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Summary

Pulse wave analysis (PWA) allows estimation of cardiac output (CO) based on continuous analysis of the arterial blood

pressure (AP) waveform. We describe the physiology of the AP waveform, basic principles of PWA algorithms for CO

estimation, and PWA technologies available for clinical practice. The AP waveform is a complex physiological signal that

is determined by interplay of left ventricular stroke volume, systemic vascular resistance, and vascular compliance.

Numerous PWA algorithms are available to estimate CO, including Windkessel models, long time interval or multi-beat

analysis, pulse power analysis, or the pressure recording analytical method. Invasive, minimally-invasive, and nonin-

vasive PWA monitoring systems can be classified according to the method they use to calibrate estimated CO values in

externally calibrated systems, internally calibrated systems, and uncalibrated systems.

Keywords: arterial pressure; cardiovascular dynamics; haemodynamic monitoring; monitor; pulse contour analysis;

stroke volume
Editor’s key points

� Pulsewave analysis allows estimation of cardiac output

based on continuous analysis of the arterial blood

pressure waveform, a complex physiological signal

determined by an interplay of left ventricular stroke

volume, systemic vascular resistance, and vascular

compliance.

� There are invasive, minimally-invasive, and noninva-

sive pulse wave analysis monitoring systems.

� The systems can be classified according to the method

used to calibrate the estimated cardiac output values in
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externally calibrated systems, internally calibrated

systems, and uncalibrated systems.

Cardiac output (CO), the product of stroke volume (SV) and

heart rate, is a key determinant of oxygen delivery.1 Optimis-

ing CO using perioperative goal-directed haemodynamic

therapy improves patient-centred postoperative outcomes in

high-risk patients having major surgery.2,3 CO monitoring, in

addition to echocardiography, is also recommended in criti-

cally ill patients with complex circulatory shock to diagnose

the type of shock and to monitor responses to therapeutic

interventions.4,5
rved.
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There are numerousmethods tomeasure or estimate CO in

perioperative and intensive care medicine6e8; one method is

pulse wave analysis (PWA) (i.e. the continuous analysis of the

arterial blood pressure [AP] waveform).7,9,10 The AP waveform

can be recorded invasively with an arterial catheter or non-

invasively with innovative sensors.6e8 PWA is used to estimate

CO during perioperative goal-directed haemodynamic

therapy,9,11e13 and to assess fluid responsiveness during a

passive leg raising test14 or a fluid challenge manoeuvre.15 A

profound understanding of basic measurement principles and

limitations is key when using PWA in clinical practice.

In this article, we describe and discuss the physiology of the

AP waveform, basic principles of PWA algorithms for CO

estimation, and PWA systems available for clinical practice.
Physiology of the arterial pressure waveform

Blood flow is determined by the pressure difference between

the two ends of a vessel and vascular resistance.16 The rela-

tionship between those three variablesdblood flow, AP, and

vascular resistancedcan be described by Darcy’s law that is an

analogy to Ohm’s law (Fig. 1).16 During systole, blood is ejected

from the left ventricle into the aorta (i.e. left ventricular SV).17

Left ventricular SV together with the compliance of the aorta

mainly determine systolic AP (SAP). Diastolic AP (DAP) is pri-

marily determined by left ventricular relaxation and systemic

vascular resistancedwith the latter regulating blood flow

through peripheral vessels.17 Pulse pressure (PP) is the differ-

ence between SAP and DAP and closely related to SV. Mean AP

(MAP) is not the arithmetic mean of SAP and DAP but rather

the average pressure over one cardiac cycle.18

The resistance to blood flow by the systemic circulation is

called systemic vascular resistance or total peripheral resis-

tance and is mainly determined by the vascular tone of small

vesselsdespecially arteriolesdthat have the ability to con-

tract.16 Based on Poiseuille’s law, vascular resistance of a

vessel is mainly determined by the radius of the blood vessel

(Fig. 1). The vessel radius is highly regulated by various

mechanisms such as the sympathetic nervous system, blood

flow autoregulation, and local humoral factors.19 Vascular

resistance and systemic vascular resistance cannot be
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Fig 1. Arterial blood pressure waveforms at different locations

along the arterial tree. Blood flow ( _Q) is determined by the

pressure difference between mean arterial blood pressure (MAP)

and central venous pressure (CVP), and the systemic vascular

resistance (SVR). Vascular resistance (R) of a vessel is mainly

determined by vessel radius (r).
measured directly, but must be derived from blood flow and

the pressure difference between two points within the

vasculature.

