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A B S T R A C T

Accurate detection and quantification of hepatic fibrosis remain essential for assessing the severity of non-
alcoholic fatty liver disease (NAFLD) and its response to therapy in clinical practice and research studies. Our
aim was to develop an integrated artificial intelligence-based automated tool to detect and quantify hepatic
fibrosis and assess its architectural pattern in NAFLD liver biopsies. Digital images of the trichrome-stained slides
of liver biopsies from patients with NAFLD and different severity of fibrosis were used. Two expert liver pa-
thologists semi-quantitatively assessed the severity of fibrosis in these biopsies and using a web applet provided a
total of 987 annotations of different fibrosis types for developing, training and testing supervised machine
learning models to detect fibrosis. The collagen proportionate area (CPA) was measured and correlated with
each of the pathologists semi-quantitative fibrosis scores. Models were created and tested to detect each of six
potential fibrosis patterns. There was good to excellent correlation between CPA and the pathologist score of
fibrosis stage. The coefficient of determination (R2) of automated CPA with the pathologist stages ranged from
0.60 to 0.86. There was considerable overlap in the calculated CPA across different fibrosis stages. For identi-
fication of fibrosis patterns, the models areas under the receiver operator curve were 78.6% for detection of
periportal fibrosis, 83.3% for pericellular fibrosis, 86.4% for portal fibrosis and> 90% for detection of normal
fibrosis, bridging fibrosis, and presence of nodule/cirrhosis. In conclusion, an integrated automated tool could
accurately quantify hepatic fibrosis and determine its architectural patterns in NAFLD liver biopsies.

1. Introduction

Hepatic fibrosis is a complex and dynamic wound healing response
to chronic liver injury resulting from any chronic liver disease [1].
Progression of liver disease is marked by increased accumulation of
hepatic fibrosis which leads to hepatic architectural changes, develop-
ment of cirrhosis, portal hypertension and ultimately liver failure [2].
In addition to its important role in monitoring disease progression and
guiding treatment decisions, accurate detection and quantification of
hepatic fibrosis remain essential for assessing the severity of liver dis-
ease and response to therapy in clinical practice, research studies, and
clinical trials.

Traditionally, assessment of hepatic fibrosis has relied on semi-
quantitative histological evaluation systems of liver biopsy samples [3-

6]. The remarkable progress in developing non-invasive methods to
detect and quantify hepatic fibrosis has not eliminated the need for liver
biopsy, which remains the gold standard for assessing liver histology
and fibrosis both in practice and research [7,8]. Ranging from 0 to 6 [3-
6], the numbers assigned to the fibrosis stage in different semi-quan-
titative systems reflect increasing severity of liver disease based on
quantity, location and architectural pattern of fibrosis. Although
manual semi-quantitative systems are very useful tools for measuring
fibrosis, interest in more reproducible, continuous and precise methods
in detecting changes in fibrosis triggered the search for automated
methods based on digital image analysis (DIA) of liver biopsies [9-14].

Over the past two decades, many studies based on DIA used dif-
ferent computer-assisted automated algorithms to provide continuous
quantification of fibrosis in liver biopsy images, typically by providing
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the ratio of fibrotic area relative to the total liver tissue area [collagen
proportionate area (CPA)] [9,15-18]. These studies demonstrated that
automated measurement of fibrosis is highly correlated with semi-
quantitative fibrosis stages [14,16-21], reproducible [9,15,22,23], and
more sensitive than semi-quantitative histological staging in detecting
changes in hepatic fibrosis [11,15,23]. Furthermore, CPA showed better
correlation than semi-quantitative scores with measures of liver func-
tion [11,24], liver stiffness measured by transient elastography
[21,25,26], and clinically significant portal hypertension
[16,24,25,27]. In patients with cirrhosis, CPA was a stronger predictor
of hepatic decompensation, hepatocellular carcinoma and liver-related
death than semi-quantitative assessment of fibrosis [28-31].

However, these methods are not without problems; the amount of
fibrosis measured by DIA may not reflect the architectural pattern or
type of fibrosis distribution and there is a significant overlap in CPA
across different semi-quantitative fibrosis stages [10,11,14,32]. The
vast majority of these studies were conducted in patients with viral
hepatitis C or B and some included additional liver diseases
[20,27,33,34]. Only two prior studies attempted to detect location and
patterns of fibrosis; one study in the setting of hepatitis C [9] and the
other did not specify the liver disease studied [22]. There is however
very little work done to automatically detect and quantify hepatic fi-
brosis or assess fibrosis architectural patterns in the setting of non-al-
coholic fatty liver disease (NAFLD) [35,36].

