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Abstract
The family Aspredinidae comprises a clade of complex sys-
tematic relationships, both from molecular and morpholog-
ical approaches. In this study, conventional and molecular 
cytogenetic studies coupled with nucleotide sequencing 
were performed in 6 Aspredininae species (Amaralia hypsiu-
ra, Bunocephalus cf. aloikae, Bunocephalus amaurus, Buno-
cephalus aff. coracoideus, Bunocephalus verrucosus, and Plat-
ystacus cotylephorus) from different locations of the Amazon 
hydrographic basin. Our results showed highly divergent 
diploid numbers (2n) among the species, ranging from 49 to 
74, including the occurrence of an XX/X0 sex chromosome 
system. A neighbor-joining phylogram based on the cyto-
chrome c oxidase I (COI) showed that Bunocephalus coracoi-
deus is not a monophyletic clade, but closely related to B. 
verrucosus. The karyotypic data associated with COI suggest 
an ancestral karyotype for Aspredinidae with a reduced 2n, 

composed of bi-armed chromosomes and a trend toward 
chromosomal fissions resulting in higher diploid number 
karyotypes, mainly composed of acrocentric chromosomes. 
Evolutionary relationships were discussed under a phyloge-
netic context with related species from different Siluriformes 
families. The karyotype features and chromosomal diversity 
of Aspredinidae show an amazing differentiation, making 
this family a remarkable model for investigating the evolu-
tionary dynamics in siluriforms as well as in fish as a whole.

© 2020 S. Karger AG, Basel

Introduction

Aspredinidae fishes (Teleostei, Siluriformes) are com-
monly known as banjo catfish due to their body shape 
resembling such musical instruments: a very wide body 
on the scapular girdle, with a narrow caudal peduncle and 
depressed head [Myers, 1960]. They are endemic to South 
America, where their greatest diversity is found in the 
Amazon basin [Nelson et al., 2016].
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Nowadays, its 44 valid species are distributed in 13 
genera, divided into 3 subfamilies: Aspredininae, Hoplo-
myzontinae, and Pseudobunocephalinae [Fernández-
Yépez, 1950; Nelson et al., 2016; Carvalho et al., 2018; 
Fricke et al., 2019]. However, intra-family phylogenetic 
relationships are not well resolved yet [Friel, 1994; Car-
doso, 2008; Carvalho et al., 2018]. Likewise, the relation-
ships of Aspredinidae with other siluriform families are 
controversial. Available phylogenetic studies disagree 
among themselves regarding the position of some taxa in 
the tree and even about the validity of some genera. How-
ever, 2 hypotheses are currently accepted based on both 
molecular and morphological data, i.e., Aspredinidae as 
sister-group to (1) the Doradoidea superfamily, com-
posed of Doradidae and Auchenipteridae, both Neotrop-
ical clades [Friel, 1994; Sullivan et al., 2006, 2008; Kappas 
et al., 2016; Arcila et al., 2017; Carvalho et al., 2018]; and 
(2) the Asian clade Sisoroidea (Amblycipitidae, Akysidae, 
Erethistidae, and Sisoridae) [Mo, 1991; Chen, 1994; Pin-
na, 1998; Britto, 2002; Diogo, 2004; Cardoso, 2010].

Cytogenetics has been a valuable tool to decipher the 
evolutionary relationships of several fish groups, owing 
to their specific chromosomal and genomic features [Ci-
offi et al., 2018]. Especially, repetitive DNA sequences, 
which constitute the most significant part of the eukary-
otic genome, display an enormous potential for expand-
ing the knowledge of karyotype differentiation [Cioffi 
and Bertollo, 2012]. Among the Aspredinidae and phylo-
genetically related families, although most chromosomal 
studies are restricted to diploid number findings (2n) and 
karyotype composition, they point to a huge chromo-
somal variation ranging from 2n = 24 in Liobagrus mar-
ginatus (Amblycipitidae) to 2n = 58 in several other spe-
cies. Besides, all species analyzed so far display homomor-
phic sex chromosomes, except for Bunocephalus 
coracoideus (Aspredinidae) which presents an uncom-
mon X1X1X2X2/X1Y1X2Y2 sex chromosome system [Fer-
reira et al., 2016]. This system probably originated from 
chromosomal fusions followed by paracentric inversions, 
and also implies the displacement of 5S rDNA sites [Fer-
reira et al., 2016].