Vascular compliancedalso referred to as vascular capaci-

tancedis the ability of a vessel to distend with increasing

transmural pressure.20 The compliant properties of the aorta

and other elastic arteries ensure blood flow during diastole

that would otherwise only occur during systole.20 Changes in

the compliant propertiesdsuch as in arteriosclerosisdlead to

a more pulsatile flow and pressure during the cardiac cycle.

This may cause mechanical tissue damage as a result of high

PP amplitudes.21

The AP waveform consists of multiple forward ejected and

reflected waves and therefore gets progressively distorted.22

This distortion can be observed by continuous changes of

the AP waveform during its movement along the arterial tree

into the periphery (Fig. 1).22 Reflection phenomena occur at

multiple sites along the arterial tree because of changes in

arterial properties or vessel architecture.21 At the aortic root,

the AP waveform is characterised by a sharp upstroke, a slow

rise to peak, the dicrotic notch, and an exponential diastolic

decline.20 As the AP waveform moves along large elastic and

smaller conduit arteries, the PP is amplified because of

decreasing compliance of the conducting vessels and wave

reflection phenomena. Since PP amplification does not require

additional energy input in the arterial system, it is more a

distortion rather than a true amplification, and MAP remains

almost unchanged. It is thus important to recognise that the

peripherally measured PP overestimates the central PP, and

that age and other factors may affect this relationship, mostly

by affecting wave reflection phenomena.23

When the APwaveform reaches smaller arteries, arterioles,

and capillaries, PP becomes progressively lower.20 This pe-

ripheral decrease in PP is called damping and is mainly

determined by changes in the vascular resistance and

compliance of these smaller vessels.

In summary, the complex interplay of left ventricular SV,

vascular compliance, and systemic vascular resistance and

other physiological and physical factors results in the AP

waveformda complex physiological signal (Fig. 2).
Pulse wave analysis for blood flow
estimationdbasic measurement principles

The term PWA comprises numerous algorithms to measure or

estimate CO from the AP waveform. Here, we give an overview

of basic principles of PWA algorithms and their underlying

physiologic assumptions.
Windkessel models

Two-element Windkessel

The first attempts to estimate SV and CO using PWA were

based on the Windkessel model of Otto Frank.24 This model

assumes that at steady haemodynamic state, the amount of

blood entering a blood vessel is equal to the amount of blood

leaving the vessel during the cardiac cycle. The compliance of

downstream vessels directly affects the flow through them in

a predictable way. During systole, a certain amount of me-

chanical energy is used to expand elastic vessels (especially

the aorta) that hold some of the blood that otherwise would

pass through them. Consequently, during systole, the outflow

of the aorta is lower than the inflow. Physically, elastic vessels
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Fig 2. Physiology of the arterial blood pressure waveform. Arterial blood pressure (AP) waveform with systolic AP (SAP), diastolic AP (DAP),

and mean AP (MAP). Changes in left ventricular stroke volume, vascular compliance, and systemic vascular resistance influence the shape

of the AP waveform.
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act like a capacitor which is able to store electrical charge (i.e.

blood) when there is a charging force (i.e. pressure difference).

During diastole, when the aortic valve is closed, the pressure

inside the elastic vessels decreases and the stored elastic en-

ergy is used to propel the stored blood towards more distal

vessels. At this particular point of the cardiac cycle, the

outflow of the aorta is higher than the inflow which equals

zero (the heart is not pumping blood into the aorta). Frank24

described those fundamental mechanisms of the arterial

system with a two-element Windkessel model. This model

comprises a resistor R and a capacitor C and operates like an

RC circuit (Fig. 3). According to Poiseuille’s law, the resistance

of the vascular system is mainly determined by resistance

vessels (i.e. the smallest arteries and arterioles). The compli-

ance is mainly determined by the elasticity of the aorta and

other large arteries. However, a strict separation of compliant

and resistance vessels of the arterial system is impossible

because large compliant arteries also have resistive properties

and small arteries and arterioles do have some compliance.25

Therefore, these lumped arterial models are called Wind-

kessel models, even thoughmainly the large arteries act as the

Windkessel.

