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Comparison of 3 dee
p learning neural networks for
classifying the relationship between the mandibular third

molar and the mandibular canal on panoramic
radiographs

Motoki Fukuda, DDS,a Yoshiko Ariji, DDS, PhD,a Yoshitaka Kise, DDS, PhD,a Michihito Nozawa, DDS,a

Chiaki Kuwada, DDS,a Takuma Funakoshi, DDS,a Chisako Muramatsu, PhD,b Hiroshi Fujita, PhD,c

Akitoshi Katsumata, DDS, PhD,d and Eiichiro Ariji, DDS, PhDa
Objective. The aim of this study was to compare time and storage space requirements, diagnostic performance, and consistency

among 3 image recognition convolutional neural networks (CNNs) in the evaluation of the relationships between the mandibular

third molar and the mandibular canal on panoramic radiographs.

Study Design. Of 600 panoramic radiographs, 300 each were assigned to noncontact and contact groups based on the relation-

ship between the mandibular third molar and the mandibular canal. The CNNs were trained twice by using cropped image

patches with sizes of 70 £ 70 pixels and 140 £ 140 pixels. Time and storage space were measured for each system. Accuracy,

sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were determined. Intra-CNN and

inter-CNN consistency values were calculated.

Results. Time and storage space requirements depended on the depth of CNN layers and number of learned parameters, respec-

tively. The highest AUC values ranged from 0.88 to 0.93 in the CNNs created by 70 £ 70 pixel patches, but there were no signifi-

cant differences in diagnostic performance among any of the models with smaller patches. Intra-CNN and inter-CNN consistency

values were good or very good for all CNNs.

Conclusions. The size of the image patches should be carefully determined to ensure acquisition of high diagnostic performance

and consistency. (Oral Surg Oral Med Oral Pathol Oral Radiol 2020;130:336�343)
Panoramic radiography is one of the most common

examinations for screening various lesions and condi-

tions in the maxillofacial region. Cone beam computed

tomography (CBCT) is recommended before mandibu-

lar third molar extraction when the third molar and

mandibular canal are superimposed on panoramic

images to minimize the risk of mandibular nerve dam-

age during extraction.1-9 However, determination of

the relative positions of the third molar and the man-

dibular canal is sometimes difficult for inexperienced

observers. Under these circumstances, there has

recently been a surge in demand for computer-aided

diagnosis (CAD) systems in the field of maxillofacial

imaging in a push to ensure complete observations of

the anatomy and to avoid overlooking critical diseases

and conditions.10,11

Among several CAD techniques, deep learning (DL)

systems using convolutional neural networks (CNNs)

have received considerable attention in recent years.12
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CNNs have various functions, such as classification,

object detection, and semantic segmentation.13-15

Given an input image to be evaluated, the learning

model for classification can yield the most appropriate

output of several classes learned. Some CNNs for clas-

sification, such as AlexNet, GoogLeNet, and VGG-16,

are freely available16-18 in the Digits version 5.0 train-

ing system (Nvidia Corporation, Santa Clara, CA).

These networks have won prizes in the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC; https://

arxiv.org/abs/1409.0575) and are commonly used in

various fields. Research has addressed the application

of CNNs to panoramic images.19,20 However, no stud-

ies have offered a detailed comparison of their diagnos-

tic performance and consistency with the same data

sets. Such a comparison would clarify several charac-

teristic features of CNNs and could contribute to appro-

priate network selection in future clinical applications

and studies, although the performance and consistency

would differ, depending on such factors as the size of

the image patches.
Statement of Clinical Relevance

The deep learning technique appears to have poten-

tial for classifying the relationship between the man-

dibular third molar and the mandibular canal on

panoramic radiographs and could be useful in mini-

mizing the risk of nerve damage during extraction.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.oooo.2020.04.005&domain=pdf
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://doi.org/10.1016/j.oooo.2020.04.005
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The aims of the present study were to evaluate the

diagnostic performance and consistency of 3 classifica-

tion CNNs (AlexNet, GoogLeNet, and VGG-16) by

using the same panoramic images, including the man-

dibular third molar and the mandibular canal, and to

elucidate their differences, together with the effect of

the size of the training image patches.
MATERIALS ANDMETHODS
Patients
Among approximately 6600 panoramic images

