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Vault perforation after eccentric glenoid reaming
for deformity correction in anatomic total
shoulder arthroplasty
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Background: The management of glenoid deformity during anatomic total shoulder arthroplasty remains
controversial. In this study, we evaluate variable correction of glenoid deformity by eccentric reaming. We
hypothesize that partial correction of modifiedWalch B/C-type glenoid deformities can achieve 75% bone-
implant contact area (BICA) with a reduced vault perforation risk compared with complete correction.
Methods: Fifty shoulder computed tomographic scans with glenohumeral osteoarthritis were retrospec-
tively evaluated. The Tornier BluePrint v2.1.5 software simulated 3 eccentric reaming scenarios
including no, partial, and complete deformity correction. Each scenario was evaluated at 4 BICAs and
using 3 implant fixation types. Three-dimensional surface representations were used to evaluate medial-
ization and vault perforation.
Results: The patients had mean glenoid retroversion and inclination of 18.5� and 8.8�, respectively, and
mean posterior humeral head subluxation of 76%. With 75% BICA, the 3 fixation types had glenoid vault
perforation in 6%-26% and 26%-54% of cases for partial and complete glenoid deformity correction,
respectively. The central and posterior-inferior implant components were most likely to perforate across
all scenarios.
Discussion: Eccentric reaming for glenoid deformity correction increases the risk of vault perforation. Se-
vere glenoid deformity required increased medialization to achieve 75% BICA. Pegged implants have
increased chances of perforation compared with a keeled design; the central and posterior-inferior compo-
nents were most likely to perforate during deformity correction.
Conclusion: Partial deformity correction of modified Walch B/C-type glenoid deformities can achieve
75% BICA while reducing the risk of vault perforation compared with complete correction at the time
of anatomic total shoulder arthroplasty.
Level of evidence: Basic Science Study; Computer Modeling
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Modern 3-dimensional surgical software is rapidly
becoming available for preoperative planning of orthopedic
surgical cases, including deformity correction, arthroplasty,
and fracture management. Various software platforms allow
radiographs, computed tomography (CT), and magnetic
resonance imaging to be useful for preoperative planning.6-
9,12,18,34,36,37,39,52 Preoperative templating can help to pre-
vent intraoperative fracture, decrease overall surgical time,
and reduce the number of case-specific surgical trays.38

In anatomic total shoulder arthroplasty (TSA), 3-
dimensional planning allows for optimization of implant
sizing, orientation, and positioning prior to entering the
operating room. Especially in the cases of complex and
atypical glenoid morphology, preoperative planning helps
to achieve a stable construct and reduce the risk of glenoid
vault perforation.4,9,12,19,22,32,47,49,52 Suboptimal implant
positioning increases the risk of revision surgery and can
cause reduced outcome scores.9,12,33,44

Failure to correct retroverted glenoid deformity in-
creases the risk of glenoid component loosening and
failure.17 Farron et al11 demonstrated by finite element
analysis that more than 10� of glenoid implant retroversion
is a risk factor for component loosening. One method of
glenoid deformity correction is eccentric reaming; however,
the amount of medialization during eccentric reaming is
limited by glenoid bone stock and the risk of implant
perforation. Implant perforation may predispose the
component to loosening and should be avoided whenever
possible.14,32,40 It has been recommended that eccentric
reaming be considered to correct up to 10�-15� of glenoid
retroversion in cases that have less than 80% posterior
humeral subluxation.23,43,46,48 Other options to address
complex glenoid deformity include augmented glenoid
implant designs,13,15,41 bone grafting,5,10,24,27 and conver-
sion to a reverse total shoulder implant system.30,31

