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KEY POINTS

� Hepatocellular surveillance with alpha-fetoprotein and ultrasound has substantially
greater sensitivity for early stage hepatocellular carcinoma (HCC) than with ultrasound
alone.

� Combining alpha-fetoprotein with other biomarkers (eg, GALAD score) may further
improve early detection.

� Biopsy of hepatocellular carcinoma lesions is associated with risk, and there is little evi-
dence that tumor sequencing can be used to determine systemic therapy decisions in
HCC.

� More frequent use of biopsy in a research setting may improve our understanding of HCC
biology and assist with development of targeted therapy in the future.
INTRODUCTION

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death world-
wide.1 HCC prevalence and attributable mortality in the United States are increasing
rapidly,2,3 driven largely by increasing prevalence in alcoholic liver disease and nonal-
coholic fatty liver disease, as well as peaking hepatitis C virus prevalence.4,5

HCC usually arises in the setting of cirrhosis, and international liver societies recom-
mend screening for HCC in at-risk patients using biannual ultrasound (US) with or
without alpha-fetoprotein (AFP) measurement.6–8 The motivation behind these guide-
lines is to increase the probability of detection of early stage HCC that is amenable to
curative therapy.9,10 However, commonly used methods of HCC screening have inad-
equate sensitivity, especially for early stage cancer: the combination of US and AFP
results in only a 63% sensitivity for detection of early stage HCC.11 Given this
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limitation, there has been interest in developing and validating improved biomarkers
for early detection of HCC, prognostication, and management.
Unlike other commonmalignancies, HCC can be diagnosed based on imaging char-

acteristics without a biopsy, which reduces risks of biopsy-related complications such
as tumor seeding and bleeding.12 However, this practice may result in some limita-
tions. First, greater than 5% of MRI-diagnosed HCC may be false positive or non-
HCC lesions.13 Second, the lack of routine liver biopsies has resulted in limited under-
standing of HCC at a molecular level that has hampered drug development.14

The purpose of this article is to review the utility of serum biomarkers in HCC detec-
tion and prognostication and potential use of liver biopsy to guide therapy decisions in
HCC.
HEPATOCELLULAR CARCINOMA BIOMARKERS

HCC biomarkers include AFP, Lens culinaris agglutinin-reactive fraction of AFP (AFP-
L3), and des-gamma-carboxyprothrombin (DCP).

Diagnosis and Detection

The role of AFP in HCC diagnosis has evolved over time. In early American and Euro-
pean HCC guidelines, high AFP levels were used as an adjunct to imaging for HCC
diagnosis.12,15 With advances in imaging methods, AFP is no longer used for HCC
diagnosis but may have a role in HCC detection in conjunction with US.6–8 There
has been some controversy on the role of AFP in HCC screening. Recent American,
European, and Asia-Pacific HCC guidelines are agnostic as to whether AFP should
be included in HCC surveillance programs.6–8 AFP concentration elevations greater
than 20 ng/mL have been reported in up to 10% to 20% of patients with viral hepatitis
or cirrhosis and may be more common with active hepatitis.16,17 Conversely, the
sensitivity of AFP alone is relatively low in early stage HCC.17 The cost-
effectiveness of AFP in addition to US-only surveillance has also been questioned,18

although, of note, the study used estimates of sensitivity/specificity that were not
restricted to early stage HCC.
More recent studies have supported the use of AFP in HCC surveillance. A recent

meta-analysis found that AFP greatly increased sensitivity for early HCC over US alone
from 45% to 63%, and this increase in sensitivity was robust across several sub-
groups including prospective studies, post-2000 studies, and studies only including
patients with cirrhosis.11 Although screening strategies with US plus AFP had lower
specificity for early HCC than did US alone (84% vs 92%),11 this relatively small
decrease in specificity would likely be offset by increased probability of early detec-
tion. Trends in AFP over time may also be informative in HCC detection. One recent
study of 1050 patients with hepatitis C found that an empirical Bayes model incorpo-
rating not only US and absolute AFP level but also the average of prior AFP values in
that same patient had superior performance characteristics for identifying patients
who went on to develop HCC than did US and AFP alone.19 AFP is frequently incor-
porated into HCC surveillance in real-world cohorts,20–24 suggesting that despite
the controversy over the utility of AFP in HCC surveillance, many providers consider
it useful in clinical practice.
Two other commonly used biomarkers are AFP-L3 and DCP, also known as protein

induced by vitamin K absence or antagonist II. AFP comprises 3 glycoforms with
distinct binding affinity to Lens culinaris agglutinin. The glycoform with the greatest af-
finity, AFP-L3, is upregulated in HCC compared with nonmalignant liver disease.25