obtained and stored in our hospital image database

between December 2018 and May 2019, 2242 images

were chosen by searching for the reference words

“impacted tooth” on the imaging reports. Of these

radiographs, 600 images were randomly selected by 2

radiologists (M.F. and E.A.), on the basis of the follow-

ing criteria: (1) no contact or superimposition between

the mandibular third molar and canal (300 images,

which comprised the noncontact group); and (2) clear

contact or superimposition (300 images, which com-

prised the contact group) (Figure 1). The radiologists

were in complete agreement with regard to the relation-

ship of the roots and canals in all 600 images; radio-

graphs for which there was disagreement were

excluded. These panoramic images were downloaded

from the database in JPEG format with a matrix size of

1039 £ 1378 pixels.
Fig. 1. Original panoramic radiographs before cropping. A,

Radiograph from the noncontact group. The white arrows

indicate third molars that exhibit no contact or superimposi-

tion between the roots and the mandibular canals. B, Radio-

graph from the contact group. The black arrow indicates a

third molar that is in apparent contact with the canal.
All panoramic radiographs were made with the

Veraviewepocs X550 PCR (J. Morita, Tokyo, Japan)

with a tube voltage of 75 kV, tube current of 8 mA,

and acquisition time of 16.2 seconds.
Preparation of data sets
Two sizes of image patches with square regions of

interest of 70 £ 70 and 140 £ 140 pixels were cropped

from the downloaded panoramic images. The center of

the region of interest was placed at the area where the

molar and the canal were situated most closely

(Figure 2).

In total, 600 image patches were randomly classified

into 400 training images, 100 validation images, and

100 test images. The training data set included 200

noncontact (class 0) and 200 contact (class 1) patches.

The validation data set consisted of 50 noncontact and

50 contact patches. Data augmentation was performed

on the training image patches by changing and adjust-

ing image sharpness, brightness, and contrast by using

image processing software (Irfan View version 4.44;

http://www.Irfanview.com). This process is commonly

used to increase the number of data sets for more effec-

tive training in the case of small size data sets. Conse-

quently, the size of each training data set increased

from 400 patches to 9000 patches.

The learning processes were performed twice for

each CNN by using the same learning (training and val-

idation) and test data sets. Two learning models were
Fig. 2. Panoramic radiograph with a region of interest (ROI)

indicated by the white box. The center of the ROI was placed

at the area where the molar and canal were situated most

closely. Cropping was performed in two different sizes: 70 £
70 pixels and 140 £ 140 pixels from the 1039 £ 1378 pixel

panoramic image.

http://www.Irfanview.com


Fig. 3. An example of the output display of the testing pro-

cess. Path denotes the place and name of the patch, ground

truth denotes the correct class, and top predictions denote the

possibility value of each class.
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created for the 2 different sizes of image patches. Alex-

Net, GoogLeNet, and VGG-16 were trained over 300,

300, and 100 epochs, respectively. Consequently, 12

models were created and tested.

CNN architectures
Learning models were composed by using the 3 differ-

ent networks: AlexNet, GoogLeNet, and VGG-16.16-18

These 3 CNNs are publicly available on the DIGITS

library version 5.0 (NVIDIA website: https://devel

oper.ndivia.com/digits). They are all used to classify

what is described in an image, having some differences

in these architectures, such as layer depth and fine-

tuned status (with or without). AlexNet was developed

by Krizhevsky et al. in 2012 as a high-performance

image recognition CNN. This network consists of 8

layers and was the simplest and shallowest of the 3 net-

works tested.16 GoogLeNet was implemented by Sze-

gydy et al. in 2015. This network has a characteristic 1

£ 1 convolutional layer for dimension reduction,

which decreases the number of learned CNN model

parameters.17 The phrase“1 £ 1” indicates filter size of

the convolutional layer, and it is widely known as a

simple technique to decrease the number of channels in

the field of computer science. VGG-16 was developed

by Simonvan in 2015. This network is based on Alex-

Net and is composed of deeper layers. There are some

variations in the VGG network: The number following

VGG denotes the number of layers (e.g., VGG-16,

VGG-19). In addition, VGG-16 in the DIGITS library

is a fine-tuned network, including a pretrained

architecture.18

Time and storage space requirement
The storage size of the trained model and the time

requirement of the training process were compared

among the 3 CNNs.

