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KEY POINTS

� Cancer chemoprevention approaches can include primordial, primary, or secondary pre-
vention strategies; primary prevention strategies include modification of behaviors or
high-risk exposures in order to eliminate risk factors for chronic liver disease.

� Epidemiologic data show that modifiable lifestyle factors contribute to the pathogenesis of
hepatocellular carcinoma (HCC), including an unhealthy diet, alcohol use, obesity, type 2
diabetes, and nonuse of certain medications, including aspirin and statins.

� Lifestyle modification or the repurposing of medications used for other conditions,
including statins, aspirin, and metformin, represent novel and important strategies for
the primary prevention of HCC.

� Research to define themolecular determinants of HCC could help elucidate much-needed
prognostic biomarkers and thereby facilitate the design of more efficient, biomarker-
driven HCC chemoprevention trials.
INTRODUCTION

Hepatocellular carcinoma (HCC) represents the third leading cause of cancer-related
mortality worldwide, and is a major cause of death among patients with cirrhosis.1In
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the United States, the incidence of HCC has tripled over the past 30 years, and mor-
talities from HCC are increasing at an alarming pace.2,3 At present, it is recommended
that patients at high risk for developing HCC undergo regular surveillance ultrasonog-
raphy with assessment of alpha fetoprotein.4 This approach has a sensitivity of 84%
(95% confidence interval [CI], 76%–92%) for the detection of any-stage HCC; howev-
er, the sensitivity of ultrasonography for detecting early-stage HCC is only 47% (95%
CI, 33%–61%).5 Moreover, the accuracy of ultrasonography varies widely with body
habitus and operator expertise,6 and it is underused among high-risk populations.7

Thus, HCC is often diagnosed at a late stage, when treatment options are limited
and prognosis is poor.8 Despite recent advances in treatment, patients diagnosed
with HCC have a 5-year survival rate of less than 15%, and 70% of patients experience
tumor recurrence within 5 years.1,3 Given these alarming trends, an urgent need re-
mains to develop effective primary prevention strategies that improve patient out-
comes by preventing the development of HCC.
HCC risk varies according to the underlying cause of chronic liver disease, the

severity of liver fibrosis, and individual clinical and demographic factors. Major risk
factors for HCC include chronic hepatitis B virus (HBV) infection, chronic hepatitis C
virus (HCV) infection, alcohol-related liver disease, and nonalcoholic fatty liver disease
(NAFLD).9,10 Most HCC tumors arise within cirrhotic livers; however, HCC may also
arise in the absence of cirrhosis, particularly in patients with chronic HBV infection
and NAFLD.11–13 There are also well-established disparities in the incidence of
HCC, with the highest rates observed in men and in racial and ethnic minorities.14,15

In addition, patients with HCC are often clustered in areas of high poverty and unem-
ployment, relative to the general population.16 In addition, an increasing body of liter-
ature now shows that environmental and lifestyle factors play a key role in the
pathogenesis of HCC, including diabetes, obesity, diet, and use of certain medica-
tions17–21 (Fig. 1). Thus, developing comprehensive strategies for HCC prevention re-
quires a thorough assessment of risk, based on these diverse clinical, demographic,
lifestyle, and environmental factors.
Given the limited treatment options and poor prognosis of HCC, strategies focused

on preventing the development of HCC would likely carry the most impact. This article
outlines recent advances in understanding of modifiable HCC risk factors that could
inform the development of much-needed biomarker-based strategies for HCC
prevention.
Fig. 1. Overview of HCC prevention strategies.
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OVERVIEW OF HEPATOCELLULAR CARCINOMA PREVENTION STRATEGIES

HCC prevention strategies can be applied before or during the natural history of
chronic liver disease, and may be categorized as primordial, primary, secondary,
and tertiary prevention strategies. Primordial prevention includes behaviors and ac-
tions that maintain overall health and thereby prevent the development of risk factors
for liver disease. Primary prevention is defined as the modification of behaviors or
high-risk exposures in order to reduce risk factors for liver disease. Secondary and ter-
tiary prevention includes screening and surveillance procedures that accurately iden-
tify and diagnose existing disease, facilitate early detection and timely interventions for
HCC, or that minimize risk of HCC recurrence, among patients with established dis-
ease (Fig. 2).
When this framework is applied to HCC prevention, primordial prevention involves

maintenance of a healthy body weight, eating a healthy diet with minimization of
alcohol use, vaccination against HBV infection, avoiding smoking, and maintaining
normal circulating blood glucose and cholesterol levels. Primary prevention of HCC in-
cludes lifestyle and behavioral modification, including making changes to adopt a
healthy diet; quit smoking or reduce alcohol consumption; weight loss; or taking med-
ications to control or reduce risk factors, including diabetes, obesity, hypertension,
and/or dyslipidemia. Among patients with HBV or chronic HCV infection, the initiation
of antiviral therapy is also considered primary prevention, because the control of HBV
DNA or the eradication of HCV infection can control these risk factors and thereby
reduce long-term HCC risk. In addition, secondary prevention for patients with high-
risk disease or cirrhosis includes engagement in regular HCC surveillance, every
6 months.
HCC risk can be reduced with cause-specific treatments, which include the use of

antiviral therapy to suppress HBVDNA levels or to eradicate HCV infection, among pa-
tients with chronic viral hepatitis. These cause-specific strategies have been reviewed
in detail elsewhere.22 However, even with such therapies, excess HCC risk may never-
theless persist, particularly in high-risk patients or in those with cirrhosis.9,23 Further-
more, as the prevalence of lifestyle-related liver diseases grows, it is increasingly
recognized that primary prevention strategies focused on lifestyle modification are
likely to provide the most impactful benefits.11,22 However, to date, the optimal strat-
egy for primary HCC prevention remains undefined.
Fig. 2. Emerging risk factors for hepatocellular carcinoma (HCC).
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ESTABLISHED AND EMERGING LIFESTYLE RISK FACTORS FOR HEPATOCELLULAR
CARCINOMA

Accumulating preclinical, clinical, and epidemiologic evidence shows that modifiable
environmental and lifestyle factors play a key role in the pathogenesis of HCC,
including diet, alcohol use, obesity, type 2 diabetes, and medications (Table 1).
Accordingly, lifestyle modification has emerged as an important strategy for the pri-
mary prevention of HCC.