DCP is an abnormal form of prothrombin that does not undergo posttranslational
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modification with gamma-carboxylation. DCP levels are higher levels in patients with
HCC than in those with nonmalignant liver disease. The most commonly used cut-offs
are greater than 40 mAU/mL for DCP and greater than 5% to 10% for AFP-L3.26 One
meta-analysis found that for distinguishing early stage HCC from controls, AFP and
DCP had similar area under the receiver operating characteristic curve (AUC) (0.75
vs 0.70), whereas that of AFP-L3 was marginally lower (0.67).26 Notably, though,
AFP-L3 and DCP are complementary to AFP, as they may be abnormal even when
AFP is not.27 In one study, AFP-L3 and DCP demonstrated similar predictive power
for distinguishing HCC from chronic liver disease in patients with HCC and AFP less
than 20 ng/mL (AUC 0.63 and 0.74, respectively) compared with that in all patients
with HCC, and the combination of AFP, AFP-L3, and DCP had greater predictive po-
wer than did any individual marker.26 Note that similar to prothrombin time, DCP is
affected by vitamin K antagonists and cannot be used as an HCC biomarker in pa-
tients taking warfarin.
The fact that AFP-L3 and DCP provide information beyond AFP alone suggests that

scores combining multiple patient characteristics and biomarkers may have greater
sensitivity than individual markers in early detection of HCC. One notable recent score
that has combined multiple markers with demographics is the GALAD score (gender,
age, AFP-L3%, AFP, and DCP). Overall, GALAD has been shown to have excellent
performance characteristics with AUC greater than 0.90 at distinguishing HCC from
nonmalignant liver disease (Table 1).28–32 Importantly, most of the studies on GALAD
for HCC detection specifically evaluated the most clinically relevant problems of
detection at an early stage and/or whether GALAD offers incremental benefit to the
most commonly used HCC biomarker, AFP. In addition, GALAD scores seem to in-
crease months or even years before clinically apparent HCC is present,30,31 so trends
in GALAD scores rather than merely absolute scores may be useful in HCC detection,
similar to what has been demonstrated for AFP.19 GALAD has shown excellent prom-
ise in large phase 2 studies (case-control) and to an extent in phase 3 (retrospective
longitudinal) studies, but further validation in larger phase 3 and phase 4 (prospective
screening) studies is required.33 The Roche Elecsys GALAD score recently received
Breakthrough Device Designation by the US Food and Drug Administration, allowing
for streamlined market clearance/approval.
Prognosis

AFP has value both as a prognostic marker (ie, impacts survival regardless of treat-
ment type) and predictive marker (ie, predicts response to therapy). This finding
may be related to differences in cancer biology: AFP-secreting HCC tumors are
more often associated with TP53 mutations and poor differentiation.34–36 Elevated
AFP is associated with poorer outcomes in patients receiving resection,37 liver trans-
plantation,38 tumor ablation,39 transarterial chemoembolization,40 and sorafenib.41 In
addition, AFP trends have been used to monitor response to treatments including sys-
temic chemotherapy and ablation, and improvement in AFP has been associated with
improved outcomes.42,43

Perhaps the best-established use of AFP as a predictive marker is with ramuciru-
mab, a VEGFR2 inhibitor. In a randomized controlled trial, ramucirumab did not
improve survival over placebo as second-line therapy in the overall cohort but on sub-
group analysis and in a subsequent study led to a survival advantage (and is approved
for use solely) in patients with AFP greater than 400 ng/mL.44,45 Likewise, survival
benefit to cabozantinib was greater in patients with HCC with serum AFP greater
than or equal to 200 ng/mL.46