Evaluation of diagnostic performance
The test results for individual image patches with pre-

dicted classification values of 0 through 100 are shown

in Figure 3. For the ground truth, the prediction per-

centage of the contact group corresponds to the true

positive fraction (TPF = sensitivity) and that of the

noncontact group corresponds to the false positive frac-

tion (FPF = 1 � specificity). Receiver operating char-

acteristic (ROC) curves were created, and the best

cutoff points of the predictions were determined as the

points on the curves closest to the upper left corner of

the graph. For an ROC curve, such a point represents

the point at which the sensitivity and specificity are

maximized. Positive evaluations (assigning an image

patch to the contact group) were determined when the

predicted value was beyond the cutoff value. Accuracy,

sensitivity, and specificity were calculated using these
cutoff values.21 The area under the ROC curve (AUC)

was obtained for each model, and these results were

compared by using the x2 test, with the significance of

difference established at P <.01.22
Evaluation of consistency
Intra- and inter-CNN consistencies were evaluated by

using kappa statistics for the test results. For the intra-

CNN consistency, the kappa values between the first

and second models were obtained for both the 70 £ 70

and 140 £ 140 pixel image patches. For the inter-CNN

consistency, the values were determined for the 3 pairs

of 2 CNNs for both the first and second models. The

kappa values were evaluated as follows: k < 0.2 indi-

cated poor consistency; 0.21 to 0.4 indicated fair con-

sistency; 0.41 to 0.6 indicated moderate consistency;

0.61 to 0.8 indicated good consistency; and 0.81 to 1.0

indicated very good consistency.23
Ethical approval
All procedures followed were in accordance with the

ethical standards of the responsible committee on

human experimentation (institutional and national) and

followed the tenets of the Helsinki Declaration of 1964

and later versions. Informed consent was obtained

from all patients for being included in the study. This

study obtained ethical approval from Aichi-Gakuin

University ethics committee (No. 496).
RESULTS
Time and storage space requirements
The time and storage space requirements for the learn-

ing process were 30 minutes and 63.8 GB, 2 hours and

http://developer.ndivia.com/digits
http://developer.ndivia.com/digits


Table I. Diagnostic performance

CNN AlexNet GoogLeNet VGG-16

Pixel size 70£ 70 pixel 140£ 140 pixel 70£ 70 pixel 140£ 140 pixel 70£ 70 pixel 140£ 140 pixel

First model Second model First model Second model First model Second model First model Second model First model Second model First model Second model

Cutoff value 100 33 83 81 73 81 74 100 69 88 90 18

Accuracy 0.90±0.06 0.88±0.06 0.85±0.07 0.84±0.07 0.92±0.05 0.86±0.07 0.84±0.07 0.82±0.08 0.88±0.06 0.87±0.07 0.71±0.09 0.73±0.09

Sensitivity 0.88±0.06 0.88±0.06 0.82±0.08 0.80±0.08 0.88±0.06 0.84±0.07 0.82±0.08 0.76±0.08 0.88±0.06 0.88±0.06 0.62±0.10 0.80±0.08

Specificity 0.92±0.05 0.88±0.06 0.88±0.06 0.88±0.06 0.96±0.04 0.88±0.06 0.86±0.07 0.88±0.06 0.88±0.06 0.86±0.07 0.80±0.08 0.66±0.09

AUC 0.90 0.91 0.90*,† 0.89‡,§ 0.93 0.88 0.87 0.83 0.91 0.91 0.75*,‡ 0.75†,§

(0.84-0.96) (0.85-0.97) (0.83-0.96) (0.83-0.96) (0.88-0.99) (0.82-0.95) (0.80-0.95) (0.75-0.91) (0.85-0.97) (0.85-0.97) (0.65-0.84) (0.66-0.85)

*,†,‡,§: Values with the same superscript letter exhibit significant difference between them by the chi-squared test (P <.01).