Alcohol

Alcohol use represents a major underlying cause of HCC. Worldwide, approximately
one-third of incident HCC cases are attributable to alcohol, although these rates
vary markedly between regions.24,25 For example, the proportion of HCC cases attrib-
utable to alcohol is estimated to be 6% in the Middle East, 14% in northern Africa,
20% in southern Europe, and as high as 63% in some eastern European countries.26

According to the Global Burden of Disease study, approximately 854,000 new primary
liver cancers were diagnosed in 2015, and there were 815,000 liver cancer–related
deaths.26 Of these recorded cases of new primary liver cancer, 245,000 cases
(30%) were attributable to alcohol use, with a strong male predominance (204,000
cases).26 In longitudinal cohort studies from France, Spain, Belgium, and Japan, the
annual incidence of HCC among adults with alcoholic cirrhosis ranged between
2.1% and 5.6%.27–30 Although prior studies have developed strategies to predict
future HCC risk in this population,27,28 large-scale validation studies are still needed.
This topic represents a research area of important unmet need, for it is projected that
the proportion of HCC cases attributable to alcohol is likely to increase in the coming
decades, because of the improved efficacy of antiviral therapies for chronic viral hep-
atitis, HBV vaccination strategies, and the increasing per capita consumption of
alcohol that has been recorded in regions of northern Europe, eastern Europe, and
in the United States.24,31

Epidemiologic studies show that heavy alcohol use is independently associated
with a 1.2-fold higher risk of developing incident HCC, compared with
nondrinking.32 In a meta-analysis of 19 cohorts and 4445 incident cases of HCC,
alcohol consumption contributed to HCC risk in a dose-dependent manner, with
46% higher risk observed with 50 g of alcohol consumption per day, and 66%
higher risk with 100 g of alcohol consumption per day.32 This excess risk is com-
pounded in patients with underlying liver fibrosis,24,33,34 and alcohol contributes
synergistically to the development of HCC in patients with obesity, diabetes,33,34

and chronic HCV infection.34 Notably, even after alcohol cessation, the excess
observed HCC risk related to alcohol use seems to last for many years.35 In a
meta-analysis of 4 studies, HCC risk declined by approximately 6% per year with
abstinence from alcohol; the investigators found that, for patients with cirrhosis, it
takes approximately 23 years before an individual achieves the same HCC inci-
dence rates as a nondrinker.35

NONALCOHOLIC FATTY LIVER DISEASE, OBESITY, AND DIABETES

Worldwide, approximately 25% of adults are affected by nonalcoholic fatty liver dis-
ease (NAFLD).17 Closely linked to obesity and diabetes, NAFLD is thought to represent
the hepatic manifestation of the metabolic syndrome. Although most patients with
NAFLD have nonprogressive disease, nearly 30% of adults with NAFLD develop
nonalcoholic steatohepatitis (NASH) and fibrosis, and, among those patients, between
10% and 20% progress to cirrhosis.36 NAFLD represents the most rapidly growing



Table 1
Summary of prior studies relating lifestyle factors with hepatocellular carcinoma risk

Risk Factor Relative Risk Estimatesa
Proposed Mechanisms for HCC
Prevention

Obesity HR 1.95, 95% CI 1.46–2.46 for BMI >30
(vs BMI <25)38; HR 1.59, 95% CI
1.38–1.83 for increased WC vs
normal WC193

Hyperinsulinemia; lipotoxicity;
adipokine disruption; alterations in
the gut microbiome and gut-
derived metabolites47,194–196

Diabetes RR 2.01, 95% CI 1.61–2.51 for diabetes
(vs no diabetes)39

Insulin resistance, hyperglycemia
cause ROS formation, lipotoxicity
and increased IGF-I and IGF-II levels,
which activate Wnt signaling
through PI3K/B-catenin
pathways197,198

Alcohol use HR 1.16, 95% CI 1.01–1.34 for 3 or
more drinks/d (vs nondrinking)32

DNA adducts alter DNA repair
mechanisms and change protein
structure and function; induction of
the CYP2E1 enzyme, mitochondrial
dysfunction, and ROS lead to
cellular toxicity199

Diet HR 0.68, 95% CI 0.51–0.90 for the
highest quintile of the AMED score
(vs the lowest quintile)56

Healthy diet reduces ROS formation
and lipotoxicity, inhibits synthesis of
proinflammatory cytokines and
blocks B-catenin and COX-2
signaling pathways75,200

Coffee RR 0.71 for consumption of >2 cups of
coffee/d (vs none)66

Induction of UDP
glucuronosyltransferase genes may
have antioxidant and
cytoprotective effects; caffeine
inhibits CTGF and TGF-b201,202

Aspirin HR 0.69, 95%CI 0.62–0.76 for low-dose
(<163 mg/d) aspirin use (vs
nonuse)166

Inhibition of COX-2 and
proinflammatory prostaglandins
may reduce angiogenesis and
tumor cell proliferation,137 by
blocking protein kinase 3 and NF-kB
pathways140,141

Statins OR 0.63, 95%CI 0.52–0.76 for statin
use (vs nonuse)120

Blockade of diverse carcinogenic
pathways governed by Myc, PI3K-
Akt, integrins, Rho-dependent
kinase, NF-kB, and the Hippo
signaling pathway102–109

Metformin OR 0.52, 95%CI 0.40–0.68170 for
metformin use (vs nonuse)

AMPK-mediated inhibition of VEGF
and HIF1A, preventing
angiogenesis and cell
signaling,167,203 and suppression of
hepatic progenitor cells168

