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A B S T R A C T

Objective: Dual probe fluorescence in situ hybridization (FISH) assays for determination of human epidermal
growth factor receptor 2 (HER2) gene amplification in breast cancer provide a ratio of HER2 to chromosome 17.
The ratio may be skewed by copy number alterations (CNA) in the control locus for chromosome 17 (CEP17). We
analyzed the impact of alternative chromosome 17 control probes on HER2 status in a series of breast cancers
with an emphasis on patients reclassified as amplified.
Methods: Breast cancer patients with equivocal HER2 immunohistochemistry (2+) and equivocal FISH with
CEP17 were included. Reclassification of HER2 status was assessed with alternative chromosome 17 control
probes (LIS1 and RARA).
Results: A total of 40 unique patients with 46 specimens reflexed to alternative chromosome 17 probe testing
were identified. The majority (> 80%) of patients had pT1–2, hormone receptor-positive tumors with an in-
termediate or high combined histologic grade. There were 34/46 (73.9%) specimens reclassified as amplified
with alternative probes, corresponding to 29/40 (72.5%) patients. Of the patients reclassified as amplified with
alternative probes, 34.5% (10/29) received HER2-targeted therapy.
Conclusion: In this series, the majority of breast cancers tested with alternative chromosome 17 control probes
under the 2013 ASCO/CAP Guidelines were converted to HER2-amplified. The treatment data and the clin-
icopathologic profile of the tumors suggest that most of these patients will neither receive nor benefit from
HER2-targeted therapy. The findings support the recommendation in the 2018 ASCO/CAP HER2 Guidelines to
discontinue the use of alternative chromosome 17 probes.

1. Introduction

Approximately 15–20% of invasive breast cancers are positive for
human epidermal growth factor receptor 2 (HER2; ERBB2) gene am-
plification and protein over-expression [1-3]. The humanized anti-
HER2 monoclonal antibody trastuzumab is a highly effective treatment
with a favorable side effect profile [4]. Newer anti-HER2 agents, in-
cluding pertuzumab, TDM1, and tucatinib, have also been shown to be
effective in HER2-positive breast cancer [5-7]. Reliable assessment of
patients' eligibility for HER2-targeted therapies requires accurate pa-
thologic evaluation of HER2 status.

The Guidelines for the interpretation and reporting of HER2 testing

results in breast cancer were first published in 2007 by the American
Society of Clinical Oncology and the College of American Pathologists
(ASCO/CAP) [8]. The ASCO/CAP Guidelines were updated in 2013 [9]
and again in 2018 [10]. In all three versions, the Expert Panel did not
make a specific recommendation for the use of immunohistochemistry
(IHC) or fluorescence in situ hybridization (FISH) for first-line HER2
testing. However, most laboratories use IHC for initial HER2 testing
with FISH as the reflex testing method for cases with equivocal (2+)
IHC. FISH is used for first-line testing in some large academic and re-
ference laboratories.

The most commonly used FISH assays are the US Food and Drug
Administration (FDA)-approved dual probe assays. These assays employ
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fluorochrome-labeled probes for HER2, located on the long arm of
chromosome 17, and a separate probe for chromosome 17 that hy-
bridizes to alpha satellite sequences at the centromere of chromosome
17 (CEP17; D17Z1). HER2 and CEP17 signals are counted in a subset of
tumor cells to generate a HER2:CEP17 ratio. HER2:CEP17 ratios ≥2.0

are classified as amplified [9,10]. The chromosome 17 centromere
probe/control probes are used to control for aneusomy (especially
polysomy) for chromosome 17. However, several studies have shown
that whole chromosome polysomy for chromosome 17 is uncommon in
breast tumors [11,12]. Copy number alterations (CNA) in the DNA that

Table 1
Clinicopathologic Features of Breast Cancer with HER2 FISH and Reflex testing with Alternative Chromosome 17 probes (n = 40 patients)