The parentheses denote 95% confidence interval.

AUC, area under the curve; CNN, convolutional neural network.

F
ig
.
4
.
R
eceiv

er
o
p
eratin

g
ch
aracteristic

(R
O
C
)
cu
rv
es

o
f
th
e

7
0

£
7
0

size
p
atch

co
n
v
o
lu
tio

n
al

n
eu
ral

n
etw

o
rk

(C
N
N
)

m
o
d
els.

A
ll
C
N
N
s
w
ere

train
ed

tw
ice

w
ith

ex
actly

th
e
sam

e

d
ata

set.
T
h
e
area

u
n
d
er

th
e
receiv

er
o
p
eratin

g
ch
aracteristic

cu
rv
e

(A
U
C
)

v
alu

es
w
ere:

A
lex

N
et

fi
rst

m
o
d
el

0
.9
0

(0
.8
4�

0
.9
6
),

seco
n
d

m
o
d
el

0
.9
1
(0
.8
5�

0
.9
7
);

G
o
o
g
L
eN

et

fi
rst

m
o
d
el

0
.9
3

(0
.8
8�

0
.9
9
),

seco
n
d

m
o
d
el

0
.8
8

(0
.8
2�

0
.9
5
);
V
G
G
-1
6
fi
rst

m
o
d
el

0
.9
1
(0
.8
5�

0
.9
7
),
seco

n
d

m
o
d
el

0
.9
1
(0
.8
5�

0
.9
7
).

T
h
e
v
alu

es
in

p
aren

th
eses

d
en
o
te

th
e
9
5
%

co
n
fi
d
en
ce

in
terv

al.

F
ig
.
5
.
R
eceiv

er
o
p
eratin

g
ch
aracteristic

(R
O
C
)
cu
rv
es

o
f

1
4
0£

1
4
0
size

p
atch

co
n
v
o
lu
tio

n
al

n
eu
ral

n
etw

o
rk

(C
N
N
)

m
o
d
els.

A
ll
C
N
N
s
w
ere

train
ed

tw
ice

w
ith

ex
actly

th
e
sam

e

d
ata

set.
T
h
e
area

u
n
d
er

th
e
receiv

er
o
p
eratin

g
ch
aracteristic

cu
rv
e

(A
U
C
)

v
alu

es
w
ere:

A
lex

N
et

fi
rst

m
o
d
el

0
.9
0

(0
.8
3�

0
.9
6
),

seco
n
d

m
o
d
el

0
.8
9
(0
.8
3�

0
.9
6
);

G
o
o
g
L
eN

et

fi
rst

m
o
d
el

0
.8
7

(0
.8
0�

0
.9
5
),

seco
n
d

m
o
d
el

0
.8
3

(0
.7
5�

0
.9
1
);
V
G
G
-1
6
fi
rst

m
o
d
el

0
.7
5
(0
.6
5�

0
.8
4
),
seco

n
d

m
o
d
el

0
.7
5
(0
.6
6�

0
.8
5
).
T
h
e
p
aren

th
eses

d
en
o
te

9
5
%

co
n
fi
-

d
en
ce

in
terv

al.

O
O
O
O

O
R
IG

IN
A
L
A
R
T
IC
LE

V
o
lu
m
e
1
3
0
,
N
u
m
b
er

3
F
u
ku
d
a
et
a
l.

3
3
9



Table II. Intra-CNN consistency

CNN Patch size Kappa value

AlexNet 70£ 70 pixel 0.98

140£ 140 pixel 0.91

GoogLeNet 70£ 70 pixel 0.86

140£ 140 pixel 0.90

VGG-16 70£ 70 pixel 0.99

140£ 140 pixel 0.80

CNN: convolutional neural network
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11.6 GB, and 1 hour and 62.4 GB for AlexNet, Goo-

gLeNet, and VGG-16, respectively.