Abbreviations: Akt, protein kinase B; AMED, Alternative Mediterranean Diet; AMPK, adenosine
monophosphate-activated protein kinase; BMI, body mass index; COX-2, cyclooxygenase-2; CTGF,
connective tissue growth factor; CYP2E1, cytochrome P450 2E1; HIF1A, hypoxia-inducible factor
1-alpha; HR, hazard ratio; IGF, insulinlike growth factor; NF-kB, nuclear factor kappa B; OR, odds
ratio; PI3K, phosphatidylinositol 3 kinase; ROS, reactive oxygen species; RR, relative risk; TGF, trans-
forming growth factor; UDP, uridine 5’-diphospho; VEGF, vascular endothelial growth factor; WC,
waist circumference.

a Relative risk estimates were selected from meta-analyses (if available) or from the largest pub-
lished cohort studies to date.
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cause of cirrhosis in the United States, and it is also the fastest growing indication for
liver transplant, among adults with HCC.37

Obesity and diabetes are present in 51% and 23% of patients with NAFLD,17 and
both conditions represent independent risk factors for the development of HCC.
Epidemiologic studies have linked excess adiposity (defined by total body weight,
body mass index [BMI], waist circumference, and so forth) to an increased risk of inci-
dent HCC,18–20 and to a nearly 2-fold higher risk of HCC-related mortality.38 Similarly,
type 2 diabetes is significantly and independently associated with excess HCC
risk.20,39–42 In a meta-analysis of 23 cohort studies, diabetes was associated with a
2-fold higher pooled relative risk of incident HCC.39 Furthermore, recent evidence
shows that this risk increases with longer duration of type 2 diabetes,42 with additional
metabolic comorbidities,32,42 and also that diabetes compounds HCC risk among pa-
tients with chronic viral hepatitis.43

There is increasing awareness of a link between NAFLD and HCC; however, clinical
data are limited and conflicting regarding the precise magnitude of this risk. In a 2011
meta-analysis, the 5-year to 10-year risk estimates of HCC incidence ranged from 0%
to 38% and showed marked heterogeneity, caused by the small sample sizes and
limited numbers of cases of incident HCC, among the included studies.44 This limita-
tion was partially addressed by a 2018 retrospective cohort study of 296,707 US vet-
erans with NAFLD and matched non-NAFLD controls, which found that a diagnosis of
NAFLD was associated with a modest but statistically significant increased risk of
developing HCC (incidence rate difference, 0.02 per 1000 person-years), and the
highest excess risk was observed with NAFLD cirrhosis (incidence rate difference,
10.6 per 1000 person-years).12 However, this cohort was primarily male (94%), with
NAFLD and cirrhosis identified by administrative codes and/or by surrogate serum
fibrosis scores; thus, future studies are still needed in unselected, population-
based cohorts, including those with NAFLD histology, to establish more precise
and generalizable estimates of HCC risk across the complete NAFLD histologic
spectrum.
Recent evidence has also suggested that HCC risk might be increased in patients

with NAFLD who do not have cirrhosis.45 Although prospective studies are still needed
to fully define this relationship, it suggests that the mechanisms that underpin NAFLD-
related hepatocarcinogenesis may depend less on liver fibrosis, compared with other
causes of liver disease. It has been hypothesized that these mechanisms might relate
to gut microbial dysbiosis, changes in circulating gut microbiota-derived metabolites
(ie, secondary bile acids or short-chain fatty acids), oxidative stress, disruption of
circadian rhythms, or dysregulation of circulating and hepatic adipokines and proin-
flammatory cytokines.46–50 Further research is needed in animal models and in human
studies to more precisely characterize these pathways and to translate these findings
to novel preventive therapies.
DIETARY PATTERNS

A growing body of clinical and epidemiologic evidence suggests that dietary patterns
may influence HCC risk. Dietary patterns reflect complex combinations of nutrients
and individual compounds that act synergistically within whole foods and across com-
binations of foods to exert biological effects, which may affect long-term health out-
comes.51 In one of the earliest observational studies of dietary patterns and incident
HCC risk, male and female participants in the Shanghai Men’s and Women’s Health
Studies who adhered to a vegetable-based dietary pattern had a significantly reduced
risk of developing incident HCC.52
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More recently, the National Cancer Institute launched the Dietary Patterns Methods
Project, which compares validated indices of overall diet quality in relation to incident
cancers.53 These indices were selected based on their established associations with
cancer and cardiovascular disease,54 and include the Alternative Healthy Eating In-
dex (AHEI), the Healthy Eating Index, the Dietary Approaches to Stop Hypertension
(DASH), and the Alternate Mediterranean Diet (AMED). Since that time, 3 observa-
tional cohort studies have evaluated index-based dietary patterns in relation to
HCC incidence.21,55,56 Two of those studies were conducted in 3 large, prospective
US cohort studies (the National Institutes of Health [NIH]/AARP Diet and Health
Study, the Nurses’ Health Study, and the Health Professionals Follow-up Study),
and these found significantly lower HCC risk in participants with higher AHEI-2010
and AMED dietary scores.21,55 The third study included 169,806 adults enrolled in
the prospective Multiethnic Cohort study, and found that higher AMED dietary scores
were associated with significantly lower risk of incident HCC (adjusted hazard ratio for
the highest quintile vs the lowest quintile, 0.68; 95% CI, 0.51–0.90).56 However, pub-
lished evidence is not yet sufficiently robust to recommend 1 particular diet for HCC
primary prevention.
INDIVIDUAL FOODS, NUTRIENTS, AND DIETARY COMPOUNDS
Fruit, Vegetables, Meat, and Fat

Consumption of fruits and vegetables has also been studied in relation to HCC inci-
dence. In a 2014 meta-analysis of 19 studies (1.29 million subjects and 3912 cases
of incident HCC), each 100-g increase in daily vegetable intake was associated with
an 8% lower risk of incident HCC, among the included cohort studies (OR, 0.92;
95%CI, 0.88–0.95).57 In contrast, a null association was found for fruit consumption
and incident HCC risk.57 Observational cohort studies and case-control studies
have also evaluated the intake of red meat, white meat, and fish, in relation to incident
HCC. In a meta-analysis pooling results from 9 studies, the highest category of daily
red meat intake was not significantly associated with increased HCC incidence,
compared with the lowest category (pooled OR, 1.10; 95% CI, 0.85–1.42).58 In
contrast, both white meat and fish consumption were significantly associated with
reduced HCC risk, when the highest versus the lowest categories of consumption
were compared (pooled OR for white meat and fish, 0.69; 95% CI, 0.58–0.81).58