Its puzzling systematics makes Aspredinidae an attrac-
tive group to investigate the role of the chromosomal fea-
tures on its evolutionary history and relationships with 
closely related groups. In this sense, we analyzed 6 Aspre-
dinidae species, connecting conventional and molecular 
cytogenetic data and nucleotide sequencing with its in-
ferred phylogenetic tree to improve the knowledge on the 
evolution and relationships among some species of this 
family.

Materials and Methods

Individuals, Mitotic Chromosome Preparation, and Ag- and 
C-Banding
Six Aspredinidae species (Amaralia hypsiura, Bunocephalus cf. 

aloikae, Bunocephalus amaurus, Bunocephalus aff. coracoideus, 
Bunocephalus verrucosus, and Platystacus cotylephorus) were col-
lected from distinct wild natural ecosystems of the Brazilian Ama-
zonian region (Fig. 1). The number and sex of the analyzed indi-
viduals are presented in Table 1. All individuals were deposited in 
the Fish Collection of the National Institute of Amazonian Re-
search (INPA). Mitotic chromosomes were obtained from anterior 
kidney by the conventional air-drying method [Gold et al., 1990]. 
The distribution of the C-positive heterochromatin blocks was ob-
tained according to Sumner [1972], and the determination of the 
nucleolar organizer regions (NOR) was performed with silver ni-
trate staining (Ag-NOR) according to Howell and Black [1980]. 
Anesthesia with clove oil was conducted before sacrificing the an-
imals. The chromosomes were classified as metacentric (m), sub-
metacentric (sm), subtelocentric (st) or acrocentric (a) according 
to the arm ratios [Levan et al., 1964].

Fluorescence in situ Hybridization
Genomic DNA was extracted from liver tissues with Promega’s 

Wizard® Genomic DNA Purification Kit following the manufac-
turer’s instructions. The amplification of the 18S rDNA, 5S rDNA, 
and telomeric sequences (TTAGGG)n followed Gross et al. [2010], 
Martins and Galetti [1999], and Ijdo et al. [1991], respectively. 
FISH was performed according to Pinkel et al. [1986], with minor 
modifications. The 18S rDNA and telomeric probes were labeled 
with digoxigenin-11-dUTP, and the 5S rDNA with biotin-
16-dUTP by nick translation (Roche, Mannheim, Germany), ac-
cording to the manufacturer’s instructions. Hybridization was 
performed for 16–18 h at 37°C in a moist chamber. After hybrid-
ization, the slides were washed for 5 min with 2× SSC and then 
rinsed quickly in 1× PBS. The detection of the probes was per-
formed with streptavidin-FITC (Sigma) for the 5S rDNA probe 
and anti-digoxigenin-rhodamine (Roche) for the 18S rDNA and 
telomeric probe. The chromosomes were counterstained with 
DAPI (1.2 g/mL) in antifading solution (Vector Laboratories).