Diagnostic performance
The testing results are summarized in Table I, and the

ROC curves are presented in Figures 4 and 5. In com-

parison of the AUCs between the 70 £ 70 and 140 £
140 pixel patches, the smaller patches had relatively

high AUCs, ranging from 0.88 to 0.93, whereas the val-

ues for the larger patches ranged from 0.75 to 0.93.

There were no significant differences between the per-

formance of AlexNet and GoogLeNet or GoogLeNet

and VGG-16. The differences between AlexNet and

VGG-16 were significant in both the first and second

models only in the 140 £ 140 pixel patches. The first

70 £ 70 pixel GoogLeNet model produced the largest

AUC of 0.93, but there were no significant differences

compared with the other models created by 70 £
70 pixel patches (see Figure 4 and Table I). Although
Fig. 6. A noncontact case that all networks misdiagnosed. A, Pano

third molar that was mistakenly interpreted as the roots contacting

a black arrow indicating the sclerotic area just above the mandibul

third molar root. C, Axial CT image denoting no contact between t

arrow head indicates the mandibular canal. D, Coronal CT image, w

mandibular third molar root apex and the mandibular canal.
all models achieved high performance with use of the

suggested cutoff values, some patients were misdiag-

nosed by all CNNs (Figure 6).

Consistency
The intra-CNN consistency is summarized in Table II.

All 3 CNNs provided very good consistency for both

image patch sizes. The inter-CNN consistency is
ramic radiograph, with a white arrow indicating a mandibular

the canal. B, Sagittal computed tomography (CT) image, with

ar canal. The sclerotic bone was misinterpreted as part of the

he mandibular third molar and the mandibular canal. A white

ith a black arrow indicating the sclerotic area adjacent to the



able III. Inter-CNN consistency

NN Patch size Kappa value

First model Second model Average

lexNet vs GoogLeNet 70 £ 70 pixel 0.94 0.86 0.90

140 £ 140 pixel 0.86 0.76 0.81

lexNet vs VGG-16 70 £ 70 pixel 0.92 0.89 0.91

140 £ 140 pixel 0.72 0.71 0.72

oogLeNet vs VGG-16 70 £ 70 pixel 0.88 0.83 0.86

140 £ 140 pixel 0.65 0.61 0.63

NN, convolution neural network.
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presented in Table III. The CNN models created by

using 70 £ 70 pixel image patches exhibited very good

consistency among all 3 pairs of 2 CNNs, whereas the

consistency was good for the pairs including the model

created by VGG-16 with 140 £ 140 pixel image

patches.

DISCUSSION
The diagnostic performance of CNNs in previous stud-

ies24-32 has been confirmed to be equivalent to that of

experienced radiologists. In the present study, some

CNN models achieved AUCs of greater than 0.90 with

the use of only 600 panoramic images. In the future, it

may be possible to automatically diagnose the relation-

ship between the mandibular molar and the mandibular

canal on panoramic images by using CNN models.

This level of performance, which should approach

100% accuracy for automatic diagnosis, has not yet

been achieved, and even if it were, the essential ques-

tion of who should take responsibility for the diagnos-

tic results would still remain.

The time and storage space required for the learning

process depended on the depth of the CNN layers and the

total number of parameters learned in the process, respec-

tively.33,34 The time and capacity required in the present

study reflected these opinions. The time required for

AlexNet (30 minutes), VGG-16 (1 hour), and GoogLeNet

(2 hours) increased according to the 8, 16, and 20 layers,

respectively, in these 3 CNNs. GoogLeNet required

11.6 GB of storage space for 5,975,602 parameters, less

than the other 2 CNNs. AlexNet and VGG-16 required

63.8 GB and 62.4 GB with their 56,876,418 and

165,746,503 parameters, respectively. In GoogLeNet, the

dimension of the parameters was reduced by using the

1 £ 1 convolutional layer, thus achieving a relatively

small capacity and high accuracy.17

A smaller size image patch is generally better for the

training process.21 Our results support this hypothesis; the

smaller patch size generally produced better diagnostic

results (Table I, Figures 4 and 5). This is probably attrib-

utable to the unnecessary information that is included in

larger-sized patches. AlexNet had the simplest and shal-

lowest layers among the 3 CNNs evaluated, and was the
least influenced by patch size difference, indicating that it

is the most versatile CNN. In contrast, VGG-16 was the

CNN most strongly influenced by the difference in patch

size. This suggests that more attention should be paid to

the cropped patch size when a learning model is created

by using VGG-16.