Although human data regarding dietary fat intake and HCC risk are more limited, a
notable study included 495,006 older adults enrolled in the prospective NIH-AARP
cohort, and observed that a higher daily intake of saturated fat at baseline was asso-
ciated with a significant, 1.9-fold increased risk of incident HCC (hazard ratio [HR],
1.87; 95% CI, 1.23–2.85).59 In contrast, the prospective European Prospective Inves-
tigation into Cancer and Nutrition (EPIC) cohort study did not find a significant asso-
ciation between saturated fats and incident HCC risk (HR, 1.08; 95% CI, 0.88–1.34),
whereas monounsaturated fats were inversely associated with HCC risk (per each
5 g/d: HR, 0.71; 95% CI, 0.55–0.92).60

Coffee

Coffee contains well-described antiinflammatory, antioxidant, and antifibrotic proper-
ties, and it has been observed that coffee drinkers tend to have lower risk of devel-
oping advanced liver disease, including liver fibrosis,61 cirrhosis, and incident
HCC.62,63 Both the World Cancer Research Fund and the International Agency for
Research on Cancer have also published reports supporting the beneficial effects of
coffee for the prevention of HCC.64,65
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A recent meta-analysis of 26 studies and 1825 incident HCC cases showed that
consumption of at least 2 cups/d of coffee was associated with significantly reduced
risk of incident HCC, with a pooled relative risk of 0.71.66 Per each additional 2 cups of
coffee consumed per day, the magnitude of observed benefit was significantly greater
with caffeinated coffee (27% relative risk reduction) than with decaffeinated coffee
(14% relative risk reduction).66 Overall, the strength and consistency of the epidemi-
ologic associations for coffee have led to recommendations for moderate coffee con-
sumption for HCC prevention in the 2018 guidelines from the European Association for
the Study of the Liver (EASL).67 However, several important questions remain unan-
swered, including the optimal “dose” and preparation of coffee (ie, espresso vs drip
coffee, type of coffee bean, or roasting process), the optimal timing of initiation, and
the necessary duration of consumption during the natural history of liver disease to
achieve meaningful risk reduction. Thus, high-quality, prospective studies are needed
in well-phenotyped populations that include more specific details regarding coffee
consumption.

Green Tea

Two meta-analyses have evaluated green tea consumption in relation to HCC inci-
dence.68,69 The most recent 2016 meta-analysis included 11 Asian cohort studies of
more than 460,000 individuals and 3694 cases of liver cancer, and showed a pooled
relative risk for incident HCC of 0.88 (95% CI, 0.81–0.97) when the highest category of
green tea intake was compared with the lowest category.68 In a dose-response anal-
ysis, each additional 1 cup of daily green tea was associated with a 3% reduction in
HCC risk (95% CI, 0.95–1.00). In contrast, data from European cohort studies have
been mixed: in the EPIC cohort, persons in the highest quintile of green tea consump-
tion had a 59% lower risk of developing HCC (adjusted HR, 0.41; 95% CI, 0.22–0.78)
compared with the lowest quintile,70 whereas 2 prior Italian case-control studies found
null associations.71,72

Green tea is produced by heating or steaming fresh tea leaves at high temperatures,
in processes that result in minimal oxidation and thus preservation of the polyphenols
(ie, catechins) within the tea. Between 50% and 75% of the primary catechins in green
tea are epigallocatechin-3-gallate (EGCG), whereas the remainder include epigalloca-
techin, epicatechin-3-gallate, and epicatechin. In preclinical studies, EGCG inhibits
carcinogenesis at numerous sites, including within the liver, albeit with potential risk
of hepatotoxicity at high levels.73 However, in an epidemiologic cohort study, higher
levels of urinary catechins were associated with increased HCC risk among subjects
with positive HBV surface antigens, and this excess risk was magnified in patients with
low circulating retinol levels (adjusted odds ratio, 2.62; 95% CI, 1.25–5.51).74 Given
that green tea is the primary source of catechins, these data indicate that further
research is needed to understand the relationship between green tea consumption
and HCC risk, particularly among patients with chronic HBV infection.

Omega-3 Polyunsaturated Fatty Acids

Preclinical data suggest that intake of the omega-3 (n-3) polyunsaturated fatty acids
(PUFAs), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosa-
hexanoic acid (DHA), could prevent hepatocarcinogenesis by inhibiting the proinflam-
matory cyclooxygenase (COX)-2 enzyme, which in turn inhibits endogenous
biosynthesis of prostaglandins and b-catenin signaling pathways,75 while simulta-
neously stimulating the endogenous biosynthesis of proresolution lipid mediators.
When fat-1 transgenic mice (which endogenously form n-3 PUFAs) were compared
with wild-type pairs, both the size and number of hepatic tumors was reduced after
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diethylnitrosamine treatment, and hepatic COX-2 expression was significantly
reduced, whereas levels of circulating n-3 PUFA–derived proresolution lipid mediators
were significantly increased.76 These proresolution lipid mediators, which include lip-
oxins, resolvins, maresins, and protectins, are also stimulated by aspirin and have
been shown in murine models to mediate antitumor activity (Fig. 3).77

In a large, prospective, cohort study of 90,296 Japanese adults, consumption of an
n-3 PUFA–rich diet and individual n-3 PUFA supplements was significantly and
inversely associated with reduced HCC risk, in a dose-dependent manner.78 Specif-
ically, compared with the lowest quintiles of n-3 PUFA intake, the adjusted HRs in
the highest quintiles were 0.64 for n-3 PUFA–rich fish, 0.56 for EPA, 0.64 for DPA,
and 0.56 for DHA.78 These findings are also supported by prior cohort studies that
have similarly shown significant inverse associations between intake of diets rich in
n-3 PUFA–rich fish or white meat, and reduced HCC risk.79–81