Pt Specimen Type IHC CEP17 Probe HER2 Status Alternative Probes HER2 Status Hormone Receptor Statusf HER2 Therapy

Avg. copy number and ratio Avg. copy number and ratio

HER2 CEP17 Ratio LIS1 Ratio RARA Ratio ER PR

1 Met 2+ 4.0 2.5 1.6 Equivocal 2.6 1.5 3.9 1.0 Equivocal Positive Positive
2 Met 2+ 4.9 2.6 1.9 Equivocal 1.7 2.9 4.6 1.1 Amplified Positive Negative Yes
3 Core 2+ 5.7 4.0 1.4 Equivocal 2.3 2.5 7.2 0.8 Amplified Positive Positive
4 Met 2+ 5.5 3.9 1.4 Equivocal 1.7 3.2 3.4 1.6 Amplified Negative Negative
5 Core 2+ 4.8 2.9 1.6 Equivocal 2.1 2.2 4.4 1.1 Amplified Positive Positive Yes
6 Exc 1+a 5.3 4.8 1.1 Equivocal 3.4 1.6 3.5 1.5 Equivocal Negative Negative Yes
7 Core 2+ 6.4 3.5 1.8 Equivocalb 3.0 2.1 NR NR Amplified Positive Positive
8 Core 2+ 4.3 2.3 1.8 Equivocal 3.6 1.2 3.8 1.1 Equivocal Positive Positive Yes
9 Met 2+ 4.2 NRc NRc Equivocal 2.9 1.4 3.8 1.1 Equivocal Negative Negative Yes
10 Core 2+ 4.8 3.5 1.3 Equivocal 1.8 2.6 NR NR Amplified Positive Negative
10 Exc 2+ 5.8 2.9 2.0 Equivocalb 1.8 3.2 NR NR Amplified NR NR
11 Core 2+ 5.6 3.9 1.4 Equivocal 3.6 1.6 5.9 1.0 Equivocal Positive Positive Yes
12 Core 2+ 4.9 2.9 1.7 Equivocal 1.6 3.1 3.7 1.3 Amplified Positive Positive
13 Core 2+ 4.7 2.6 1.8 Equivocal 1.8 2.6 3.9 1.2 Amplified Positive Positive
14 Core 2+ 4.3 3.1 1.4 Equivocal 1.8 2.4 3.8 1.1 Amplified Negative Positive
15 Core 2+ 5.2 3.6 1.5 Equivocal 1.8 2.9 4.0 1.3 Amplified Positive Positive
16 Met 2+ 4.3 3.7 1.2 Equivocal 1.8 2.4 4.3 1.0 Amplified Negative Negative Yes
17 Met 2+ 4.2 2.7 1.6 Equivocal 1.9 2.2 4.8 0.9 Amplified Positive Negative
18 Core 2+ 4.5 2.6 1.7 Equivocal 2.1 2.1 2.2 2.0 Amplified Negative Negative Yes
19 Core 2+ 4.8 3.5 1.4 Equivocal 1.9 2.6 4.2 1.1 Amplified Positive Positive Yes
20 Core 1+d 4.0 2.7 1.5 Equivocal 2.1 1.9 4.2 0.9 Equivocal Positive Positive