Assuming a RC circuit, CO can be calculated after identi-

fying the time constant tau ðt¼ R ,CÞ of the aortic pressure

profile during diastole and estimating C from aortic pulse wave

velocity and cross-sectional area. Even if the two-element

Windkessel model can explain the exponential decay of

proximal aortic pressure during diastole, it fails when

explaining the systolic part of the AP waveform.26 To further

improve the two-element Windkessel model, more elements

or wave reflection effects have been added over time to the

initial model.
Three-element Windkessel

Ohm’s law could only be applied, if blood vessels were rigid

tubes. This would imply that the vascular resistance and the

driving pressure over the whole cardiac cycle would be con-

stant. However, the vascular system does not match these

criteria as it comprises an elastic component with the conse-

quence that the vascular resistance and flow vary with pres-

sure over time. Therefore, three-element Windkessel models

consider an additional variable, called impedance. The

impedance depends on the classical resistance, the compli-

ance, and the inertial properties of the vessels and the blood.

For sinusoidal signals it refers to the relation between the

pressure difference and the flow through a linear system.

The possibility of measuring aortic flow together with the

ability to analyse this sinusoidal signal by carrying out Fourier

analysis allowed the calculation of arterial input impedance.

The arterial input impedance is the impedance of the whole

system at its entrance. Westerhof and colleagues27 added this

resistive element, called the characteristic impedance Zc in

series with the RC model of the two-element Windkessel

model (Fig. 3). This three-element Windkessel model is

capable of simulating the behaviour of the arterial tree for low

and high wave frequencies compared with the two-element

Windkessel model that failed representing arterial properties

at higher frequencies. By that, the model has been improved

especially at higher frequencies.
Four-element Windkessel

The three-element Windkessel generally overestimates total

arterial compliance and underestimates aortic characteristic
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impedance; thus, a four-element Windkessel model was sug-

gested.28,29 The fourth element introduced in the model is an

inductor Lwhich accounts for total arterial inertance (Fig. 3).30

Arterial inertance combines the three variables blood density,

vessel cross-sectional area, and vessel length. Using the four-

element Windkessel model enables estimating total arterial

compliance but estimating the inertance is difficult.
Wave reflection and Windkessel models