Table 1
Selected studies validating the GALAD score

Study,
Ref Location HCC Patients Controls Results

Johnson
et al,28

2014

UK: Birmingham
and Newcastle

N 5 394
27% alcohol,

11% HCV,
8% HBV

N 5 439
17% HCV,
16% alcohol,
13% HBV

Birmingham: AUC 0.97
overall and 0.96 for
early stage

Newcastle: AUC 0.95

Berhane
et al,29

2016

UK, Germany,
Japan,
Hong Kong

N 5 2430
49% HCV,

21% HBV

N 5 4404
40% HCV,
26% HBV,
34% other
liver disease,
5% non-HCC
cancer,
2% healthy

All patients:
AUC 0.97/0.93/0.94 in
UK/Japan/Germany

Early HCC: AUC 0.93/0.91
in UK/Japan

Berhane
et al,30

2017

Japan N 5 119 N 5 2128 2247 patients under
surveillance. Increase
in GALAD score
preceded HCC
development

Best
et al,31

2019

Germany,
Japan

N 5 126
(Germany)

N 5 26 (Japan)
100% NAFLD

N 5 231 (Germany)
N 5 363 (Japan)
100% NAFLD

Germany: AUC 0.92
(early stage HCC),
0.93 (cirrhosis only),
0.85 (early stage HCC
and cirrhosis)

Japan: increase in
GALAD score
preceded HCC
development

Yang
et al,32

2019

US N 5 111
43% HCV,

27% NAFLD,
13% alcohol,
10% HBV

N 5 180
27% NAFLD,
21% alcohol,
18% HCV,
15% HBV

AUC 0.95 overall,
0.92 for BCLC
stage 0/A, 0.90 for
AFP <20 ng/mL
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More recently, the BALAD and BALAD-2 scores, which incorporate bilirubin, albu-
min, AFP-L3, AFP, and DCP, have also been used for prognostication in HCC
(Table 2).29,47–51 BALAD and BALAD-2 include the same variables, but BALAD con-
siders them as either normal or abnormal, whereas BALAD-2 uses them as continuous
variables. Most studies on BALAD and BALAD-2 have been conducted in patients with
chronic hepatitis C in Japan, although it has been studied internationally as well.
BALAD and BALAD-2 may add information beyond treatment type and conventional
staging alone,29,49–51 although this benefit is likely to be small.48
Other novel protein and nonprotein biomarkers
Identifying non-AFP biomarkers to predict response to systemic therapy has been
challenging. The SHARP study did not identify any serum biomarkers predictive of
treatment response to sorafenib.52 Similarly, neither AFP nor c-Met were associated
with response to regorafenib treatment.53 A recent study identified a set of micro-
RNAs and plasma proteins associated with response to regorafenib, although this re-
quires further validation.54



Table 2
Selected studies validating the BALAD and BALAD 2 scores

Study, Ref Location HCC Patients Results

Toyoda et al,47 2006 Japan, 5 institutions N 5 2600
75% HCV, 14% HBV, 2% HBV 1 HCV, 9%

nonviral

Patients with high BALAD score were less
likely to receive resection or ablation
and more likely to receive systemic or
no therapy. Similar prognostic
significance as TNM staging

Kitai et al,48 2008 Japan, 5 institutions N 5 1173
75% HCV, 13% HBV, 2% HBV 1 HCV

BALAD was inferior to conventional and
biomarker-combined Japan Integrated
Staging scores

Chan et al,49 2015 Hong Kong, 1 institution N 5 198
100% HBV

BALAD added additional prognostic
information to BCLC stage

Berhane et al,29 2016 UK, Germany, Japan, Hong Kong N 5 2430
49% HCV, 21% HBV

Higher BALAD-2 score associated with
poorer prognosis in all countries and
treatment types

Toyoda et al,50 2017 Japan, >750 institutions N 5 24,029
70% HCV, 16% HBV

Both BALAD and BALAD-2 associated
with prognosis in multivariable
analysis. BALAD-2 had predictive
power across treatment types and
disease causes

Wongjarupong et al,51 2018 US, 1 institution N 5 113
58% HCV, 12% alcohol, 12% NAFLD/

cryptogenic, 10% HBV
100% liver transplant recipients

Both BALAD and BALAD-2 associated
with recurrence and survival
posttransplant. Tumor size plus BALAD/
2 showed the best test characteristic.