21 Met 2+ 4.3 3.4 1.2 Equivocal 3.6 1.2 3.9 1.1 Equivocal Positive Positive
22 Core 2+ 4.4 3.9 1.1 Equivocal 2.0 2.2 4.1 1.1 Amplified Positive Positive Yes
23 Core 2+ 4.1 4.2 1.0 Equivocal 4.0 1.0 3.8 1.1 Equivocal Negative Negative
23 Exc 0 4.3 3.3 1.3 Equivocal 3.8 1.1 3.5 1.2 Equivocal NR NR
24 Exc NRe 4.8 3.8 1.3 Equivocal 1.5 3.2 4.9 1.0 Amplified Positive Positive
25 Core 2+ 5.0 2.7 1.8 Equivocal 1.6 3.2 5.3 0.9 Amplified Positive Positive Yes
26 Exc 2+ 5.5 4.1 1.4 Equivocal 2.5 2.2 5.3 1.0 Amplified Positive Positive
27 Core 2+ 4.9 3.0 1.7 Equivocal 1.8 2.7 4.7 1.1 Amplified Positive Positive
27 Exc NR 4.6 2.6 1.8 Equivocal 1.7 2.7 5.4 0.8 Amplified NR NR
28 Exc 2+ 4.4 3.0 1.5 Equivocal 2.2 2.0 4.7 1.0 Amplified Positive Positive
28 Met 2+ 5.3 3.8 1.4 Equivocal 1.7 3.1 5.3 1.0 Amplified NR NR
29 Met 2+ 4.3 3.9 1.1 Equivocal 2.6 1.7 3.3 1.3 Equivocal Positive Positive
30 Core 2+ 4.8 3.3 1.5 Equivocal 1.8 2.7 4.1 1.2 Amplified Positive Positive Yes
30 Exc 2+ 5.1 3.5 1.4 Equivocal 1.6 3.1 4.7 1.1 Amplified NR NR
31 Core 2+ 5.0 3.2 1.6 Equivocal 1.8 2.9 4.8 1.0 Amplified Positive Negative
32 Met 2+ 5.0 2.8 1.8 Equivocal 2.7 1.9 4.7 1.1 Equivocal Positive Positive Yes
33 Core 2+ 5.1 3.1 1.6 Equivocal 1.5 3.3 4.2 1.2 Amplified Positive Positive
33 Exc NR 5.0 3.7 1.4 Equivocal 1.7 2.9 4.9 1.0 Amplified NR NR
34 Core 2+ 4.1 2.8 1.5 Equivocal 1.6 2.5 3.9 1.1 Amplified Positive Positive
35 Core 2+ 3.1 2.7 1.1 Equivocal 1.5 2.1 3.0 1.1 Amplified Positive Positive
36 Core 2+ 4.0 3.1 1.3 Equivocal 1.9 2.1 1.9 2.2 Amplified Positive Positive Yes
37 Met 2+ 4.5 3.9 1.2 Equivocal 3.2 1.4 4.0 1.1 Equivocal Negative Negative
38 Core 2+ 4.9 3.9 1.3 Equivocal 1.9 2.6 4.4 1.1 Amplified Positive Positive
39 Met 2+ 4.4 2.6 1.7 Equivocal 1.8 2.5 3.4 1.3 Amplified Positive Negative Yes
40 Core 2+ 6.4 3.5 1.8 Equivocalb 1.9 3.5 NR NR Amplified Positive Positive