DNA Barcoding Analysis
Representatives of each cytogenetically analyzed population 

were used, in addition to some populations of B. coracoideus stud-
ied by Ferreira et al. [2016, 2017]. A sequence from GenBank of the 
species Diplomystes nahuelbutaensis was employed as an external 
group (Table 1). The liver and muscle tissues were stored in abso-
lute ethanol, and genomic DNA was obtained with the Wizard® 
Genomic DNA Purification Kit. The GoTaq Colorless Master Mix 
(Promega) was used for PCR of the mitochondrial gene cyto-
chrome c oxidase I (COI) with the primers VF1_t1 (TGT AAA 
ACG GCC AGT CAA CCA ACC ACA AAG ACA TTG G) and 
VR1_t1 (CAG GAA ACA GCT ATG ACT AGA CTT CTG GGT 
GGC CAA AGA ATC A) [Ivanova et al., 2006]. The PCR products 
were purified with 20% PEG [Kimura, 1980] and, for the sequenc-
ing reaction, the BigDye Sequence Terminator v.3.1 kit (Applied 
Biosystems) was used following the manufacturer’s instructions. 
After that, the products were precipitated and sequenced (ABI 
PRISM 3100 Genetic Analyzer of Applied Biosystems/made by 
HITACHI).
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Alignment of Sequences and Phylogenetic Analysis
690-bp sequences were utilized to perform the barcode analy-

sis, using the COI gene. The obtained sequences were submitted to 
the GenBank and Barcode Index Number (BIN) system of BOLD 
(Barcode of Life Data Systems). The sequences were aligned using 
the Geneious® 10.1.3 software, and Kimura’s 2-parameter dis-
tance model [Kimura, 1980] was used to make a neighbor-joining 
dendrogram and bootstrap analysis [Felsenstein, 1985] with 1,000 
repetitions. Every aligned sequence was translated into amino ac-
ids to detect eventual alignment mistakes.

Results

Chromosome Data
A great chromosomal variety was found among the 

analyzed species, with diploid numbers ranging from 
44 to 74, and the following karyotype formulas and fun-
damental numbers (FN) were determined: A. hypsiura 
2n = 74 (4m + 4st + 66a), FN = 82 (Fig. 2a); Bunocepha-
lus cf. aloikae 2n = 44 (18m + 20sm + 6st), FN = 88 
(Fig. 2b); B. amaurus 2n = 62 (4m + 14sm + 4st + 40a), 
FN = 84 (Fig. 2c); Bunocephalus aff. coracoideus 2n = 61 
(5m + 12sm + 4st + 40a), FN = 82 (Fig. 2d); B. verruco-
sus 2n = 64 (4m + 16sm + 10st + 34a), FN = 94 (Fig. 2e); 
and Platystacus cotylephorus 2n = 50 (8m + 20sm + 14st 
+ 8a), FN = 92 for females and 2n = 49 (7m + 20sm + 

14st + 8a), FN = 90 for males (Fig. 2f), revealing the oc-
currence of a sex chromosomes system of the XX/X0 
type.

A significant variation was also detected concerning 
the distribution of rDNA sites. Although only 1 pair car-
rying 18S rDNA sequences occurs in all species, there 
are significant interspecific variations concerning this 
chromosome, as well as in the position of the sites 
(Fig. 3). The Ag-NOR results agreed with the 18S rDNA 
mapping and also confirmed that every site was tran-
scriptionally active in the precedent interphase (Fig. 2, 
boxes). Such differential distribution also applies to the 
5S rDNA sites, plus additional number variations 
(Fig. 3). Notably, in Bunocephalus aff. coracoideus, the 
5S sequences are located in distinct positions in the ho-
mologues of pair 8, indicating that a probable rearrange-
ment has modified their previous position on this chro-
mosome (Fig. 3d). Heterochromatin has a pericentro-
meric distribution in most chromosomes (Fig. 4), except 
for chromosome 1 in Bunocephalus aff. coracoideus, 
which has an interstitial block in its long arm (Fig. 4d). 
Telomeric sequences are located in the terminal regions 
of all chromosomes (Fig. 5). In all of these analyses, there 
were no differences between male and female speci-
mens.