The appropriate management of the complex and
eccentrically worn glenoid deformity (modified Walch B/
C-type) in anatomic TSA remains controversial.15,50 In this
study, we have performed a thorough evaluation of the ef-
fect of eccentric reaming for complex glenoid deformity
correction on vault perforation with pegged, keel, and
hybrid glenoid component designs. We hypothesize that
partial correction of retroversion through eccentric reaming
may allow for adequate bone-implant contact area (BICA)
for stable implantation and reduced risk of vault perfora-
tion. Furthermore, we hypothesized that a keeled implant
design would offer a reduced risk of vault perforation for
all degrees of correction of complex glenoid deformity.
Materials and methods

After institutional review board approval, 50 CT scans were
retrospectively evaluated from 2 institutions. Inclusion criterion
was primary glenohumeral osteoarthritis in patients who have
undergone an anatomic TSA by one of 2 senior authors between
January 1, 2010, and May 1, 2017. Glenoids were graded using the
modified Walch classification by 3 orthopedic surgeons, and if any
disagreement occurred, then consensus was used.3 Exclusion
criteria were inflammatory arthritis, rotator cuff arthropathy, and
modified Walch A-type glenoids.

The Tornier BluePrint v2.1.5 software was used to simulate
glenoid deformity correction by eccentric reaming. The software
uses a 3D surface-based measurement method to determine the
retroversion, inclination, and posterior humeral head subluxation
values. This method involves automated 3D segmentation of the
CT images to establish a point cloud–based triangulated surface
rendering of the scapula and humeral head. A 3D coordinate
system for the scapula is based on a best-fit plane to the scapula
and on an axis defined by the intersection of the scapular spine and
scapular body. The glenoid fossa point-cloud is used to calculate a
glenoid centerpoint. This centerpoint determines the origin of the
coordinate system for the previously defined scapular axes. A
best-fit sphere is calculated to fit into the glenoid fossa. The best-
fit sphere centerpoint and the glenoid fossa centerpoint are used to
determine the glenoid retroversion and inclination based on the 3D
scapular coordinate system. The previously generated humeral
head point-cloud is used to calculate the proportion of the humeral
head that falls posterior to the centerpoint of the glenoid fossa.
This value is used to calculate the percentage of posterior humeral
head subluxation.

The BluePrint software incorporates the Wright Tornier
Aequalis Perform Glenoid System (Bloomington, MN,
USA) including Cortiloc, pegged, and keeled glenoid components
(Fig. 1). We simulated 3 glenoid deformity correction scenarios:
scenario 1, no deformity correction; scenario 2, partial deformity
correction to neutral inclination and 10� retroversion; and scenario
3, complete deformity correction to neutral inclination and
version. Each deformity correction scenario was evaluated at 4
implant-bone contact percentages (25%, 50%, 75%, 95%) and
using each of 3 implant fixation types. Three-dimensional surface
representations of each patient were used to evaluate medializa-
tion distance and location of glenoid vault perforation (Fig. 2).
Color-coded BICA maps were generated using the Tornier
BluePrint software for each simulation to visualize contact pat-
terns (Fig. 3) based on glenoid deformity correction. Standard
descriptive statistics were used to evaluate the risk of perforation
in each scenario.
Results

A total of 1800 3D surgical simulations of glenoid implant
deformity correction were performed (50 subjects, 3
deformity correction simulations, 4 BICAs, and 3 implant
fixation types). The 50 subjects (mean age 66 years; sex,
48% female) included Walch grades B1 (n ¼ 4), B2 (n ¼
29), B3 (n ¼ 13), and C (n ¼ 4), with a mean retroversion
of 18.5� (standard deviation 7.0�), mean inclination of 8.8�

(standard deviation 7.4�), and mean posterior humeral head
subluxation of 76% (standard deviation 10%). The amount
of medialization required for glenoid version and inclina-
tion correction was similar among all implant fixation
types: Cortiloc (Table I), pegged (Table II), and keeled
(Table III). Across all subjects, the mean medialization



Figure 1 Three-dimensional surfaces for the Wright Tornier Aequalis Perform Glenoid System including the (A) Cortiloc, (B) pegged,
and (C) keeled fixation types.