Amajor challenge for PWA usingWindkesselmodels is that, in

clinical practice, AP waveforms are usually obtained in a pe-

ripheral and not a central artery. Analysing the peripheral AP

waveform is complex because of wave reflection phenom-

ena22 that occur especially at the level of resistance arteries in

the periphery.21 The waves aredin partdreflected backwards

to the heart and interfere with each other. Pressure or flow

measured distal to the central arteries are the result of for-

ward- and backward-travelling waves. In this way, the AP

waveform is increasingly altered by wave reflection phenom-

ena with increasing distance from the heart31 and the expo-

nential diastolic decay becomes less apparent in peripheral

arteries. Windkessel models only simulate the behaviour of

the arterial system at the entrance of the system but not in the

periphery, because they do not take wave travel and wave

reflection aspects into account. Besides, even in the human

aorta there is no pure exponential decay of the diastolic part of

the AP waveform.32
The Modelflow technique and Hemac
method

Wesseling and colleagues33 used the three-element Wind-

kessel model to compute blood flow from the AP waveform,

called the Modelflow technique, determined aortic character-

istic impedance and compliance based on patient data, and

predicted peripheral resistance by fitting MAP data to the

model. Because the compliance and the characteristic aortic

impedance are a function of AP, the model behaviour is non-

linear and therefore model computations are repeated for

each new AP sample taken. Using this algorithm, they

computed aortic flow using AP as input. Left ventricular SV is

then calculated by integrating model flow during systole; CO is

computed by multiplying SV with heart rate. However, the

cross-sectional area of the aorta varies among patients and

may deviate substantially from Langewouter and colleagues34

study population average in individual patients.35 Therefore,

the Modelflow technique is calibrated against thermodilution

to derive absolute CO values.33,35,36 A modified version of the

Modelflow technique, the Hemac method, uses in vivo aortic

cross-sectional area measurements of patients.35 Calibration

with thermodilution improves the absolute accuracy of the

Hemac method.35
Long time interval analysis technique

The ‘long time interval analysis technique’ aims to avoid the

problem of confounding AP wave reflections.37 The technique

is based on the assumption that confounding wave reflection

effects diminish with increasing time scale (so-called trans-

mission line theory).38 When observing and comparing the AP

waveform in a short time scale, one can directly observe dif-

ferences between the central and the peripheral pressure

waveform.

When observing the AP waveform at long time scales, the

arterial system acts as a single blood reservoir and the Wind-

kessel model can thus be used to estimate CO.37 Based on this

theory, a technique was developed to mathematically analyse

peripheral AP waveform intervals lasting several minutes and

estimate the AP response to a single cardiac contraction

(simulating that pulsatile activity abruptly ceased). An expo-

nential is fitted to the tail end of this AP response to calculate

the time constant that is proportional to CO.37

A further development of this method is the so-called

multi-beat analysis (MBA).37,39 MBA estimates CO continu-

ously by analysing the AP waveform over time scales that

include multiple heart beats and estimates a theoretical AP

waveform that would be the response to a single isolated

cardiac contraction.40,41
Pulse power analysis

The pulse power analysis does not use the morphology of the

AP waveform to estimate CO.42 It rather translates the original

AP signal into a standardised volume waveform (volume in

arbitrary units) based on the assumption that arterial

compliance changes as AP changes. This relationship can be

plotted approximately by an exponential43 which is then used

to calculate the volume change based on the pressure wave-

form with autocorrelation. Autocorrelation is a mathematical

function that can be used to find and analyse repeating
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patterns, such as the presence of a periodic signal.44 Using the

root mean square method finally derives the nominal SV that

is scaled and calibrated to the actual SV that is ejected into the

aorta.45 In theory, the pulse power algorithm has several ad-

vantages over other PWA systems, such as measurement site

independency and a reduced effect of damping to the

system.42
Pressure recording analytical method

The pressure recording analytical method (PRAM) analyses the

AP waveform over the whole cardiac cycle and identifies

specific parts of the AP waveform that only last for a few

milliseconds, called ‘points of instability’.46 Therefore, an

analytical resolution of 1000 points per second (1000 Hz) is

necessary. Points of instability are distributed along the whole

AP waveform and are mainly caused by the mix-up of forward

and backward reflected waves.47 The algorithm estimates

cardiovascular impedance in a beat-to-beat resolution and

allows the system to adapt for changes in vascular impedance

as a result of changes in vascular tone, cardiac contractility, or

heart rate.48 This is why PRAM does not need external or in-

ternal (based on databases) calibrations in contrast to all other

PWA techniques.47 For the application of the PRAM algorithm,

it is not only essential that the AP waveform is totally free of

artifactsdwhich is true for basically every PWA methoddbut

also that the damping properties of the arterial catheter/

tubing/transducer-system are optimised.
Pulse wave analysis technologies available
for clinical practice

Numerous monitoring systems using PWA are commercially

available to be used at the bedside. These PWA monitoring

systems can be classified according to their invasiveness and

method to calibrate the estimated CO values (Fig. 4). There are

invasive, minimally-invasive, and noninvasive PWA systems.

PWA systems can additionally be classified according to their

type of calibration into: (1) externally calibrated systems, (2)

internally calibrated systems, and (3) uncalibrated systems.

Externally calibrated systems combine PWA with another

measurement techniquedusually an indicator dilution

methoddto mandatorily calibrate PWA-derived CO values to

CO values measured or estimated using the external mea-

surement technique. Internally calibrated systems use bio-

metric, demographic, and haemodynamic data, and AP

waveform characteristics to calibrate PWA-derived CO values.