R
o
le

o
f
B
io
m
a
rk
e
rs

a
n
d
B
io
p
sy

5
8
1



Chen & Sharma582
Glycoprotein biomarkers, other than AFP, AFP-L3 and DCP, are also under investi-
gation as HCC biomarkers. Glycosylation of proteins is altered in malignant transfor-
mation, including in HCC, and there has been interest in evaluating them as
biomarkers for HCC detection. In a study of 42 patients with HCC and 53 patients
with viral hepatitis, multifucosylated alpha-1-acid glycoprotein has been shown to
have very high predictive power for HCC (AUC 0.93 for HCC vs hepatitis B).55 Altered
N-glycosylation and fucosylation of haptoglobin has been noted in HCC compared
with chronic liver disease controls.56,57 Multimarker studies are also possible in glyco-
proteomics. One group collected serum from 8 patients with HCC and 14 healthy con-
trols, performed affinity chromatography followed by liquid chromatography/mass
spectrometry, and identified 21 liver-expressed candidate biomarkers that were
mostly found in higher levels in HCC.58 Existing studies on glycoprotein markers in
HCC have been limited in scope and require external validation before they can be
recommended for clinical use.
Finally, the authors briefly discuss nonprotein biomarkers.59 Neutrophil-lymphocyte

ratio reflects systemic inflammation, which is thought to play an important role in carci-
nogenesis by inhibiting apoptosis and promoting angiogenesis.60 Elevated neutrophil-
lymphocyte ratio has been associated with poorer overall survival and disease-free
survival in patients treated with surgical therapy and is also associated with poorer
overall survival in patients receiving palliative therapy or ablation.61 Circulating tumor
cells are malignant cells that have been detached from the primary tumors and
released into the circulation and can be found in most solid tumors.62 Cell-free DNA
is released into the circulation by cells and can be quantified or sequenced.59 Extra-
cellular vesicles are formed when cell membranes, apoptotic bodies, or lysosomes
bud off and can be isolated from serum/plasma.63 Circulating tumor cells have only
modest sensitivity (70%) for HCC detection. The literature on extracellular vesicles
for early HCC detection is limited by heterogeneity on which property of extracellular
vesicles is evaluated: most studies investigated microRNAs, but there has been little
consistency in which microRNAs were studied.64,65 In comparison, cell-free DNA
methylation profiles have demonstrated greater potential: 2 large studies from China
and the United States found sensitivity and specificity of greater than 90% for distin-
guishing HCC from chronic liver disease and sensitivity greater than 75% in identifying
early stage HCC.66,67 Whether these methylation scores can be validated across dis-
ease causes and ethnicities remains to be seen.
ROLE OF BIOPSY IN HEPATOCELLULAR CARCINOMA
Diagnosis

Biopsy is not needed to establish the diagnosis of HCC because of high specificity of
dynamic imaging (computed tomography and MRI) in identifying HCC greater than or
equal to 2 cm.6–8 In addition, patients with cirrhosis and coagulopathy are at increased
risk of developing biopsy-related complications such as bleeding,14 and tumor seed-
ing after biopsy has been reported to be as high as 2.7%.68 A recent meta-analysis
reported a pooled specificity of both computed tomography and MRI of 91% to
92%, implying a greater than 5% false-positive rate of HCC diagnosis with imaging
alone.69

The Liver Reporting and Data System (LIRADS) represents an attempt to stan-
dardize liver imaging and may result in a lower rate of false positives.70,71 However,
entities such as combined HCC-intrahepatic cholangiocarcinoma, metastatic lesions,
and dysplastic nodules may be difficult to distinguish from HCC radiographically.72,73

Routinely conducting liver biopsy to reduce false-positive rates has not been well



Role of Biomarkers and Biopsy 583
studied; however, the authors acknowledge that a greater than 5% false-positive HCC
diagnosis rate is significant. The standard of care in many tertiary care centers is to
review most patients with a new HCC diagnosis in a multidisciplinary tumor board
setting and only obtain biopsies of lesions that are not definitely HCC based on LIR-
ADS criteria.
Biopsy and Precision Medicine