NAFLD is now a leading cause of liver disease worldwide [37]. The
presence of fibrosis and especially advanced fibrosis is a strong pre-
dictor of liver related outcomes in patients with NAFLD [38-40]. The
fibrosis in NAFLD has a unique pattern that starts usually with accu-
mulation of fibrosis around the central veins (perisinusoidal or

pericellular pattern) [41]. Further, accurate quantification of fibrosis is
important as improvement, stability, or worsening of fibrosis are im-
portant end points in the ever increasing number of therapeutic clinical
trials for NAFLD and its severe phenotype, non-alcoholic steatohepatitis
(NASH) [42,43].

In this study, we used artificial intelligence (AI) methods to develop
an integrated automated tool to detect and quantify hepatic fibrosis and
then assess its architectural pattern in NAFLD and NASH liver biopsies.
We assess the correlation of the calculated CPA with expert pathologist
semi-quantitative scores of fibrosis and internally validate the perfor-
mance of the classifier.

2. Methods

This research protocol was reviewed and approved by the Internal
Review Board of Indiana University School of Medicine. A set of digital
images of the trichrome (TC) stained slides of 18 unique liver biopsy
was used for this study. These biopsies covered the entire spectrum and
severity of NAFLD and stages of fibrosis. The two study pathologists
assessed fibrosis stage according to the NASH Clinical Research
Network system [6].

The detailed methods used are provided in the supplementary ma-
terial. Briefly, the biopsy slides were scanned at 20× using Aperio
ScanScope CS system by Leica Biosystems (Buffalo Grove, IL) to obtain
digitized images. Two expert liver pathologists used a web-based an-
notation tool we had built to provide annotations to train machine
learning algorithms using the biopsy image data [44,45]. Fig. 1 shows
an example annotation of liver fibrosis regions and types in a human
liver biopsy image. All experiments conducted in this study to build

Fig. 1. Different types of fibrosis annotated. A. Normal Fibrosis B. Pericellular Fibrosis C. Portal Fibrosis D. Periportal Fibrosis E. Bridging Fibrosis F. Nodule.
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different decision support systems to detect various histological features
in a liver biopsy use the pathologists' annotations for building machine
learning models and as well as the pathologists' semi-quantitative
grades for correlation.

2.1. Quantification of fibrosis in liver biopsies

Collagen accounts for the majority of blue region present in a liver
biopsy slide. Following image retrieval, liver tissue is identified from
surrounding image background, and then a tissue mask is applied to
identify blue regions (Fig. 2). Once the blue region extraction is done,
the total quantity of the collagen is calculated as the sum of detected
blue pixels in the image weighted by the amount of blue content in each
pixel (i.e., the weight is the pixel value of the blue channel). The col-
lagen proportionate area (CPA) is measured by calculating the percent
of the blue region area to the total tissue area. This calculated CPA was
then compared to the semi-quantitative grades assigned by the experts
to the slide. The pathologists' fibrosis scores stage 1A, 1B, and 1C were
treated as stage 1 for the correlation analysis [6].

2.2. Identification of fibrosis patterns

The flowchart of the approach of detecting collagen in the biopsy
images and to identify different types of fibrosis is shown in Fig. 3.
Briefly, this process involves the extraction of blue regions (collagen) in
a TC stained liver biopsy and using different AI methods including su-
pervised machine learning models and image segmentation techniques
using features such as histogram of oriented gradients, speeded up ro-
bust features, and Gabor features. Fibrosis architectural patterns in-
clude normal, pericellular (perisinusoidal), portal, periportal, bridging,

and nodule (cirrhosis) (Fig. 1). In order to detect the various types of
fibrosis, supervised machine learning models were trained to detect
each type separately, involving the extraction of blue regions in an
image and performing various feature extraction techniques on the
regions annotated by experts, which help uniquely identify the type of
fibrosis content. As pathologist DEK provided large number of anno-
tations for each type of fibrosis (Supplementary Table 1), his annota-
tions were used for training the fibrosis classifiers. A supervised ma-
chine learning model using support vector machines (SVM) with linear
kernel is used to build classifier models based on morphological
structures, textural properties and their surrounding neighborhood of
different types of fibrosis. For each of the blue regions extracted by
using the steps above, different types of features are calculated. The
blue regions, and their surrounding area of 20 pixels in all directions
are also computed. After the classifier models for various types of fi-
brosis are built, the classifiers are verified by 10-fold cross-validation is
done by holding 1/10th of the training samples, training the classifier
using the 90% of the data and testing on the held out 1/10th of the
labeled data and repeating it 10 times with different subsets. The sta-
tistics over the 10-fold repetition are then averaged (e.g., accuracy) in
order to summarize performance.