Fig. 1. Legal Brazilian Amazon map, highlighting the collection sites of the Aspredinidae species analyzed in this 
study. 1 Bunocephalus cf. aloikae – Igarapé Bucu, Curicuriari River, Negro River basin, AM. 2 Bunocephalus ver-
rucosus – Igarapé do Sítio Santa Maria, Negro River basin, AM. 3 Amaralia hypsiura and Platystacus cotylephorus –  
Ilha Jutuba, Tocantins River basin, PA. 4 B. amaurus, Bunocephalus aff. coracoideus – Igarapé Apeú, Guamá 
River basin, PA. PA, Pará state; AM, Amazonas state, Brazil.
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DNA Barcoding Data
The dendrogram generated with the neighbor-joining 

algorithm indicated that all species are well structured 
with bootstrap values superior to 99%. The clade includ-
ing P. cotylephorus was positioned as a basal one. A. hyp-
siura is a sister group of the clade encompassing Buno-
cephalus species. B. amaurus and Bunocephalus cf. aloi-

kae are sister groups. However, the B. coracoideus 
population from the Cuieiras River basin [Ferreira et al., 
2017] is more closely related to these species than to prop-
er B. coracoideus, with 1 individual grouped alongside the 
individuals of the Bunocephalus cf. aloikae clade. Besides, 
there is another sister group constituted by B. verrucosus 
and 4 populations of B. coracoideus. It is noteworthy that 

a d

b

c

e

f

Fig. 2. Standard Giemsa-stained karyotypes of Amaralia hypsiura (a), Bunocephalus cf. aloikae (b), Bunocephalus 
amaurus (c), Bunocephalus aff. coracoideus (d), Bunocephalus verrucosus (e), and Platystacus cotylephorus (f). 
The Ag-NOR bearing pairs (RON) are shown in boxes. Scale bar, 10 μm.
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2 B. coracoideus populations, Negro River [Ferreira et al. 
[2016] and Purus River [Ferreira et al., 2017], are on the 
same clade, with 93.3% bootstrap.

Kinship configuration based on COI followed this ar-
rangement: P. cotylephorus, [A. hypsiura, Bunocephalus 
cf. aloikae, (B. amaurus, Bunocephalus aff. coracoideus), 
(B. coracoideus, B. verrucosus)]. Clade structuration 
showed a close relationship with the chromosomal mac-
rostructure (Fig. 6).

Discussion

Up to now, the karyotypic knowledge of Aspredinidae 
was restricted to only 2 species, Bunocephalus doriae 
[Fenocchio and Swarça, 2012] and B. coracoideus [Fer-
reira et al., 2016, 2017]. Thus, the present study extends 
chromosomal data to 6 other species, all of them belong-
ing to the Aspredininae subfamily. A huge chromosomal 
diversity was found to occur within this fish group, re-

a d

b

c
f

e

Fig. 3. Karyotypes of Amaralia hypsiura (a), Bunocephalus cf. aloikae (b), Bunocephalus amaurus (c), Bunoceph-
alus aff. coracoideus (d), Bunocephalus verrucosus (e), and Platystacus cotylephorus (f) after dual-color FISH with 
18S (red) and 5S (green) rDNA probes. Scale bar, 10 μm.
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vealing great differentiation in the diploid numbers and 
karyotypic formulas among species. Bunocephalus cf. al-
oikae, investigated here, presents a very similar karyotype 
to that of B. coracoideus from the Cuieiras River basin 
[Ferreira et al., 2017], and both species also share the in-
terstitial NOR locus on the largest submetacentric pair. 
This is thought to be an apomorphic feature among Silu-
riformes [Ferreira et al., 2014], but an ancestral feature for 
Aspredinidae species or an evolutionary convergence, a 

somewhat similar pattern also found in Ancistrini species 
[Alves et al., 2006]. Thus, it is likely that Bunocephalus cf. 
aloikae and also B. coracoideus have the karyotype most 
similar to the ancestral one for Aspredinidae, due to its 
low 2n and karyotype macrostructure displaying mostly 
bi-armed chromosomes. On the other hand, A. hypsiura 
displays the largest diploid number (2n = 74) described 
so far for Aspredinidae. This seems to be a derived trait 
when compared to other aspredinids since most of the 