Abbreviations: Pt, patient; IHC, Immunohistochemistry; CEP17, chromosome 17 centromere enumerator probe; HER2, human epidermal growth factor receptor 2;
ER, estrogen recepror; PR, progesterone receptor; Avg, Average; RARA, retinoic acid receptor-α; LIS1, lissencephaly gene; Exc, Excision; Met, Metastasis; NR, Not
performed/not reported.

a Patient 6: Positive (3+) HER2 IHC on a breast core biopsy at an outside laboratory. Negative (1+) HER2 IHC on a skin punch biopsy at UNC. HER2 FISH on a
post-treatment breast specimen was equivocal and reflexed to alternative probe testing.

b Patients 7, 10, 40: Original results were reported prior to implementation of 2013 Guidelines. Equivocal based on 2007 Guidelines and classified as amplified by
2013 Guidelines.

c Patient 9: Absent CEP17 signals in tumor cells; disomic hybridization pattern for CEP17 in adjacent normal tissue. CEP17 and HER2:CEP17 could not be reported
(NR) for this specimen.

d Patient 20: Prior negative (1+) IHC and equivocal HER2 FISH at an outside laboratory. Repeat HER2 FISH at UNC was equivocal, prompting alternative probe
testing.

e Patient 24: Amplified HER2 FISH at an outside institution based on HER2 copy number (mean HER2 6.4, mean CEP17 4.7) and an equivocal HERmark result.
Alternative probe testing was performed at our institution to exclude co-amplification

f For patients with more than one specimen tested with alternative chromosome 17 probes, hormone receptor studies were not repeated on the subsequent
specimens (i.e., NR).
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encompass the hybridization site for the control probe may explain the
increased number of chromosome 17 signals in many cases [13]. The
increased CEP17 copy number seen in some cases may skew the
HER2:CEP17 ratio toward normal, while loss of one or more copies of
this locus can produce a falsely positive HER2:CEP17 ratio. In both si-
tuations, the HER2 FISH results may not appear to correlate with HER2
mRNA or protein expression levels [13,14].

The 2013 ASCO/CAP Guidelines [9] recommended testing with an
alternative chromosome 17 probe in cases with equivocal FISH results
(i.e., ISH Group 4 with HER2:CEP17 ratio < 2.0 and mean HER2 copy
number ≥ 4.0 and < 6.0) [10,15]. However, the 2018 ASCO/CAP
HER2 Guidelines essentially eliminated the equivocal FISH category
and the use of alternative chromosome 17 probes [10]. The re-
commendation for the use of alternative chromosome probes in the
2013 Guidelines was based on the idea that these probes may “correct”
the estimation of chromosome 17 copy number, but some studies have
shown CNA in the hybridization sites for alternative probes as well as
CEP17 [16,17]. The goal of this study was to evaluate the impact of
alternative chromosome 17 probes [LIS1 (PAFAH1B1) and RARA] on
the assessment of HER2 gene amplification by FISH. The classification
of these cases based on the updated 2018 ASCO/CAP Guidelines [10] is
emphasized and data on treatment with HER2-targeted therapies are
also reported.

2. Materials and methods

This study was approved by the University of North Carolina
Institutional Review Board. The study population was selected from
primary and metastatic breast cancer cases undergoing dual probe FISH
for HER2 gene status at the UNC Cytogenetics Laboratory from 2013 to
2018. Cases with equivocal IHC and FISH results were reflexed to a
second FISH assay with an alternative chromosome 17 probe, including
LIS1 and/or RARA. The distribution of cases assigned to each HER2
category by LIS1 and/or RARA with the 2013 ASCP/CAP Guidelines
was recorded.

During the study period, the HER2 status of breast carcinomas was
determined by FISH using the PathVysion HER2 DNA Probe Kit, (Abbott
Molecular, Inc., Des Plaines, IL). Tumors were tested with FISH using a
dual probe assay with a HER2 gene probe labeled in Spectrum Orange
and a chromosome 17 centromeric enumeration probe (CEP17; D17Z1)
labeled in Spectrum Green. To confirm invasive carcinoma, 4-μm-thick
sections stained with hematoxylin and eosin (H&E) were evaluated, and
separate cut sections that remained unstained were analyzed by
HER2:CEP17 FISH. For all FISH cases, two areas of 30 cells each in a
region designated by a breast pathologist as invasive carcinoma, are
routinely analyzed by two independent observers. If the results of the
initial analysis were equivocal, FISH with probes for LIS1 and/or RARA
was performed.

Surgical pathology and HER2 FISH data were retrieved from the
Anatomic Pathology Laboratory Information System (Epic Beaker, Epic
Systems Corporation, Verona, WI) and reviewed by a dedicated breast
pathologist (BCC). Patient demographics and treatment data were ob-
tained from the electronic medical record in Epic (Epic Systems
Corporation, Verona, WI).

3. Results

3.1. HER2 FISH with alternative chromosome 17 probes

A total of 46 specimens from 40 unique patients were tested with
HER2:CEP17 FISH and reflexed to LIS1 and/or RARA FISH (Table 1). A
schematic representation of the positions of the CEP17, LIS1, RARA and
HER2 probes on chromosome 17 is shown in Fig. 1. The specimens
tested included 25 (54.3%) core biopsies of the primary tumor in the
breast, 9 (19.5%) surgical excision breast specimens, and 12 (26.1%)
specimens collected from local or distant metastatic sites. There were 6

patients with alternative probe results on 2 specimens and hormone
receptor studies were not repeated on the second specimen.