In the present study, the training was performed

according to the method proposed by Krizhevsky

et al.16 for creating learning models. The image patches

were automatically and randomly separated into sev-

eral mini-batches and assigned as training and valida-

tion data sets in every training process. Therefore,

there were slight differences in performance between

the first and second models, even when using the same

data sets for the learning process (see Table I). How-

ever, all of the models created in this study showed

very good intra-CNN consistency, with kappa values

of 0.80 or greater and a maximum value of 0.99 for the

VGG-16 70 £ 70 pixel patch size (see Table II). This

may indicate that a DL CAD system can provide highly

reproducible diagnoses. When comparing image patch

sizes, the inter-CNN consistency was higher with the

smaller-size patches than with the larger-size patches

(see Table III). Although a considerable difference was

found between the AlexNet and GoogLeNet structures,

the inter-CNN consistency was very good regardless of

patch size.23 The inter-CNN consistency, including the

VGG-16 model created with 140 £ 140 pixel patches,

was relatively low, probably because VGG-16 was

adversely influenced by the patch size (see Table III).

Figure 6 shows a case misdiagnosed by all models, pos-

sibly due to a sclerotic area resembling the root

between the root apex and the mandibular canal. How-

ever, it is generally difficult to determine the cause of

differences in diagnoses because DL systems do not

easily reveal the reasons behind their judgments.

The cutoff values determined by the ROC curves

varied widely in the present study. These values might

be important for evaluating the performance of CNN

systems because they strongly affect the performance.

When sensitivity and specificity are equally impor-

tant, the values are usually determined by the method

used in the present study or by the Youden index for
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calculating the maximum value of (sensitivity + speci-

ficity � 1).35 Although the value should be adequate

for every model when using a small number of train-

ing images, as in the present study, a learning model

developed by the accumulation of massive amounts of

data might solve this problem by providing steady

cutoff values.

There are some limitations to the present investiga-

tion. First, cases were abstracted regardless of the sta-

tus of the mandibular third molar, such as erupted

versus impacted, and regardless of the direction, num-

bers, and morphology of roots. These factors might

influence the training and testing results. Second,

hyperparameters, such as the learning rate and batch

size, could not be sufficiently optimized in the training

process, although all of them were set as equally as

possible among the CNNs. Third, the panoramic

images were obtained from only 1 institution. Pan-

oramic images should be gathered from many institu-

tions to create more accurate CNN models. Fourth,

sensitivity and specificity are inversely related. If high

sensitivities are desired, the clinician has to expect rela-

tively low specificities, and vice versa. The use of CNN

models should be verified taking this relationship into

account. Fifth, the relationship between the mandibular

third molar and the mandibular canal was not evaluated

3-dimensionally in the present study but was deter-

mined by the consensus opinion of experienced radiol-

ogists. Such relationships, which could be obtained

with CT or CBCT, would be suitable for more detailed

and accurate analysis. Therefore, a future DL study

should be conducted using such modalities as gold

standards. Sixth, CNNs are developed as part of

machine learning in the quest for an intelligent

machine. They are not readily interpretable in that they

are based on hidden functions and transformations that

are exceedingly difficult to explain. Therefore, CNN

CAD systems have a critical disadvantage in that they

are unable to show how to make a diagnosis.

CONCLUSIONS
The diagnostic performance and consistency of learn-

ing models created by 3 CNNs were compared with

regard to evaluation of the relationship between the

mandibular third molar and the mandibular canal on

panoramic images. The CAD system created with DL

appears to be useful for evaluating this relationship on

panoramic images. For the learning process, the size of

image patches should be carefully determined to ensure

high diagnostic performance and consistency. No sig-

nificant differences in diagnostic performance were

found among the 3 CNNs created by smaller-size

image patches, but some differences were verified in

the time and storage capacity required for the learning

process.
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