a d

b

c
f

e

Fig. 4. Karyotypes of Amaralia hypsiura (a), Bunocephalus cf. aloikae (b), Bunocephalus amaurus (c), Bunoceph-
alus aff. coracoideus (d), Bunocephalus verrucosus (e), and Platystacus cotylephorus (f) after C-banding. Scale bar, 
10 μm.
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chromosomes are acrocentric, unlike the plesiomorphic 
karyotype suggested for Siluriformes with mainly bi-
armed chromosomes [Oliveira and Gosztonyi, 2000]. B. 
amaurus (2n = 62) and B. verrucosus (2n = 64) possibly 
followed the same evolutionary trend encompassing cen-
tric fissions and a large number of acrocentric chromo-
somes. B. doriae and B. coracoideus also share the same 
trait [Fenocchio and Swarça, 2012; Ferreira et al., 2016]. 
It is likely that, at first, the karyotype evolution in Aspre-
dinidae followed a trend of reduction of the diploid num-
ber from its Siluriformes ancestors, maintaining bi-armed 
chromosomes in most species. Afterward, new rearrange-
ments, such as centric fissions and pericentric inversions, 
increased the diploid number, as well as the number of 
acrocentric chromosomes in some species.

The mapping of the 18S and 5S rDNAs corroborates 
the chromosomal diversity within Aspredinidae. In fact, 
the species studied so far do not show a shared pattern. In 
each species, these markers are located in morphologi-

cally distinct chromosome pairs and/or in different chro-
mosome regions, discarding homologies. The 5S sites also 
can present differentiations in number, although this 
does not apply for the 18S sequences. On the other hand, 
the heterochromatic regions are more conservative traits, 
maintaining the ancestral Siluriformes characteristics 
with few heterochromatin amounts preferentially located 
in the pericentromeric regions [Oliveira and Gosztonyi, 
2000].

Noteworthy, cytogenetic and morphological data sug-
gest that a male specimen of Bunocephalus aff. coracoi-
deus resulted from a crossbreeding between B. amaurus 
(present study) and B. coracoideus [Ferreira et al., 2017], 
both collected in the same location. This individual has 
some morphological traits related to B. coracoideus, but 
its karyotype is closer to that of B. amaurus, a proximity 
also corroborated by the DNA barcoding data. Besides, 
the 5S rDNA mapping showed that there is no perfect 
pairing and homology between the chromosomes of the 

a b c

d e f

Fig. 5. Somatic metaphases of Amaralia hypsiura (a), Bunocephalus cf. aloikae (b), Bunocephalus amaurus (c), 
Bunocephalus aff. coracoideus (d), Bunocephalus verrucosus (e), and Platystacus cotylephorus (f) after FISH with 
the telomeric probe. The arrow indicates the single metacentric chromosome. Scale bar, 10 μm.

Fig. 6. Phylogram of Aspredinidae species based on neighbor-joining analysis for the COI mitochondrial gene. 
The bootstrap values for 1,000 replications are above the branches.

(For figure see next page.)
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pair carrying these sequences, thus appearing to be inher-
ited from both species (B. coracoideus and B. amaurus). 
Furthermore, a single metacentric chromosome, which 
may have resulted from the fusion of 2 acrocentric chro-
mosomes as a requirement for meiotic adjustments, rein-
forces this proposal. Although no interstitial telomeric 
sequences could be demonstrated, an interstitial hetero-
chromatic region in the long arm suggests it is the rem-
nant of a second chromosome (Fig. 4d).