The area under the receiver-operating curve (AUROC) is computed
using the method implemented in WEKA tool (https://waikato.github.
io/weka-wiki/auc/). WEKA tool implements this by generating points
on the ROC curve as True positive rate also known as Recall (Y axis) vs.
False positive rate (X axis). It then computes the area under this curve.

3. Results

3.1. Pathologists assessment of fibrosis

As shown in Fig. 4, the liver biopsies samples studied covered all
severities of fibrosis in NAFLD and ranged from absence of fibrosis
(stage 0) to cirrhosis (stage 4).

There was an overall excellent agreement between the two study
pathologists on whether fibrosis was present (94.4%) and on the stage
of fibrosis (complete agreement on the stage in 72.2% of biopsies, a
difference in staging by 1 stage in 22.2%, and by 3 stages in only 5.5%).

A total of 987 annotations (normal fibrosis 186, pericellular fibrosis
254, portal fibrosis 120, periportal fibrosis 173, bridging fibrosis 139,
nodule 115) were provided by the two study pathologists.

3.2. Correlation of collagen proportionate area with pathologists' fibrosis
stage

There was good to excellent correlation between CPA and the pa-
thologist score of fibrosis stage (Fig. 5). The coefficient of determination
(R2) of automated CPA with Pathologist DEK's stages is 0.607 and with
Pathologist OWC's grades is 0.867.

As shown in Fig. 5, there was considerable overlap in the calculated
CPA across different pathologist assigned fibrosis stages. For example, a
CPA of 0.14 may be seen with fibrosis stages of 1–4 with pathologist
DEK staging (Fig. 5A), whereas a CPA of 0.16 may be seen with fibrosis
stages 2–4 with pathologist OWC (Fig. 5B).

Because CPA relies on color extraction methods where fibrosis is in
shades of blue whereas steatosis is white, there was no technical diffi-
culty in calculating the CPA regardless the steatosis severity. As ex-
pected, there was weak correlation between CPA and steatosis grade
(R2 < 0.2), and at any given steatosis grade, different severities of CPA
were calculated (Supplementary Fig. 1).

3.3. Identification of fibrosis architectural subtypes

As shown in Table 1, the models performance was fair for detection
of periportal fibrosis (AUROC 78.6%), good for detecting pericellular
and portal fibrosis (AUROC 83.3% and 86.4%, respectively), and

Fig. 2. An example of blue region detection in a trichrome stained sub-slide.
A) A trichrome stained sub-slide. B) Blue regions detected in the trichrome
stained sub-slide. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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excellent for detecting normal fibrosis, bridging fibrosis, and presence
of nodule/cirrhosis (AUROC>90% for all). The precision and recall of
the classifier for detecting different fibrosis types are shown in Table 1
and the confusion matrix for each fibrosis pattern are provided in the
supplementary material labeled confusion matrix.

4. Discussion

Data presented in this study show that accurate automated quanti-
fication of hepatic fibrosis and detection of its architectural patterns is
possible in NAFLD liver biopsies. This is the first work that presents one

integrated AI-automated tool to perform both tasks in NAFLD.
Automated quantification of CPA as a continuous measure of he-

patic fibrosis offers several benefits. These include reproducibility and
sensitivity to detecting changes in fibrosis that could be missed by
manual scoring systems utilizing limited (0–4 or 0–6) semi-quantitative
bins [9,11,15,22,23].

Prior studies of CPA in the setting of viral hepatitis demonstrated
high correlation of CPA with pathologists' semi-quantitative scores
[14,16-21]. Our study and two recent studies show similar correlation
of CPA with the liver semi-quantitative fibrosis stages in the setting of
NAFLD [35,36].