Figure 2 Representative examples of implant perforation of the glenoid vault visualized using the Tornier BluePrint v2.1.5 software and
the (A) Cortiloc, (B) pegged, and (C) keeled implants.
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Figure 3 Representative color maps from a single subject demonstrating contact of the implant base with the glenoid surface, where red
indicates no contact; blue, cortical contact; and white, cancellous contact. Represented here are bone-implant contact area percentages of
25%, 50%, 75%, and 95% for (A) scenario 1, (B) scenario 2, and (C) scenario 3.

Table I Medialization distance and standard deviation of the
Cortiloc implant based on scenario and implant seating
percentage

Scenario Seating
percentage

Medialization,
mm

Standard
deviation, mm

1 25 –1.00 0.55
50 0.00 0.52
75 0.50 0.52
95 1.00 0.63

2 25 –2.00 0.89
50 0.00 0.42
75 1.25 1.16
95 3.00 2.07

3 25 –2.50 0.96
50 0.00 0.52
75 2.50 1.39
95 5.00 2.13

Table II Medialization distance and standard deviation of
the pegged implant based on scenario and implant seating
percentage

Scenario Seating
percentage

Medialization,
mm

Standard
deviation, mm

1 25 –1.00 0.56
50 –0.25 0.52
75 0.50 0.27
95 1.00 0.63

2 25 –2.00 0.87
50 0.00 0.45
75 1.00 1.17
95 2.50 1.98

3 25 –2.50 0.97
50 0.00 0.52
75 2.50 1.40
95 5.00 2.51
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required to achieve 75% contact was 0.5, 1.25, and 2.50
mm for scenarios 1, 2, and 3, respectively.

The BICA maps were visually inspected for all simu-
lated cases (Fig. 3). We noted that with correction of
glenoid retroversion, 75% of BICA is required for the
posterior portion of the implant to contact the glenoid.
In the cases of glenoid deformity correction, the contact
interface progressed posteriorly from anteroinferior
coverage with increasing amounts of medialization and
higher levels of BICA. In the case without glenoid defor-
mity correction, the contact interface was more balanced in
the anterior-posterior direction.



Table III Medialization distance and standard deviation of
the keeled implant based on scenario and implant seating
percentage

Scenario Seating
percentage

Medialization,
mm

Standard
deviation, mm

1 25 –1.00 0.64
50 0.00 0.53
75 0.50 0.52
95 1.00 0.63

2 25 –2.00 1.00
50 0.00 0.43
75 1.50 1.21
95 3.00 1.98

3 25 –2.50 0.97
50 0.00 0.55
75 2.50 1.40
95 5.00 2.14
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Across all scenarios, the incidenceof perforation increased
with increasing medialization distance and implant-bone
contact percentage. Overall, the Cortiloc implant was most
likely to perforate the glenoid vault, and the keeled implant
was least likely to perforate the glenoid vault (Figs. 4-6).With
regard to implant fixation type, the central and posterior-
inferior pegs were most likely to perforate across all simula-
tions for the Cortiloc and pegged designs (Figs. 7-9).

In the case without glenoid deformity correction, the
Cortiloc implant had a 10%-14% chance of perforation for
a 75%-95% implant seating (Fig. 10). Partial correction of
the glenoid version resulted in a 26%-42% chance of
perforation for a 75%-95% implant seating, whereas com-
plete correction of the glenoid version resulted in a 54%-
68% chance of perforation for a 75%-95% implant seating.
Complete correction of glenoid version and inclination
nearly doubled the perforation risk seen with partial
correction using the Cortiloc implant.

In the case of no glenoid deformity correction, the
pegged implant had 6%-12% chance of perforation for a
75%-95% implant seating (Fig. 11). Partial correction of
the glenoid version resulted in a 20%-36% chance of
perforation for a 75%-95% implant seating. Complete
correction of the glenoid version results in a 40%-64%
chance of perforation for a 75%-95% implant seating.
Complete correction of glenoid version and inclination
nearly doubled the perforation risk seen with partial
correction using the pegged implant.