Vitamin D

Both preclinical and clinical studies have linked higher levels of vitamin D (25-hydrox-
yvitamin D [25(OH)D]), to reduced HCC incidence. In vitro, administration of 1-
alpha,25(OH)2D has proapoptotic and antiproliferative effects on numerous cancer
cells,82–84 and inhibits growth of HCC cell lines,85 by modulating cell cycle growth
via induction of p21 and p27 tumor suppressor genes and suppression of cyclins
and cyclin-dependent kinases.86,87 In humans, higher 25(OH)D levels have been asso-
ciated with reduced HCC risk, with a relative risk of 0.5188; in contrast, low 25(OH)D3

levels have been linked to excess HCC risk in patients with chronic HBV infection
(adjusted HR, 1.90).89

Several carcinogenic signaling pathways are hypothesized to be responsive to
vitamin D and its metabolites. First, 1-alpha,25(OH)2D has been shown to downregu-
late epidermal growth factor receptor expression, which inhibits cell growth and pro-
motes cell division, through mitogen-activated protein kinase (MAPK)–dependent
pathways.90 Second, vitamin D3 might inhibit vascular endothelial growth factor–
mediated endothelial cell proliferation and angiogenesis.91,92 In addition, it has been
Fig. 3. Polyunsaturated fatty acids promote the endogenous biosynthesis of antiinflamma-
tory, proresolution lipid mediators. HDHA, hydroxydocosahexanoic acid; HEPE, hydroxyeico-
sapentaenoic acid; HpDHA, hydroperoxydocosahexanoic acid.
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posited that vitamin D might act on insulinlike growth factor (IGF) I and II signaling
pathways,93 which may in turn affect liver cancer cell proliferation.

Branched-Chain Amino Acids

Preclinical data suggest that increased circulating branched-chain amino acid (BCAA)
levels might protect against hepatocarcinogenesis. In vivo, BCAA treatment enhances
mammalian target of rapamycin (mTOR) signaling, which reduces both liver fibrosis
and HCC.94,95 In HCV-transgenic mice, BCAA administration reduces hepatic iron
deposition and decreases reactive oxygen species (ROS) formation,96 and, in high-
fat diet–fed mice with NASH, BCAA therapy represses profibrogenic gene expression
in hepatic stellate cells and protects hepatocytes from apoptosis.97 Furthermore,
in vivo, BCAA therapy suppresses expression of interleukin (IL)-6, IL-1b, IL-18, and tu-
mor necrosis factor, reducing inflammation in both the liver and white adipose tissues,
and inhibiting spontaneous HCC development.98

BCAA therapy has historically been used as a treatment of hepatic encephalopa-
thy, and clinical evidence linking BCAA supplementation to HCC incidence is sparse.
In a prospective study of 299 Japanese patients with cirrhosis, those provided with
BCAA supplementation (5.5–12.0 g/d) had a significantly lower risk of developing
incident HCC (relative risk, 0.45)99 compared with controls. In a meta-analysis of
11 studies, oral BCAA supplementation in patients with established HCC was asso-
ciated with improved mortality among Child-Pugh class B patients and among those
with higher levels of albumin (standardized mean difference, 0.234), and lower rates
of ascites (relative risk, 0.55).100 More recently, in an observational study of 166 pa-
tients undergoing evaluation for liver transplant, reduced plasma levels of valine and
the valine to phenylalanine ratio were significantly associated with increased overall
mortality.101

Other Dietary Compounds

Numerous additional dietary components and phytochemicals have been examined for
their potential role in HCC chemoprevention, including curcumin, resveratrol, flavonoids
(including silymarin), and carotenoids. However, to date, robust clinical evidence sup-
porting HCC preventive effects from these compounds in humans is still lacking.

STATINS

Statins, or 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors,
are prescribed for the reduction of low-density lipoprotein cholesterol levels. Beyond
their cholesterol-lowering effects, statins also exert a diverse array of pleiotropic anti-
inflammatory and antineoplastic effects. Both in vitro and in vivo studies show that sta-
tins block numerous carcinogenic signaling pathways, including those governed by
Myc, protein kinase B (Akt), integrins, Rho-dependent kinase, nuclear factor kappa
B (NF-kB), IL-6, and the Hippo pathway.102–109 By curtailing mevalonate synthesis,
statins also inhibit downstream posttranslational modification of Ras/Rho signaling
proteins, which regulate cellular survival and growth, and they inhibit the cellular
breakdown of p21 and p27, thereby permitting these molecules to exert potent
growth-inhibitory effects.106,110

Statins also seem to exert direct antifibrotic actions within the liver, which may
potentiate their anti-HCC benefits. Liver fibrosis is driven by the activation of hepatic
stellate cells (HSCs), which undergo a phenotypic change from a quiescent state to
become proliferative myofibroblasts. In preclinical studies, statins inhibit the activation
and proliferation of HSCs111–113 by upregulating Kruppel-like factor 2, a transcription
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factor that promotes HSC quiescence and thereby limits collagen production.114 The
administration of statins has also been shown to reduce pressures in the portal circu-
lation, which may further limit hepatic fibrogenesis,115 potentially through noncanon-
ical Hedgehog signaling pathways.116

Observational studies largely support a link between statin use and reduced HCC
risk. The authors observed a dose-dependent, inverse association between statin
use and reduced risk of cirrhosis and incident HCC among US veterans with chronic
HCV infection,117 and also in a posthoc analysis of a randomized controlled trial.118

Kaplan and colleagues119 studied a different cohort of US veterans with new diagno-
ses of cirrhosis and found significant HCC risk reduction with statin use for at least
90 days, compared with nonuse. These findings have been confirmed in several large
meta-analyses,120–122 which have shown a significant, inverse association between
statin use and reduced HCC risk. The observed benefits of statins were most apparent
among observational studies, whereas, in contrast, posthoc analyses of prior random-
ized controlled trials (RCTs) of statins for cardiovascular disease have failed to show
significant HCC risk reduction. However, those prior RCTs were not designed or pow-
ered to evaluate the long-term effect of statins on HCC incidence. Further, because
they excluded patients with cirrhosis, they comprised study populations at very low
risk for developing incident HCC.120,121