The demonstrated additional benefits of using CPA in predicting
development of clinical outcomes in patients with chronic liver disease
(mostly viral hepatitis) [24,28-30] have recently been shown in patients
with NAFLD. In a recent European study in 437 patients with biopsy-
proven NAFLD [36], CPA independently predicted hepatic decom-
pensation or liver-related death [Hazard Ratio (HR): 1.04 per 1% in-
crease, 95% CI: 1.01–1.08)]. A recent US study analyzed the data from
475 patients with NASH with bridging fibrosis or compensated cirrhosis
who enrolled in two phase 2b, randomized controlled trials of simtu-
zumab [31]. Due to inefficacy, both trials were ended after 96 weeks.
Baseline CPA was independently associated with progression of fibrosis
to stage 4 (cirrhosis) in those starting with stage 3 fibrosis (HR: 1.44,
95% CI: 1.08–1.91), and in those starting with cirrhosis, CPA was in-
dependently associated with increased risk of liver-related clinical
events such as ascites, variceal bleeding or encephalopathy (HR: 1.19,
95% CI:1.03–1.38). These data suggest that measurement of CPA in
baseline liver biopsies performed as part of clinical care or participation
in clinical trials for NAFLD and NASH may provide important prog-
nostic data to identify patients with NAFLD at highest risk for hepatic
decompensation or liver related death.

Fig. 3. The flow diagram showing the steps involved in extracting the collagen in a liver biopsy and identifying the different types of fibrosis.

Fig. 4. A bar graph which shows semi-quantitative grades given by both pa-
thologist DEK (blue) and pathologist OWC (red) for the given set of 18 human
liver slides. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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However, despite these advantages, CPA does not alone offer a
global assessment of hepatic fibrosis. Our study also demonstrates that
the relationship between CPA and fibrosis stage is not linear [35], but
there is considerable overlap in CPA values across different fibrosis
stages. Therefore, the discernment of the architectural distribution or
pattern of fibrosis may not be reliably inferred from CPA values. This
distinction is important as the clinical management of a patient with
NASH and stage 2 (perisinusoidal and portal/periportal) fibrosis is
considerably different from that of a patient with NASH and stage 4
fibrosis (cirrhosis) having a similar CPA. The latter patient would
usually be under close clinical care and surveyed regularly for devel-
opment of complication of cirrhosis such as esophageal varices and
hepatocellular carcinoma [38]. Thus, we argue that integrating

continuous measurement of hepatic fibrosis by CPA with identification
of the location and architectural pattern of fibrosis in patients with
NAFLD would offer complimentary and global assessment of fibrosis
with the clinical and research advantages of both of these assessments.

The CPA classifier correlation was stronger with pathologist OWC's
than pathologist DEK's staging of fibrosis. It is important to note that
annotations provided by DEK were used for training the fibrosis pattern
classifier, not the CPA classifier. The CPA classifier did not use these
annotations but rather relied on blue color extraction followed by cal-
culation of the percent of the blue region area to the total tissue area.
Even though the two expert liver pathologists are consistent in the use
of the same scoring system for staging fibrosis, application of the sys-
tem's criteria varied slightly between the two pathologists where OWC
generally seemed to require higher degree of collagen deposition (CPA)
than DEK for stage 4 assignment (Fig. 5).

In one case, there was a 2-stage difference in assessing the severity
of fibrosis by the two study pathologists. This case illustrates the
challenge of inter-observer variability in assessment of histological
features of NAFLD, as we and others had previously reported
[12,13,46]. This further highlights the role automated, precise and re-
producible methods for assessing fibrosis could play in reducing human
variability in detecting and quantifying fibrosis in the setting of NAFLD.

The performance of the automated classifier for detection of dif-
ferent patterns of fibrosis is better on the extremes of fibrosis [stages 0,
3, and 4 (normal fibrosis, bridging, cirrhotic nodules) with
AUROC>90%) compared to intermediate stages [stages 1–2 (pericel-
lular/portal/periportal), AUROC 78–86%], echoing pathologists ex-
perience in real practice where recognition of the extremes of fibrosis is
usually less challenging and more agreed upon between pathologists.
We believe our classifier's performance for detecting the intermediate
stages can be refined and improved in future experiments by using
additional expert pathologists' annotations for architectural patterns in
the intermediate stages of fibrosis.

In summary, we demonstrate that comprehensive automated as-
sessment of hepatic fibrosis in human NAFLD is feasible and accurate.
Our automated tool could provide both continuous measurement of
amount of fibrosis (CPA) as well as detect the pattern of fibrosis dis-
tribution in NAFLD liver biopsies.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.anndiagpath.2020.151518.
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