In the case without glenoid deformity correction, the
keeled implant had a 0%-2% chance of perforation for a
75%-95% implant seating (Fig. 12). Partial correction of
the glenoid version resulted in a 6%-8% chance of perfo-
ration for a 75%-95% implant seating. Complete correction
of the glenoid version results in a 26%-28% chance of
perforation for a 75%-95% implant seating. Complete
correction of glenoid version and inclination nearly qua-
druples the perforation risk seen with partial correction
using the keeled implant.
Discussion

In this study, we have evaluated the relationship of variable
degree correction of modified Walch B/C-type glenoid
morphology with eccentric reaming and the risk of glenoid
vault perforation with 3 implant fixation designs. Compared
with a partial correction of retroversion, complete defor-
mity correction to neutral version via eccentric reaming
increases the risk of implant perforation at high degrees
(>75% contact area) of implant seating. Increased medi-
alization distance during eccentric reaming results in
increased incidence of vault perforation regardless of the
implant fixation type. Although this trend was common for
all components, the frequency of perforation did vary by
implant type. The Cortiloc implant was associated with the
highest perforation risk followed by the pegged design, and
lastly the keeled fixation design.

Like others have reported, eccentric reaming in cases of
complex glenoid deformity increases the likelihood of the
glenoid component perforating the vault.14,21 A keeled
implant decreases risk of vault perforation when extensive
reaming is used to correct glenoid deformity. Hoenecke
et al18 conducted a cadaveric study with 40 shoulder CTs
and preoperative templating software and found that keeled
components perforated the vault in 13% cases compared
with 18% with a standard peg model and 8% with a
modified peg model.14 We observed a similar trend in our
study, with components requiring less bone stock
decreasing the incidence of vault perforation. The keeled
component had the lowest risk of vault perforation, and the
pegged design, with the smaller central peg, had fewer
perforations compared with the Cortiloc (Figs. 7-9).

Clavert et al8 simulated 5 cases of correcting 15�-31� of
retroversion to neutral on cadaveric models, and in each
case 1 of the 4 pegs of the glenoid component perforated
the vault. In our analysis, with complete correction (sce-
nario 3) and 75% BICA, the Cortiloc implant perforated
52% of cases, pegged implant perforated 39% of cases, and
the keeled implant perforated 24% of cases. The advantage
of this 3-dimensional surgical planning study
compared with a cadaveric study is the number of simu-
lations that were performed; this would have been prohib-
itive in a cadaveric study. Furthermore, incorporation of
3-dimensional imaging allows for optimization of implant
position to allow for the ideal placement of the implant in
the glenoid vault for perforation analysis, which is not
possible in a cadaveric model.

Poor implant positioning, residual retroversion, posterior
instability, and excessive reaming can lead to early implant
loosening.1 The long-term effects of anatomic TSA implant
vault perforation on clinical outcomes and implant stability is
unclear.20,35 Press et al showed no significant relationship
between incidence of perforation and number of perforations
and radiolucency scores.23 They found that both the perfo-
ration group and the control group had significant



Figure 4 Graph demonstrating the percentage of subjects without glenoid perforation based on implant and bone-implant contact area
percentage for scenario 1.

Figure 5 Graph demonstrating the percentage of subjects without glenoid perforation based on implant and bone-implant contact area
percentage for scenario 2.

Figure 6 Graph demonstrating the percentage of subjects without glenoid perforation based on implant and bone-implant contact area
percentage for scenario 3.