Uncalibrated systems do not use external or internal calibra-

tion but estimate CO solely based on AP waveform

characteristics.
Invasive and minimally-invasive pulse wave
analysis

Invasive andminimally-invasive PWA technologies all have in

common that they analyse an AP waveform that is invasively

derived using an arterial catheter.
Invasive PWA with external calibration

Externally calibrated PWA systems estimate CO from the

invasively assessed AP waveform and calibrate it to CO mea-

surements from a reference method.
The PiCCO system (Pulsion Medical Systems, Feldkirchen,

Germany) continuously estimates CO using PWA based on the

area of the systolic part of the AP curve (until the dicrotic notch

indicating aortic valve closure). CO estimations are calibrated

to CO measurements using intermittent transpulmonary

thermodilution. Therefore, a central venous catheter (used for

the injection of the cold indicator solution) and a dedicated

thermistor-tipped arterial catheter (Pulsiocath; Pulsion Medi-

cal Systems) are required. The arterial catheter should be

placed in a central artery (femoral, brachial, or axillary artery).

Periodic recalibration of the PWA-derived CO estimation by

transpulmonary thermodilution is recommended,49 particu-

larly after anticipated changes in vascular tone, such as in

patients with circulatory shock who require therapy with

vasoactive agents50 or larger amounts of fluids.51

Another commercially available monitoring system that

calibrates PWA-derived CO to COmeasured using intermittent

transpulmonary thermodilution is the VolumeView system

(Edwards Lifesciences, Irvine, CA, USA). It also requires a

specific thermistor-tipped femoral arterial catheter (Volume-

View catheter, Edwards Lifesciences) that is connected to a

haemodynamic monitor (EV1000 or Hemosphere, both

Edwards Lifesciences) and a central venous catheter for in-

jection of cold indicator solution. The underlying PWA algo-

rithm considers waveform characteristics based on a three-

element Windkessel model and advanced wave shape pa-

rameters that primarily rely on the assessment of aortic

compliance, waveform skewness, and kurtosis calculations.52

The LiDCOplus system (LiDCO, Cambridge, UK) uses a

proprietary algorithm (PulseCO) to estimate CO using pulse

power analysis. The estimated CO is calibrated to CO mea-

surements using intermittent transpulmonary lithium dilu-

tion. A specific lithium-sensitive electrode incorporated in an

arterial catheter derives a lithium concentration-time curve.

The area under this curve is inversely correlated to CO.53 In

patients on lithium therapy, lithium dilution-derived CO will

be overestimated. In addition, use of some neuromuscular

blocking agents containing quaternary ammonium residues

may be detected by the lithium sensor, making CO calibration

inaccurate.54
Minimally-invasive PWA with internal calibration

Internally calibrated PWA systems estimate CO from the

invasively obtained AP waveform without calibration to an

external CO measurement. Thus, they do not require a (cen-

tral) venous catheter for calibration and therefore are also

referred to as ‘minimally-invasive’ PWA systems.7 Some

internally calibrated systems additionally offer the option to

alternativelydbut not mandatorilydcalibrate PWA-derived

CO values to external CO values.

The FloTrac system (Edwards Lifesciences) is based on the

so-called ‘Arterial Pressure-based Cardiac Output’ (APCO) al-

gorithm. The APCO algorithm statistically analyses PP char-

acteristics on a beat-to-beat basis and corrects it for changes in

arterial compliance and resistance.55,56 In detail, the AP

waveform is analysed at a high resolution, and the standard

deviation of successive PP measurements is calculated.

Vascular tone is estimated based on MAP and AP waveform

characteristics such as skewness and kurtosis. All these vari-

ables are combined into a factor ‘Chi’ that is continuously

updated and used for CO estimation.55

The ProAQT/Pulsioflex system (Pulsion Medical Systems)

continuously estimates CO based on the area of the systolic
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part of the AP curve. It corrects for aortic compliance purely

based on empiric demographic and biometric data.

The LiDCOrapid system (LiDCO) uses pulse power analysis

and the proprietary PulseCO algorithm to estimate CO without

external calibration by lithium dilution. A nomogram is used

to estimate CO from the nominal maximum aortic volume.