Emerging evidence further suggests that statin class may also influence HCC risk.
Specifically, statins can be broadly divided into lipophilic and hydrophilic subclasses,
and it has been hypothesized that lipophilic statins (ie, atorvastatin, simvastatin, fluvas-
tatin, and lovastatin) may confer more potent anti-HCC effects than hydrophilic statins
(ie, pravastatin, rosuvastatin). This hypothesis based on 4 lines of evidence. First, in pre-
clinical studies, lipophilic statins suppress viral replication, potentiate antiviral therapy,
and stimulate antitumor immunity to a greater degree than is observed with hydrophilic
statins.123–126 Second, in the setting of progressive liver fibrosis, the expression of
organic anion transporter proteins on the surface of hepatocytes is markedly reduced,
and this may prevent hydrophilic statins from entering hepatocytes, whereas lipophilic
statins can passively diffuse across cell membranes.127,128 Third, lipophilic statins limit
cell growth and promote cellular apoptosis by inducing cell cycle arrest via regulation of
Ras/Raf/MEK/ERK signaling.108 Further, administration of simvastatin to hepatocyte
cell lines enhances expression of the proapoptotic BAX gene and suppresses expres-
sion of the antiapoptotic BCL-2 gene, indicating that lipophilic statins can induce
apoptosis by acting at the pretranslational level, as well.129

Epidemiologic data comparing lipophilic and hydrophilic statins are both limited and
conflicting. Specifically, 2 prior studies did not identify differences in HCC risk with use
of lipophilic compared with hydrophilic statins121,130; however, in a large, population-
based cohort study of Swedish adults, the authors recently showed significantly
reduced HCC risk among lipophilic statin users, compared with nonusers, whereas
the relationship between hydrophilic statin use and incident HCC risk was null.131

Although future studies are still needed to confirm these findings, such data suggest
that the observed benefits associated with statin use in prior studies may have been
driven by the unique, class-specific benefits of lipophilic statins.
To date, evidence supporting the use of statins for HCC chemoprevention is not yet

sufficient to be incorporated into guidelines. First, published data derive primarily from
observational studies, which lack the benefits of randomization and are prone to se-
lection or confounding by indication bias. Among prior studies, only a few have appro-
priately balanced the prevalence of underlying HCC risk factors (such as HBV and
HCV infection, alcohol-related liver disease, diabetes, obesity, and smoking status)
between exposure groups.119,131 Such imbalances could introduce confounding by
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indication, particularly because physicians historically have avoided prescribing sta-
tins to patients with liver disease out of concern for hepatotoxicity. Second, high-
quality, prospective data are scarce regarding the optimal statin type, necessary dura-
tion of use, and the durability of statin-related treatment response, nor are sufficient
data available regarding the impact of statins in patients with NAFLD or alcohol-
related liver disease. In addition, it remains unknown whether there might be potential
additive benefits from the concomitant use of statins together with other medications
with putative anti-HCC effects, such as aspirin or metformin. Although some prior data
suggest that the relationship between statin use and reduced HCC risk is not signifi-
cantly modified by concurrent aspirin or antidiabetic medication use,131 confirmatory
studies are needed to validate these findings.
ASPIRIN

Preclinical evidence supports a role for aspirin in the prevention of HCC. Although
the precise mechanisms remain undefined, both COX-dependent and COX-
independent actions have been proposed. Specifically, the inducible, proinflamma-
tory COX-2 enzyme is overexpressed in many cancers associated with obesity and
chronic inflammation,132,133 including HCC,134,135 and aspirin irreversibly inhibits
COX-2 expression in a dose-dependent manner.136 COX-2 expression in hepato-
cytes promotes the spontaneous development of HCC in mice, by reducing tet
methylcytosinedioxygenase 1 (TET1) expression, silencing tumor suppressor genes,
and activating oncogenic pathways.134 Hepatocarcinogenesis has also been linked
to hepatic translocation of 2 gut microbial metabolites, lipoteichoic acid and deox-
ycholic acid, which promote cellular senescence and upregulate COX-2 expression,
driving the production of prostaglandin E2 and suppressing antitumor immunity.47

Moreover, by stimulating production of prostaglandins, COX-2 overexpression
also promotes angiogenesis and cellular proliferation,137–139 by activating the proin-
flammatory protein kinase 3, mTOR, and NF-kB signaling cascades.134 In contrast,
aspirin inhibits NF-kB activation and protein kinase 3 signaling,140–142 and, in pre-
clinical models, pharmacologic inhibition of COX-2 or prostaglandin E2 prevents
the proliferation of liver cancer cells135 and promotes the resolution of liver
fibrosis.143–145

The benefits of aspirin in the liver may also derive from the inhibition of platelet ac-
tivity, which has been shown to limit hepatic inflammation, fibrosis, and hepatocarci-
nogenesis.146 Platelets play a central role in promoting accumulation of CD81 T cells
in the liver during chronic viral infection. They also generate platelet-derived growth
factor-beta, which activates HSCs and promotes fibrosis progression in rodent
models.147 Recently, Malehmir and colleagues148 showed in murine models that anti-
platelet therapy with aspirin prevented the development of NASH and subsequent
HCC via inhibition of platelet-derived glycoprotein 1b alpha, which subsequently
reduced intrahepatic platelet accumulation, activation, and immune cell trafficking.
Together, these lines of evidence provide additional promising mechanistic explana-
tions for the observed hepatoprotective effects of aspirin.
Clinical evidence regarding the impact of aspirin use on HCC incidence derives

exclusively from observational studies.149–166 Although some investigators have re-
ported conflicting results, most of these observational studies have found a signifi-
cant, inverse association between aspirin use and reduced risk of incident HCC
(Table 2). For example, within 2 prospective cohorts of US women and men, the au-
thors showed that regular aspirin use was associated with a significant, 49% lower risk
of developing incident HCC (adjusted HR, 0.51; 95% CI, 0.34–0.77), and these