Precision oncology has attracted major interest recently and is a bedrock of several
other cancer types. Her2/neu inhibitors improve survival in patients with Her2/neu-
amplified breast cancer, alectinib and erlotinib are used for lung cancer with EGFR
mutations and EML4-ALK fusions, and pembrolizumab is approved for any microsat-
ellite instability-high or mismatch repair–deficient solid tumors.74–77 Unfortunately,
precision therapy for HCC is comparatively lacking, in part because of nonavailability
of tissue to study tumor mutations and biology, as it is not standard of care to biopsy
HCC, as detailed earlier.12,14,78 Only recently has deep sequencing of human HCC tis-
sue identified molecular subtypes with distinct prognoses.34,79,80 Commercially avail-
able sequencing platforms such as Foundation One are frequently used in oncology to
determine tissue of origin and even guide therapy or clinical trial eligibility.81,82

Although there are comparatively few data on this topic in HCC, small sequencing
studies have suggested that next-generation sequencing may yield additional insights
into cancer biology.83

Molecular characterization of HCC has yielded substantial insight into driver muta-
tions in HCC.80,84–88 Fig. 1 shows the frequency of common gene mutations in HCC.
Genes consistently shown to be mutated in HCC include those involved in telomere
maintenance (TERT promoter), WNT/beta-catenin pathways (CTNNB1, AXIN1), tumor
suppressor genes (TP53, TSC2), cell cycle (CDKN2A), chromatin remodeling (ARID1A,
ARID2), oxidative stress (NFE2L2), MAP kinase (RPS6KA3), and normal liver function
(ALB, APOB).80,84–88 Mutational profiles may differ based on disease cause. TERT
promoter mutations may be more frequently found in NAFLD or alcohol-related
HCC.80,89 HBV-related HCC is associated with TP53-inactivating mutations80,85 and
Fig. 1. Frequency of common gene mutations in HCC.
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more frequently has RB1 and less frequently has CTNNB1 mutations compared with
HCC of other causes.87

Recently, investigators have divided HCC into subgroups based on a combination
of driver mutations and histology.34 One subgroup is characterized by TP53
mutations, poorly differentiated histology, and elevated AFP and carries a poorer
prognosis, whereas another more often involves CTNNB1 mutations and well-
differentiated histology, with more favorable prognosis. One large recent study evalu-
ated mutations in 801 tumors from 720 patients and found that presence of a high-risk
gene expression profile was associated with poorer survival in patients undergoing
resection, ablation, or noncurative therapy.90

Whether mutational profiles are useful in guiding therapy is an emerging topic of
investigation. In one study, patients receiving sorafenib whose tumors carried PI3K-
mTOR pathway mutations had shorter progression-free and overall survival, whereas
WNT/beta-catenin mutations were also associated with poorer prognosis among pa-
tients receiving checkpoint inhibitors.91 FGF19 copy number amplification may also be
associated with improved response to sorafenib in HCC.92 These findings require
external validation but (if patients have undergone molecular characterization of tu-
mors) may help guide therapy, as the list of systemic therapeutics against HCC be-
comes increasingly diverse. Although it has been reported that greater than 20% of
early stage HCC have mutations potentially targetable by Food and Drugs
Administration–approved medications,80 phase 2 studies for several of these medica-
tions in overall HCC populations have already been unsuccessful.93–95 Whether these
medications are effective among individuals carrying specific mutations remains to be
determined, and ongoing studies are evaluating this possibility.96
SUMMARY

AFP is the oldest biomarker still in use for HCC detection and prognostication, and we
support its use in HCC surveillance given the improvement in early detection sensi-
tivity with AFP plus US over US alone. The GALAD score that combines AFP, AFP-
L3, DCP, age, and sex may be an even more promising surveillance tool, although
validation in larger phase 3 and 4 studies is still required. Recent research on
sequencing HCC tumors has yielded substantial insights into HCC tumor biology
and has raised the possibility of precision oncology in which therapy decisions are
guided by cancer genetics. At this point, though, no mutational profile has been
convincingly shown to predict response to HCC therapy. Given this, it has been
believed that routine biopsy with sequencing of HCC is unlikely to change patient
management in the short term. However, biopsy in a research setting to expand the
understanding of HCC tumor genetics may assist in development of future, more
effective systemic therapy for HCC.
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