The nomogram results from multivariate analysis of the

relation between aortic volume and biometric and de-

mographic data.57

The Argos CO monitor (Retia Medical, Valhalla, NY, USA)

uses MBA to estimate CO. Its measurement principle is based

on long time interval analysis and applies a scaling formula

which uses biometric data for CO estimation.40,41
Minimally-invasive uncalibrated PWA

The MostCare system (Vygon, �Ecouen, France) is an uncali-

brated PWA system. It is based on the PRAM algorithm that

allows beat-to-beat impedance estimations and further

calculation of haemodynamic variables such as SV or CO. The

ability to update the impedance during each heartbeat makes

the system reactive in case of sudden cardiovascular changes

(e.g. changes in vascular tone, volume expansion, activation or

depression of the sympathetic nervous system). The MostCare

system is connected to an arterial pressure transducer or

another monitor that obtains a continuous AP waveform.
(Minimally-)invasive
(arterial catheter)

Calibrated systems

Externally calibrated:
- indicator dilution method
- any other external CO value
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- biometri
- demogr
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- wavefor

Fig 4. Classification of pulse wave analysis monitoring systems. Pulse

invasiveness and method they use to calibrate the estimated cardiac o
Noninvasive pulse wave analysis

In the past years, several methods for noninvasive PWA using

noninvasive sensors to continuously record the AP waveform

became available.6,58,59 In contrast to invasive and minimally-

invasive PWA methods, noninvasive PWA methods do not

bear the effort and risks associated with arterial or (central)

venous cannulation. Noninvasive PWA systems are either

based on the volume clamp method using a finger-cuff or on

automated radial artery applanation tonometry using a sensor

placed on the skin over the radial artery. All currently available

noninvasive PWA systems use internal calibration to estimate

CO.
Volume clamp method

The volume clamp method, also called vascular unloading

technology or finger-cuff technology, was first described by

Pen�az and colleagues.60 After technical and algorithmic re-

finements, this measurement principle is used by the Clear-

Sight system (Edwards Lifesciences), formerly Nexfin (BMEye,

Amsterdam, The Netherlands), and the CNAP system

(CNSystems Medizintechnik, Graz, Austria). The sensor of

volume clamp method-based systems contains an inflatable

finger-cuff and an infrared plethysmograph that measures the

blood volume in the finger arteries, which is changing during
Noninvasive
(noninvasive sensors)

Pulse wave
analysis

Uncalibrated systems

 calibrated:
c data
aphic data
ynamic data
m characteristics

CO

wave analysis monitoring systems are classified according to their

utput (CO).
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the cardiac cycle as a result of changes in AP.61 An automated

feedback system inflates and deflates the finger-cuff rapidly in

order to keep the volume in the finger arteries constant

(unloaded) by applying a counter pressure. From this counter

pressure, the AP waveform is reconstructed indirectly and is

analysed using PWA to estimate CO. Since a proper pulsation

in the finger arteries is mandatory for this technology, several

clinical conditions such as circulatory shock, high-dose vaso-

pressor therapy, hypothermia, and vascular diseases are

limitations.62

The ClearSight system uses one or two finger-cuffs and a

heart reference sensor to compensate for hydrostatic pressure

differences between the level of the heart and the finger-cuff.

The ClearSight system internally calibrates the AP waveform

continuously to compensate for vasodilation and vasocon-

striction.61,63 The subsequently displayed AP waveform is

scaled and adapted to resemble brachial AP.64,65 Assuming a

three-element Windkessel model, the AP waveform is ana-

lysed using PWA to estimate CO.66

The CNAP system uses an alternating double finger-cuff

and scales the obtained AP waveform to intermittent oscillo-

metric upper-arm cuff AP values and thereby resembles

brachial AP. The underlying PWA algorithm of the CNAP sys-

tem is called continuous noninvasive CO (CNCO) algorithm.67

The CNCO algorithm estimates CO by analysing the systolic

and diastolic part of the AP waveform, thereby accounting for

preload, contractility, afterload, and vessel compliance.67

Database-derived calibration factors are used to obtain abso-

lute CO values.
Applanation tonometry

Another method for CO estimation using noninvasive PWA is

automated radial artery applanation tonometry.6,58,59,62,68 To

continuously record the AP waveform, a sensor is placed on

the skin above the radial artery. It slightly compresses (i.e.