Table 2
Observational studies of aspirin use and risk of hepatocellular carcinoma

Study (Author, Year) Region Study Design

HCC
Cases
(N)

Aspirin
Users
(N) Total (N)

HCC Risk (OR,
RR, HR; 95% CI)

Simon et al,149 2020 Sweden Retrospective cohort 1612 14,205 50,275 0.69 (0.62–0.76)

Du et al,161 2019 China Retrospective cohort 41 59 264 0.16 (0.04–0.71)

Lee et al,150 2019 Korea Retrospective cohort 697 2123 10, 615 0.70 (0.58–0.86)

Tsoi et al,151 2019 Hong Kong Retrospective cohort 9370 204,170 612,509 0.49 (0.45–0.53)

Hwang et al,152 2018 Korea Prospective cohort 2336 64,782 460,755 0.87 (0.77–0.98)

Simon et al,165 2018 United States Prospective cohort 108 58,855 133,371 0.51 (0.34–0.77)

Lin et al,154 2018 Taiwan Retrospective cohort 110 3576 18,243 0.67 (0.42–1.08)

Tseng et al,155 2018 Taiwan Retrospective cohort 1750 23,112 43,800 0.83 (0.69–0.99)

Lee et al,157 2017 Korea Retrospective cohorta 63 343 14,392 0.34 (0.15–0.77)

Lee et al,156 2017 Taiwan Retrospective cohort NR 5602 18,080 0.70 (0.37–1.36)

Kim et al,153 2017 Korea Case control 229 390 1374 0.34 (0.15–0.78)

Yang et al,162 2016 United Kingdom Case control 1195 1670 5835 1.11 (0.86–1.44)

Petrick et al,164 2015 United States Prospective cohort 679 477,470 1,084,133 0.68 (0.57–0.81)

Sahasrabuddhe et al,163 2012 United States Prospective cohort 250 89,585 300,504 0.51 (0.35–0.75)

Chiu et al,158 2011 Taiwan Case control 1166 162 2332 1.0 (0.73–1.38)

Friis et al,160 2003 Denmark Retrospective cohort 21 29,470 29,470 1.0 (0.60–1.50)

Coogan et al,159 2000 United States Case control 51 491 7101 0.90 (0.30–2.90)

a Estimates provided are from the propensity score-matched cohort.
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benefits were both dose and duration dependent.165 More recently, we confirmed
these associations in a nationwide, unselected population of Swedish adults with
chronic HBV or HCV infection, in whom low-dose aspirin use (<163 mg) was associ-
ated with significant, duration-dependent reductions in risk of developing incident
HCC (adjusted HR, 0.69; 95% CI, 0.62–0.76) and in the risk of liver-related mortality
(adjusted HR, 0.73; 95%CI, 0.67–0.81).166 Similarly, a pooled analysis of 10 US-based
prospective cohorts (with nearly 1.1 million adults, and 679 incident HCC cases) re-
ported a pooled HR for incident HCC of 0.68 with aspirin use, compared with
nonuse.164 Although these lines of evidence are promising, additional prospective
data are still needed to more fully characterize the potential benefits of aspirin across
the complete spectrum of chronic liver disease, and also to quantify the potential risks
of bleeding associated with aspirin use.

METFORMIN

Antidiabetic medications have also been explored as potential agents for HCC chemo-
prevention. Among them, the best studied is metformin, a biguanide derivative that
blocks gluconeogenesis and enhances peripheral insulin sensitivity. Metformin exerts
diverse antiangiogenic, antiinflammatory, and antineoplastic effects; by activating aden-
osine monophosphate-activated protein kinase (AMPK), metformin inhibits hypoxia-
inducible factor 1 alpha and vascular endothelial growth factor signaling, which serve
to block angiogenesis.167 Metformin also suppresses hepatic progenitor cell activa-
tion168 and can inhibit cellular proliferation by suppressing NF-kB and reducing the
expression of cyclin D1.167 Furthermore, in murine models, metformin prevents HSC
activation and attenuates fibrosis,169 and it also seems to reduce HCC development,
particularly when it is initiated before the development of cirrhosis.168

In humans, several prior meta-analyses have shown that metformin use is associ-
ated with reduced HCC incidence. The most recent meta-analysis included 19 studies
and more than 550,000 patients with diabetes, and found a 48% lower risk of incident
HCC with metformin use, compared with nonuse (pooled OR, 0.52; 95% CI, 0.40–
0.68).170 Notably, the investigators found no significant reduction in HCC incidence
in a subanalysis of 2 posthoc studies of prior RCTs of metformin use among patients
with diabetes (pooled OR, 0.84 with metformin use vs nonuse; 95% CI, 0.10–6.83);
however, those 2 prior RCTs were limited by very few cases of liver cancer, and
they were not designed or powered to assess HCC end points, thus their findings
should be interpreted with caution.171

Pioglitazone, which stimulates the nuclear receptor peroxisome proliferator-
activated receptor gamma, has shown efficacy for reducing liver fat levels and inflam-
mation in patients with established NASH172; however, whether this translates to
reduced HCC risk is still unknown. To date, 1 case-control study reported significantly
reduced HCC risk with use of pioglitazone, compared with nonuse (OR, 0.83; 95% CI,
0.72–0.95),173 and 2 studies have found significant risk reduction with use of any thia-
zolidinedione medication, compared with nonuse,174,175 although others have shown
null associations.176,177 In addition, although glucagonlike peptide-1 (GLP-1) receptor
agonists have shown short-term efficacy for the resolution of NASH,178 little is
currently known about the long-term impact of GLP-1 receptor agonists or dipeptidyl
peptidase-4 (DPP-4) inhibitors on HCC incidence.