HER2 immunohistochemistry (IHC) results were available for 43
specimens: 40 were equivocal (2+) and the scores for the remaining 3
cases were 1+ (Patients 6 and 20), and 0 (Patient 23). The indication
for HER2 FISH in 40/46 (87.0%) specimens was an equivocal (2+) IHC
result. In 6/46 (13.0%) the indication for HER2 FISH testing was an
equivocal FISH result from an outside laboratory, conflicting IHC and
FISH results from an outside laboratory, or a prior equivocal FISH result
at our institution. HER2 FISH was performed on 1 excision specimen
(Patient 6 in Table 1) due to conflicting IHC results: 3+ at an outside
laboratory on a pretreatment breast core biopsy and 1+ at UNC on an
ipsilateral skin punch biopsy. Testing with alternative chromosome 17
probes was performed on 3 specimens (Patients 7, 10 and 40 in Table 1)
based on an equivocal FISH result using the 2007 ASCO/CAP Guide-
lines (i.e., just prior to implementation of the 2013 Guidelines).

A total of 34/46 (73.9%) specimens tested with alternative chro-
mosome 17 probes were reclassified as amplified using the 2013 ASCO/
CAP guidelines (Fig. 2). Of these reclassified specimens, all 34 were
amplified based on reflex testing with the LIS1 probe and 2 of these 34
cases also were amplified with the RARA probe. In 1 of 46 specimens,
reflex testing with alternative probes was performed to investigate an
unusual hybridization pattern for CEP17. In this single case, there were
few or no CEP17 signals in the tumor cells, but the expected disomic
pattern of hybridization in adjacent normal tissue was preserved (pa-
tient 9 in Table 1). In 41 (91.1%) of the remaining 45 specimens, the
chromosome 17 copy number obtained with LIS1 was lower (closer to
the disomic number 2.0) than the number obtained with CEP17.
However as indicated above, in only 34 of these cases was the number
of chromosome 17 control probe signals low enough to yield a
HER2:control locus ratio of greater than or equal to 2.

3.2. Clinicopathological features

There was no significant difference in the clinicopathologic features
of those patients whose tumors were reclassified from equivocal to
amplified with alternative chromosome 17 probes (n = 29) when
compared to the rest of the cohort (n = 11) (all p > .09). The median
age was 57.4 years (range: 28–90). Of the 31/40 patients with available
pT or pN data, 27/31 (87.1%) were pT1 or pT2, 15 (48.4%) were lymph
node-negative (pN0), 7 (22.6%) had 1–3 positive lymph nodes (pN1)
and 2 (6.5%) had 4–9 positive lymph nodes (pN2). Of the patients with
alternative probe testing, 33/40 (82.5%) had hormone receptor-posi-
tive tumors and 35/40 (87.5%) had an intermediate or high combined
histologic grade.

3.3. Treatment and follow-up

The results for each pathologic specimen described above corre-
spond to re-classification of 29/40 (72.5%) patients as amplified. Of the
36/40 (90.0%) patients with available treatment data, 15/36 (41.7%)
received HER2-targeted therapy, 10 of whom were reclassified as am-
plified with alternative chromosome 17 probes. Follow-up data was

Fig. 1. Schematic of Chromosome 17 and Associated Probe Locations. Pictured
are the probe locations for the human epidermal growth factor receptor-2
(HER2), chromosome 17 centromere enumerator (CEP17; D17Z1), lissence-
phaly (LIS1), and retinoic acid receptor-α (RARA) loci.
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available for 37/40 patients at a median of 16 months (range:
0.3–62 months). At the time of last follow-up, 17 patients were alive
with disease, 16 had no evidence of disease (NED) and 4 were deceased.
All 4 of the patients who were deceased at last follow up had tumors
that were reclassified as amplified with alternative chromosome 17
probes. Three (3) of the deceased patients were referred to our in-
stitution for evaluation and treatment of metastatic disease and 2 had
received HER2-targeted therapy.