applanates) the radial artery so that its transmural pressure is

zero. At this point of zero transmural pressure, MAP can be

measured. After scaling of the waveform, the system displays

the AP waveform and analyses it using PWA. Different ap-

proaches have been proposed to adjust the sensor. The T-Line

system (Shanshi Medical, Shangqiu, China; formerly, Tensys

Medical, San Diego, CA, USA) uses a sensor included in a

bracelet that electromechanically adjusts sensor position.68

The DMP-Life system (DAEYOMEDI Co., Ansan, South Korea)

uses an array of piezoresistive semiconductor transducer

sensors adjusted by an actuator.69

The T-Line system estimates CO using PWA with a non-

linear mathematical model comprising biometric and de-

mographic data and AP waveform characteristics (SAP, DAP,

MAP, PP, beat-to-beat interval, maximal slope within systole,

and systolic area).70

The DMP-Life system estimates CO using a modified Kou-

choukos algorithm71 analysing the systolic part of the AP

waveform and considering biometric and demographic data.69

Systems for automated applanation tonometry are sus-

ceptible to motion artifacts. Even slight movements of the

sensor can impair the AP waveform quality and falsify SV and

CO estimations.
General limitations of pulse wave analysis

Besides inherent technical limitations of each PWA technol-

ogy, PWA has some method immanent general limitations

that need to be considered. PWA depends on an optimal AP

waveform signal that can be disturbed in certain clinical

situations.6

Although invasive AP monitoring with an arterial catheter

is the reference method to record the AP waveform, mea-

surements can be invalidated by artifacts, including under-

damping and overdamping.72,73 Underdamping and especially

overdamping may lead to the impossibility to correctly

perform PWA, since many PWA algorithms rely on the correct

identification of the dicrotic notch that is necessary to distin-

guish the systolic and the diastolic parts of the AP waveform.

Most PWA devices do not automatically detect and correct

inappropriate AP waveform readings. Therefore, the operator

needs to visually check, and if necessary correct the AP

waveform regularly. Thus fast-flush tests should repeatedly be

performed because the dynamic response may change over

time.74 PWA-derived variables should only be used after the AP

waveform has been checked for artifacts and has been

optimised.

Arterial compliance has a major impact on PWA-derived

CO estimations. Age influences arterial compliance.

Althoughmost systems account for the effect of age on arterial

compliance in the underlying algorithm, most algorithms

have not been validated in paediatric patients.

Rapid changes and alterations in vasomotor tone that

occur, for instance, in patients having septic shock and liver

failure, may impair the measurement performance of PWA

systems. Invasive externally calibrated PWA systems should

be frequently re-calibrated in these patients.49 Minimally-

invasive and noninvasive PWA systems may require some

time to adapt to the new haemodynamic situation; new CO

estimations may nevertheless deviate from the true value.

PWA cannot be used in patients with non-pulsatile blood

flow (e.g. patients on veno-arterial extracorporeal membrane

oxygenation or patients with a left ventricular assist device).

Of note, veno-venous extracorporeal membrane oxygenation

does not alter the AP waveform but may impact thermodilu-

tion CO measurements75 used by invasive externally cali-

brated PWA systems.
Conclusions

Cardiac output is a key determinant of oxygen delivery. Pulse

wave analysis allows the estimation of cardiac output based

on a continuous analysis of the AP waveform. A profound

understanding of the physiology of the arterial pressure

waveform, basic principles of pulse wave analysis algorithms

for cardiac output estimation, and limitations of pulse wave

analysis technologies is keywhen using pulse wave analysis in

clinical practice. The arterial pressure waveform is a complex

physiological signal that is determined by an interplay of left

ventricular stroke volume, systemic vascular resistance, and

vascular compliance. There are numerous pulse wave analysis

algorithms to estimate cardiac output, including Windkessel

models, long time interval analysis or multi-beat analysis,
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pulse power analysis, or pressure recording analyticalmethod.

There are invasive, minimally-invasive, and noninvasive

pulse wave analysis monitoring systems that can additionally

be classified according to the method they use to calibrate the

estimated cardiac output values in externally calibrated sys-

tems, internally calibrated systems, and uncalibrated systems.
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