Vault perforation during anatomic TSA 1455
improvements in outcome scores. Hsu et al17 conducted a
study that assessed outcomes of uncontained pegs at 5-year
follow-up and found no relationship to component loos-
ening and no significant difference in pain or satisfaction
between groups, but function was found to be significantly
worse in the uncontained peg group. Further studies with
larger sample sizes and longer follow-up are necessary to
clarify the impact of implant perforation of the glenoid vault.
Previous studies have shown that residual retroversion
after deformity correction can place the glenoid component
at a biomechanical disadvantage and be a risk factor for
loosening.11 Farron et al11 recommend leaving no more
than 10� of retroversion. Eccentric reaming for glenoid
deformity correction reduces vault bone stock as a result of
medialization, which we hypothesized would increase the
risk for vault perforation. We found that with increased



Figure 7 Graph depicting the total number of perforations based on implant, bone-implant contact area percentage, and portion of
implant that perforated for scenario 1.

Figure 8 Graph depicting the total number of perforations based on implant, bone-implant contact area percentage, and portion of
implant that perforated for scenario 2.

Figure 9 Graph depicting the total number of perforations based on implant, bone-implant contact area percentage, and portion of
implant that perforated for scenario 3.
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reaming, the risk of perforation increased. Partial correction
of glenoid deformities may offer a balance of deformity
correction and reduced vault perforation compared with
complete glenoid deformity correction.

Walch et al48 performed a clinical outcomes study on
eccentric reaming in 108 anatomic TSA patients with
biconcave glenoids from 1991-2007 with an average
follow-up of 77 months. They used 2D measurements on
CT imaging to determine if it was possible to eccentrically
ream the anterior glenoid to achieve a final retroversion
between 0�-10�. If this was not possible, they performed
structural bone grafting. Overall, they report acceptable
clinical outcomes but a high rate of complications,
including glenoid loosening (20.6%), which was associated



Figure 10 Graph demonstrating the percentage of subjects without glenoid perforation based on reaming scenario and bone-implant
contact area percentage for the Cortiloc implant.

Figure 11 Graph demonstrating the percentage of subjects without glenoid perforation based on reaming scenario and bone-implant
contact area percentage for the pegged implant.

Figure 12 Graph demonstrating the percentage of subjects without glenoid perforation based on reaming scenario and bone-implant
contact area seating percentage for the keeled implant.
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with increased amounts of posterior erosion, posterior hu-
meral subluxation, and retroversion. In this study, we use
modern 3D modeling tools to optimize glenoid implant
positioning in the case of complex glenoid deformity.
Future studies using this toolset may offer a method to
improve upon these previously reported results.

With regard to implant fixation type, the keeled design
consists of a single component that is designed to stay
centrally located within the glenoid vault. The other
fixation types that we evaluated included peripheral pegs
and widened central pegs that required larger amounts of
bone stock to be contained. We have demonstrated that the
keeled fixation design consistently had the lowest perfora-
tion risk and may offer versatility in balancing vault
containment with eccentric reaming for complex glenoid
morphology correction.

In this study, we have only evaluated a single implant
system. We selected the Wright Tornier Aequalis Perform
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Glenoid System to ensure compatibility with the selected
preoperative planning software. Additionally, we did not
evaluate augmented glenoid implants2,42,45 or structural bone
grafting16,26 as other options to manage complex glenoid
morphology. We had hypothesized that a glenoid BICA of
75% is sufficient for anatomic TSA. Finite element studies
have investigated implant contact stresses in anatomic TSA,
but the minimal required BICA value has not been
reported.51 In reverse TSA, it is recommended that at least
80% of the glenosphere baseplate be in contact with
bone.25,27-29 This study evaluated implant positioning but did
not evaluate the effects of soft tissue considerations (poste-
rior plication and releases), which can affect wear patterns,
stability, and joint mechanics of anatomic TSA implants.
Conclusion
Partial correction of modified Walch B/C-type glenoid
deformity with eccentric reaming can achieve acceptable
implant position and 75% BICA while reducing the risk
of vault perforation compared with complete correction
to neutral inclination and version. Keeled components
had the lowest risk of vault perforation and may offer
versatility in balancing vault containment with eccentric
reaming and complex glenoid morphology correction.
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