofol

and other anaesthetics, but not neurosteroids, interact with an

unknown (non-GABAA receptor) target that mediates neuro-

toxicity. The three proposed mechanisms could, in principle,

be experimentally distinguished by determining whether co-

administration of a neurosteroid with neurotoxic anaes-

thetics (e.g. propofol or ketamine) reduces injury. If a neuro-

steroid protects from propofol, but not ketamine, this would

support the proposed presynaptic neuroprotective target. If a

neurosteroid protects against both propofol and ketamine,

this would support a novel neuroprotective target for neuro-

steroids. Finally, if a neurosteroid protects against neither

propofol nor ketamine it would suggest that neurosteroids are

anaesthetics that simply lack neurotoxicity. Distinguishing

whether neurosteroids are neuroprotectant agents or simply

non-neurotoxic anaesthetics could have substantial implica-

tions for how a future clinical neurosteroid anaesthetic might

be used. If neurosteroids prove to be anaesthetics with neu-

roprotective activity, they could ultimately be used either in

combination with currently used anaesthetics that induce

neurotoxicity or as a sole anaesthetising agent.

Although all three of the proposed mechanisms are plau-

sible and testable, the idea that neurosteroids have neuro-

protective effects independent of their anaesthetic effect

merits additional attention. First, there is a substantial body of

evidence showing that 3a-OH neurosteroids prevent

apoptosis19 and protect against nervous system injury from a

number of non-anaesthetic insults.20 Further, neurosteroids

are known to bind to and modulate a number of proteins

involved in cellular protection, including the progesterone

receptor, orphan nuclear receptors LXR and PXR, and mito-

chondrial voltage-dependent anion channel (VDAC) proteins.

Recent data have shown that ceramides trigger mitochondrial

apoptosis by binding to a critical glutamate residue on

VDAC2.21 Neurosteroids bind to this same residue22 suggesting

they may act as competitive inhibitors, preventing a common

signalling pathway for mitochondrial apoptosis.
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Although a neurosteroid anaesthetic that does not cause

AIDN need not have a non-GABAergic mechanism, the idea of

T-type calcium channel block as a mechanism of steroid

anaesthesia is of scientific interest. There are, however, some

caveats in considering this result. Neurosteroids are syn-

thesised from cholesterol in brain and 3a-OH, 3-keto, and 3b-
OH neurosteroids can be enzymatically interconverted.

Indeed, the anaesthetic effects of neurosteroids were discov-

ered by Selye23 who observed that progesterone administra-

tion causes the slow onset of anaesthesia, preferentially in

female animals. Higher concentrations of the enzyme (3a-
hydroxysteroid dehydrogenase) that produces 3a-OH neuro-

steroids are found in females than in males, and it was sub-

sequently shown that progesterone is metabolised to a 3a-OH

neurosteroid (allopregnanolone) that is responsible for the

anaesthetic effect. It is also possible that 3b-OH undergoes a

similar in vivo conversion to a 3a-OH neurosteroid that acti-

vates GABAA receptors. The 3a- and 3b-hydroxysteroid de-

hydrogenases in brain both work bi-directionally and could

catalyse this interconversion11 and the slow onset of 3b-OH

anaesthesia reported by Atluri and colleagues15 suggests this

possibility. It should also be remembered that 3b-OH neuro-

steroids inhibit GABAA receptor currents. Since GABAA chlo-

ride currents can be excitatory rather than inhibitory during

nervous system development, 3b-OH neurosteroids might

produce an anaesthetic effect by inhibiting excitatory GABAA

synaptic currents in neonatal animals. Since this would not

occur in adulthood, examining 3b-OH anaesthesia in adult

animalsmight also be instructive. Finally, it is noteworthy that

the 3b-OH anaesthetic described by Alturi and colleagues15 has

a very high therapeutic index. This is unlikely to be the result

of its putative non-GABAergicmechanism; neurosteroids have

long been known to have higher therapeutic indices than

other general anaesthetics because of their reduced cardiore-

spiratory depression.14 Indeed, a reformulation of alphaxalone

in sulfobutyl-cyclodextrin (Captisol™), like 3b-OH, has an

unmeasurably high therapeutic index.24

While there is clearly much to learn about mechanisms of

neurosteroid anaesthesia and neuroprotection, the two studies

by Atluri and colleagues15 and Tesic and colleagues16 open a

new door in AIDN investigation with substantial clinical impli-

cations. Anaesthetic neurosteroids, regardless of anaesthetic

target, appear to produce less neuroapoptosis than do

comparator anaesthetics. This result needs to be confirmed,

preferably in a non-human primate model where more reliable

dosing can be performed and physiologic monitoring and

behavioural testing can be more thoroughly evaluated.

Alphaxalone has a long record as an effective and safe anaes-

thetic in infants and adults14; it was previouslywithdrawn from

clinical use because the excipient used in its formulation pro-

duced adverse effects, not because the compound itself was

toxic. It has now been reformulated and shown to be safe and

efficacious in humans.25 Thus, alphaxalone could circumvent

many of the very real obstacles to drug development cited by

Vutskits and Sneyd.18 If its lack ofneurotoxicity can be validated

in primates, alphaxalone presents a clear pathway to a neuro-

steroid anaesthetic that could be used to test for long-term

neurotoxic effects of neonatal administration in humans and

could be rapidly developed as a therapeutic agent. The endog-

enous neurosteroid allopregnanolone offers an alternative

pathway to rapid human testing. Allopregnanolone is an anti-

depressant at sub-anaestheticdoses, and is already approvedby

the FDA as an i.v. infusion (Brexanolone™) for treatment of

postpartum depression.26
There have been many disappointments in the effort to

develop an anaesthetic that does not produce AIDN in animal

models and could be used either experimentally to probe or

therapeutically to prevent neurotoxicity in human neonates.

Neurosteroids are promising new candidates in this field. They

are known to be safe anaesthetics with a high therapeutic

index, they are already in clinical development or use, and

their well-known neuroprotective effects offer promise that

‘this one could be the charm’!
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unconsciousness
A better understanding of the mechanisms through which we

perceive our sensory environment is vital for anaesthesiology

and consciousness science. Through a pragmatic approach

based on tracking afferent signals, we have gradually under-

stood how sensory stimuli are processed from the peripheral

sensor, through the peripheral nervous system, into the spinal

cord, thalamus, and cerebral cortex. This sensibly heralded the

classical, and still dominant, view of sensory processing that

focuses on feedforward transmission of sensory information to
generate representations of the world around us. Here, percep-

tion relies heavily on external inputs driving neural represen-

tations of basic stimulus features in lower-order areas of the

nervous system. These representations are subsequently elab-

orated on in successive processing stages, resulting in increas-

ingly abstract representations in higher order cortical regions.

Although there is considerable evidence tosupport thismodel, it

fails to explain many phenomena such as similar physical

stimuli producing alternate conscious experiences or illusions,1
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