Another distinguishing trait concerning Aspredinidae 
is the occurrence of differentiated sex chromosomes. B. 
coracoideus, previously described by Ferreira et al. [2016], 
has a multiple sex chromosome system of the X1X1X2X2/
X1Y1X2Y2 type. In the present study, a distinct sex chro-
mosome system of the XX/X0 type was identified in P. 
cotylephorus, constituting the second description of such 
a type among Siluriformes, while the first one has been 
found in an Ancistrus species [Alves et al., 2006]. An XX/
X0 system emerges from the elimination of 1 male chro-
mosome [Devlin and Nagahama, 2002], thus represent-
ing an uncommon event since it can produce genetic un-
balances and meiotic problems. Anyway, differentiated 
sex chromosomes constitute a relevant evolutionary 
event, if we consider the rearrangements needed to their 
differentiation, as well as their role as speciation promot-
er [Faria and Navarro, 2010].

Our barcoding analysis of Aspredinidae corroborates 
the phylogeny proposed by Cardoso [2008], and is similar 

to that of Carvalho et al. [2018] if we consider only the 
species studied herein. However, additional information 
was now highlighted. The first one regards the B. coracoi-
deus population from the Cuieiras River, which is not in 
the clade with the other populations of the same species. 
On the contrary, it groups with Bunocephalus cf. aloikae 
and B. amaurus. As previously discussed, this B. coracoi-
deus population has some karyotype characteristics very 
close to those of Bunocephalus cf. aloikae, and the data 
from the mitogenome region corroborate the hypothesis 
that these species have a close evolutionary history and 
conserved Bunocephalus ancestral characters. Another 
interesting point are the relationships between B. coracoi-
deus populations from Purus and Negro Rivers. Once 
more, karyotype and molecular data corroborate that 
they are the most derivative populations or lineages of 
this species. Altogether, the Negro River population, 
which presents a novel sex chromosome system among 
Siluriformes [Ferreira et al., 2016], and the Purus River 
population, which has a diploid number varying from 40 
to 46 chromosomes [Ferreira et al., 2017], denote recent 
karyotype rearrangements, but still maintain some ances-
tral characteristics in the chromosomal microstructure.

The extent of chromosomal variation between the spe-
cies of Aspredinidae, 2n = 42–74, indicates that this fam-
ily has undergone major evolutionary rearrangements. 
To test our hypothesis of 2n reduction and further rear-
rangements, we overlapped the available diploid numbers 

Fig. 7. Phylogram of Aspredinidae phylo-
genetic relationships according to Cardoso 
[2008], with overlap of available cytogenet-
ic data.
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to the most recent phylogeny of the family (Fig. 7), as de-
scribed by Cardoso [2008], and over the phylogram re-
sulting from the present study (Fig. 6). This shows that P. 
cotylephorus is the basal clade, and the genus Amaralia is 
a sister clade of Bunocephalus; however, according to cy-
togenetic data, A. hypsiura corresponds to a derived clade. 
The clade containing the Bunocephalus genus has the 
most information available, and morphological, mito-
chondrial, and chromosomal data keep B. coracoideus 
and B. verrucosus more closely related, although in a more 
derived position.

Our cytogenomic results also indicate that relation-
ships between Aspredinidae and other Siluriformes fam-
ilies are controversial. Comparisons of chromosomal 
data of Aspredinidae and other suggested related families 
(Table 2) denote a greater similarity between Aspredini-
dae and the Asian clade Sisoroidea. As Aspredinidae, the 
Sisoridae, and also the Amblycipitidae and Erethistidae 
families do not have a conserved diploid number, with 
FN < 100 for most of their species. On the other hand, 
Auchenipteridae and Doradidae families share a modal 
number of 2n = 58, and FN > 100 for most of their species 
(Table  2). Although molecular studies [Sullivan et al., 
2006, 2008; Kappas et al., 2016; Carvalho et al., 2018] as-
sociate Aspredinidae with the Doradoidea clade (Dorad-
idae and Auchenipteridae), chromosome data corrobo-
rate that Aspredinidae is the sister group of the Sisoroidea 
Asian clade (Amblycipitidae, Akysidae, Sisoridae, and 
Erethistidae). Chromosomal data suggest that Sisoroidea 
and Aspredinidae experienced the same selective pres-
sures, leading to several rearrangements and later fixation 
of their heterokaryotypes.