OTHER POTENTIAL CHEMOPREVENTIVE DRUGS

Although published data are limited, several other medications could represent plau-
sible agents for HCC chemoprevention, including angiotensin-converting enzyme
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inhibitors and menopausal hormone therapy. The renin-angiotensin axis participates
in liver fibrogenesis and hepatocarcinogenesis,179 and, by activating NF-kB, angio-
tensin II can promote the survival of hepatic myofibroblasts, but this effect is reversed
with captopril treatment.180 Moreover, telmisartan, an angiotensin II type 1 receptor
blocker (ARB), can prevent fibrosis and HCC development in rodents.181 In addition,
it is well established that there are marked sex disparities in the incidence of HCC,
with men being affected more frequently than women, leading to the hypothesis
that estrogen may protect against HCC incidence. In support of this, a case-control
study of 234 women with treated HCC and 282 healthy controls showed that meno-
pausal hormone therapy use was associated with reduced odds of developing
HCC.182 A meta-analysis of 87 studies also found that variants in the estrogen recep-
tor 1 (ESR1) gene were associated with excess HCC risk.183 Moreover, in a large con-
sortium of prospective US cohort studies, bilateral oophorectomy was significantly
associated with increased HCC incidence (HR, 2.67; 95% CI, 1.22–5.85), after ac-
counting for other lifestyle and clinical factors and duration of exposure to exogenous
hormone therapy.184,185
THE POTENTIAL IMPACT OF LIFESTYLE MODIFICATION FOR HEPATOCELLULAR
CARCINOMA RISK REDUCTION

Given the growing prevalence of chronic liver disease attributable to an unhealthy life-
style, and the significant associations between high-risk lifestyle factors and excess
HCC risk, HCC prevention strategies focused on adopting a low-risk lifestyle would
likely offer substantial benefits. However, in order to identify priorities for public health
interventions, it is important to quantify the magnitude of contribution of lifestyle factors
to HCC risk. Using 2 nationwide, prospective US cohort studies, the authors recently
showed that more than 80% of HCC cases could theoretically have been prevented
with adherence to low-risk lifestyles. Such data underscore the enormous potential
impact of primary HCC prevention efforts focused on lifestyle modification. Neverthe-
less, important knowledge gaps still remain. In order to translate such data into mean-
ingful recommendations, well-designed, prospective studies are needed to define the
optimal approaches to lifestyle modification to achieve clinically meaningful and durable
HCC risk reduction in patients who are at high risk of developing incident HCC.
CHALLENGES AND FUTURE DIRECTIONS

Progress in the development and clinical translation of HCC prevention strategies has
thus far been limited by 4 important barriers. First, despite promising associations be-
tween low-risk lifestyle factors and reduced HCC risk, data are lacking regarding the
optimal approaches to lifestyle modification that might translate to effective and dura-
ble HCC risk reduction in high-risk populations. Second, the molecular mechanisms of
hepatocarcinogenesis remain largely uncharacterized11,186 because of the genetic
heterogeneity of HCC tumors187 and also suboptimal animal models,188 which limit
the ability to translate hypotheses from preclinical studies to humans. Third, research
into other cancers benefits from ready access to tumor biospecimens, precursor le-
sions, and adjacent normal tissues, which facilitates the discovery and validation of
targeted, molecular chemoprevention strategies.189 In contrast, access to HCC spec-
imens is more difficult, because HCC tumors may be diagnosed without confirmatory
pathologic specimens. Although there have been promising recent developments in
molecular tools for HCC risk prediction and in the use of liquid biopsy, the clinical utility
of these approaches is not yet established.11
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In addition, a major challenge has been the need for large numbers of subjects and
prolonged follow-up times in HCC chemoprevention trials. It has been hypothesized
that these requirements for large populations and prolonged follow-up are caused
by the inclusion of heterogeneous study populations, which dilute potential treatment
effects. For example, 2 large chemoprevention trials of low-dose interferon therapy for
patients with advanced fibrosis or cirrhosis failed to show significant HCC risk reduc-
tion with treatment.189–191 However, among patients with cirrhosis (the subgroup at
highest risk of developing HCC), a significant treatment benefit was found. Thus, it
is plausible that enrollment of an enriched, high-risk study population might maximize
the potential to detect a treatment effect, which in turn would enable the design of
more feasible and efficient clinical trials, requiring smaller numbers of patients and
shorter follow-up times.186

In addition to risk-stratified enrollment, biomarker-based HCC chemoprevention tri-
als are needed. To achieve this goal, such biomarkers must (1) predict future risk of
HCC development, (2) predict response to chemoprevention therapy, and (3) provide
insight into drug pharmacokinetics. Recently, molecular biomarkers of HCC risk have
been developed and are undergoing rigorous validation for these purposes.11 For
example, liver tissue–derived transcriptomic signatures have been validated for pre-
dicting incident HCC risk among patients with cirrhosis of any cause, including chronic
HBV or HCV infection, alcohol-related liver disease, and NAFLD.192 Based on these
results, enrollment was recently completed for a phase I/II clinical trial of erlotinib
for the prevention of HCC in patients with cirrhosis (NCT02273362); this trial used a
liver tissue transcriptomic prognostic signature as a selection factor for study enroll-
ment and as a surrogate, biomarker-based end point. Showing that a high-risk tran-
scriptomic signature predicts meaningful HCC risk reduction with erlotinib would
form a strong scientific rationale for future biomarker-driven HCC chemoprevention
trials that use molecular-based risk-stratified enrollment procedures and validated,
surrogate biomarker end points for HCC.186 Such trials would have enhanced feasi-
bility, overcoming many of the barriers outlined earlier, and would therefore enable
more rapid translation of preclinical discoveries to humans.
SUMMARY

Given the diversity of HCC and its underlying risk factors, strategies for primordial and
primary HCC prevention are likely to have broad clinical applicability for patients with
chronic liver disease. Lifestyle modification or the repurposing of medications such as
statins, aspirin, or metformin could be readily combined with cause-specific HCC pre-
vention strategies and might offer synergistic benefits. In parallel, research to better
characterize the molecular determinants of HCC will help elucidate much-needed
prognostic biomarkers and thereby enable the design of more efficient, biomarker-
based HCC chemoprevention trials. Ultimately, combining lifestyle modification stra-
tegies with the use of safe, generic compounds and targeted biomarkers for predicting
HCC risk could provide a robust and cost-effective strategy for HCC chemoprevention
among at-risk patients with chronic liver disease.
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