4. Discussion

The 2013 ASCO/CAP HER2 Guidelines classified cases based on a
combination of the HER2:CEP17 ratio and the mean HER2 copy
number, and allowed the use of alternative chromosome 17 probes [9].
The emphasis on HER2 signal number and alternative chromosome 17
probes represented attempts to address issues related to the potential
for a skewed HER2:CEP17 ratio in cases with CEP17 CNA. One of the
most significant changes in the 2013 guidelines was the classification of
cases with a mean HER2 copy number ≥ 4.0 and < 6.0 and a
HER2:CEP17 ratio < 2.0 as equivocal [9]. Several subsequent studies
showed that the new equivocal category and the use of alternative
chromosome 17 probes resulted in an increase in the proportion of
equivocal and amplified HER2 FISH results, particularly among cases
with equivocal (2+) IHC results and CEP17 CNA [17-32]. However,
copy number variations also have been reported for the most commonly
used alternative chromosome 17 control probes [i.e., RAI1, LIS1 (PA-
FAH1B1), RARA, and TP53] [16,17]. Therefore, it is not clear which
probe provides the most accurate reflection of the chromosome 17 copy
number and ultimately the most accurate HER2:control ratio.

The emphasis on HER2 copy number in the 2013 Guidelines effec-
tively created 5 categories of FISH results [15]. The group of FISH cases
defined as equivocal in the 2013 Guidelines [9] corresponds to ISH
Group 4 in the scheme developed by Press et al. and adopted in the
most recent 2018 ACCO/CAP HER2 FISH Guidelines [10,15,33]. Based
on the data from patients screened for enrollment in three Breast
Cancer International Research Group (BCIRG) clinical trials [15] and
the NSABP-B47 trial of “Trastuzumab for Women with HER2-low Breast
Cancer” [34], patients in ISH Group 4 are unlikely to benefit from
HER2-targeted therapy. However, it should be noted that patients with
any HER2 FISH result with a mean HER2 copy number ≥ 4.0 may have
been excluded from NSABP-B47 [20].

In the majority of cases in this series, the indication for HER2 FISH
with an alternative chromosome 17 probe was an equivocal result (as
defined in the 2013 Guidelines) obtained from a dual probe assay using

CEP17. When patients with known metastases are excluded, the ma-
jority in this series had pathological Stage I-II, intermediate to high
combined histologic grade, hormone receptor-positive, lymph node-
negative tumors. The clinicopathological characteristics of these tumors
are not typical for HER2-amplified tumors but they are similar to the
“excess” equivocal cases identified using the 2013 Guidelines
[19,25,28,35]. These tumors also were unlikely to have positive (3+)
IHC results, similar to the data from other studies of the equivocal ca-
tegory in the 2013 Guidelines [15,18,19,21,22]. The clinicopathologic
features and HER2 IHC data may account for the fact that approxi-
mately 60% of patients in this series who were re-classified as amplified
with alternative probes were not treated with HER2-targeted therapy.
In studies using gene expression analysis [36,37] and surrogate im-
munohistochemistry markers [25] for intrinsic molecular subtypes, the
majority of HER2 FISH equivocal tumors (as defined in the 2013
Guidelines) are luminal-type, and not HER2-enriched. In the series re-
ported by Desai et al., most of the tumors reclassified as amplified with
alternative chromosome 17 probes were Luminal A or B subtype, in-
dicating that these are not HER2-driven tumors [36].