Both cytogenetic and molecular data are important 
tools to evidence species relationships. Chromosomal re-
arrangements shape genomes as part of the evolutionary 
process and play a fundamental role acting as genetic bar-
riers to the gene flow and on the reduction of recombina-
tion rates, favoring genetic drift [Navarro and Barton, 
2003]. However, how to explain the contradictions be-
tween molecular/morphological and cytogenetic data on 
Aspredinidae relationships? The answer might reside in 
the chromosomal rearrangements. It is known that rear-
ranged genome regions may contribute to variable rates 
of molecular evolution, particularly to high rates of re-
combination around the rearrangement breakpoints and 
the rearrangements themselves [Rozas et al., 2001; 
Marques-Bonet and Navarro, 2005]. In fact, some studies 
suggest an association between chromosome rearrange-
ments and genetic variability [Marques-Bonet and Na-
varro, 2005]. Then, in theory: the more rearrangements, Ta
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the more nucleotide replacement rates, and the more di-
vergent species. Sisoroidea and Aspredinidae are charac-
terized by heterokaryotypes and high molecular diver-
gence. Thus, these traits explain why molecular studies do 
not associate them as sister groups. Therefore, we suggest 
that these groups became more divergent because they 
went through more chromosome rearrangements. Al-
though cytogenetic data do not recover a phylogenetic 
history due to their homoplastic nature, they corroborate 
morphological phylogenies suggesting Aspredinidae and 
Sisoroidea as related clades, since they have karyotype 
similarities probably modeled by the same selective pres-
sures. Then, why do Aspredinidae and Doradoidea show 
proximity in phylogenies based on morphological and 
molecular data? We hypothesize that both Aspredinidae 
and Sisoroidea species underwent similar high selective 
pressures on their chromosomes and so a high evolution-
ary rate at the molecular level, thus pointing to little ho-
mology between them in the recovered phylogenies. On 
the other hand, Doradoidea species would have suffered 
minor selective pressure on their chromosomes, thus 
keeping a more constant evolutionary rate for molecular 
sequences and an apparent evolutionary homology closer 
to Aspredinidae. Unfortunately, chromosomal data, 
based on the analyses currently available, are not yet able 
to indicate the time of divergence and the rates of evolu-
tion, which could explain when speciation occurred [Far-
ia and Navarro, 2010]. However, the complete genome 
sequencing of a larger number of representatives from 
each one of these families may be an alternative proposal 
to provide substantial data on the divergence rates of 
these species [Yang, 2010]. In this case, the mapping of 
regions that have undergone rearrangements, as well as 
those that are more conserved, will allow better clarifica-
tion of their interrelationships.

Another important result that emerged from this study 
are the interspecific relationships in the genus Bunoceph-
alus. Carvalho et al. [2018] recovered the monophyly of 
this genus after excluding the species Bunocephalus cha-
maizelus, which gathered the status of sister group. How-
ever, despite indicating Bunocephalus and Amaralia as 
closely related sister groups, our results show that there 
are significant chromosomal divergences inside the Bu-
nocephalus genus, thus indicating taxonomic problems to 
be solved.

Final Remarks
Karyotype data are excellent markers for biodiversity. 

In this study, the association of chromosomal and DNA 
barcode data was able to corroborate previous relation-

ships considered for Aspredinidae. However, both mark-
ers point out that B. coracoideus is not a monophyletic 
clade, showing that some samples described as B. coracoi-
deus deserve further taxonomic revision. In fact, their 
great karyotype divergence shows that huge biodiversity 
characterizes this nominal species. Besides, chromosom-
al data also suggest that Aspredinidae is phylogenetically 
related to the Asian clade Sisoroidea, rather than to the 
Doradoidea group as currently proposed.
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