Three specimens in this series were tested with alternative chro-
mosome 17 probes based on an equivocal FISH result using the 2007
Guidelines, just prior to the implementation of the 2013 Guidelines
(Patients 7, 10 and 40 in Table 1). The core biopsies for Patients 7 and
40, with mean HER2 copy numbers of 6.4 and HER2:CEP17 ratios of
1.8, would be classified as amplified using the 2013 Guidelines and
presumably would be classified as amplified (ISH Group 3) in the 2018
Guidelines. The excision specimen from Patient 10, with a mean HER2
copy number of 5.8 and a HER2:CEP17 ratio of 2.0 would be classified
as amplified in the 2013 Guidelines and amplified (ISH Group 1) in the
2018 Guidelines. It should be noted that Patient 10 also had a core
biopsy that was converted to amplified with alternative chromosome 17
probes. That specimen, with a mean HER2 copy number of 4.8 and a
HER2:CEP17 ratio of 1.3, would have been classified as equivocal by
the 2013 Guidelines. Using the 2018 Guidelines, it would correspond to
ISH Group 4 and would be classified as not amplified in the absence of a
3+ HER2 IHC result. Taking all of this into consideration, if the 3
specimens classified as equivocal under the 2007 Guidelines were ex-
cluded from analysis, the rate of conversion to amplified (with alter-
native probes and the 2013 Guidelines) would remain high: 31/43
(72.1%) specimens and 27/38 (71.5%) patients.

The use of alternative chromosome 17 probes in this series in-
creased the number of patients potentially eligible for HER2-targeted
therapy. However, there is no well-established benefit from HER2-tar-
geted therapy in this patient population and many of these “amplified”

Fig. 2. Representative images of an equivocal HER2 FISH result reclassified as amplified with alternative chromosome 17 probes and the 2013 ASCO/CAP Guidelines
(patient 34 in Table 1). Dual-probe FISH yielded a mean HER2 (red) copy number of 4.1, a mean CEP17 (green) copy number of 2.8 and a HER2:CEP17 ratio of 1.5
(A). Alternative chromosome 17 probes demonstrated a mean number of 3.9 RARA (green) and 1.6 PAFAH1B1/LIS1 (red) signals per cell; CEP17 (aqua) (B). The
HER2:PAFAH1B1/LIS1 ratio was 2.5 (amplified) and the HER2:RARA ratio was 1.1 (not amplified). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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cases may in fact represent false-positives [38]. In a study of over
10,000 patients screened for enrollment in three BCIRG trials, there was
no significant difference in DFS or OS when the patients in ISH Group 4
were compared to those with clearly negative FISH results (i.e., ISH
Group 5; HER2:CEP17 ratio < 2.0 and a mean HER2 copy number
of< 4.0) [15]. Based on the outcomes data and the absence of HER2
protein overexpression in ISH Group 4, Press et al. concluded that tu-
mors with a HER2:CEP17 ratio < 2.0 and a mean HER2 copy
number ≥ 4.0 and < 6.0 should be classified as not amplified [15].
This recommendation was incorporated into the updated 2018 ASCO/
CAP HER2 Guidelines [10].

Limitations of this study include the single-institution retrospective
design and limited sample size. Strengths of the study include the focus
on tumors reclassified as amplified with alternative probes, the detailed
characterization of the FISH and IHC findings, and thorough clin-
icopathologic characterization with data on treatment with HER2-tar-
geted therapy. Although the sample size is limited, the detailed char-
acterization of this group of patients provides an accurate reflection of
the impact of alternative chromosome 17 probes in complex breast
cancer cases at a tertiary referral center. No prospective clinical trials
using alternative chromosome 17 probes to select patients for HER2-
targeted therapy have been reported.

In summary, HER2 FISH with alternative chromosome 17 probes
reclassified the tumors in 29/40 (72.5%) patients as amplified. The
majority of these patients were not treated with HER2-targeted therapy.
The best available retrospective data derived from large clinical trials
indicate that this group of patients is unlikely to benefit from trastu-
zumab [15]. Our findings support the classification of these cases as not
amplified in the 2018 ASCO/CAP HER2 Guidelines [10].
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