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In vivo testing of an injectable matrix gel for the
treatment of shoulder cuff muscle fatty
degeneration
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Introduction: Extracellular matrix (ECM) gels have shown efficacy for the treatment of damaged tissues, most notably cardiac muscle.
We hypothesized that the ECM gel prepared from skeletal muscle could be used as a treatment strategy for fatty shoulder cuff muscle
degeneration.
Methods: We conducted experiments to (1) evaluate host biocompatibility to ECM gel injection using a rat model and (2) examine the
effect of ECM gel injection on muscle recovery after delayed repair of a released supraspinatus (SSP) tendon using a rabbit model.
Results: The host biocompatibility to the ECM gel was characterized by a transient rise (first 2 weeks only) in several genes associated
with macrophage infiltration, matrix deposition, and inflammatory cytokine production. By 8 weeks all genes had returned to baseline
levels and no evidence of fibrosis or chronic inflammation was observed from histology. When gel injection was combined with SSP
tendon repair, we observed a significant reduction (7%) in SSP muscle atrophy (24 þ 3% reduction from uninjured) when compared
with treatment with tendon repair only (31 þ 7% reduction). Although fatty degeneration was elevated in both treatment groups, fat
content trended lower (2%) in response to combined tendon repair and intramuscular ECM injection (4.1 þ 2.1%) when compared
with tendon repair only (6.1 þ 2.9%). Transcriptome analysis revealed adipogenesis and osteoarthritis pathway activation in the repair
only group. These key pathways were abrogated in response to treatment using combined repair plus gel.
Discussion: The findings suggest that ECM injection had a modest but positive effect on muscle mass, fatty degeneration, and key
cellular signaling pathways.
Level of evidence: Basic Science Study; Biomechanics; Histology; Microbiology In Vivo Animal Model
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In selected cases, the surgical care for damaged rotator
cuffs is reattachment of the torn tendon(s) to their original
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boney insertion sites on the humerus.5,34,49 Despite signif-
icant progress with arthroscopic techniques and improved
fixation devices, rotator cuff surgery failure rates remain
high, reported to be around 30%-35%.23,28,31 The muscles
of the rotator cuff undergo progressive fatty degeneration,
also termed fatty infiltration, after tendon tear.15,17 This
pathologic degeneration of shoulder muscle in patients with
rotator cuff tears is shown to be a contributing factor to the
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high failure rate.19 Although surgical techniques have been
developed to address the torn tendinous portion of the
damaged rotator cuff, there are currently no effective
methods to address fatty degeneration. Fatty degeneration
remains a well-recognized but currently unaddressed
pathologic condition that limits the success of rotator cuff
surgery.10,14,41,57 Our goal is the development of an effec-
tive treatment for the repair of fatty degenerated rotator cuff
muscle that could become an adjunct to the current tendon
repair techniques.

Under the right conditions, skeletal muscle has a robust
capacity for self-repair. After mild muscle injury (eg,
strains, contusions, and lacerations) cells may be injured,
but the damaged underlying extracellular matrix (ECM)
persists at the site of injury and regeneration is robust and
complete.24,39 Growth factors released from injured muscle
matrix promote satellite cells residing between myofibers to
migrate to sites of injury, re-enter cell cycle, proliferate,
and differentiate into myoblasts, which, in turn, undergo
fusion to form nascent myofibers.2,52 However, when
muscle tissue is lost, the structural cues produced by the
ECM are missing and regeneration is instead marked by
fibrosis and the formation of noncontractile scar
tissue.3,29,53 The differential response to mild and severe
muscle injury suggests an important role for ECM as a
trigger for muscle regeneration. To deliver ECM cues into
fatty infiltrated muscle, we are proposing the utilization of
an injectable, water-based, matrix gel prepared from skel-
etal muscle tissue. Our enthusiasm for a matrix gel
approach as a muscle repair strategy was motivated not
only by the recognized role of matrix during muscle heal-
ing, but also by the cardiac work of Dr. Christman’s group
at the University of California at San Diego. They have
developed an injectable matrix gel using cardiac tissue and
demonstrated that injection of the material into infarcted
cardiac muscle tissue stimulated regeneration.49-51 A
possible mechanism of repair is ECM gel promotion of
vessel formation/perfusion, endothelial cell/muscle pro-
genitor cell infiltration, and muscle cell proliferation.9,43

We believe that the same regenerative results that have
been reported in infarcted cardiac muscle tissue could be
translated to fatty degenerated skeletal muscle.

We conducted this study to deeply explore the safety and
efficacy of an injectable ECM gel while also deciphering
whether any key wound healing mechanisms were
impacted by matrix gel implantation. Specifically, we
designed the study to test the hypothesis that intramuscular
delivery of the matrix gel triggers the activation of pro-
myogenic wound healing pathways that ameliorate fatty
muscle infiltration. To test this hypothesis, we conducted
experiments to (1) examine the longitudinal host response
(biocompatibility) to ECM gel injection into normal muscle
using a rodent model and (2) test matrix gel regenerative
performance in a well-accepted20,21,45,46 animal model of
delayed rotator cuff repair (rabbit).
Methods

ECM gel preparation

Human quadriceps muscle (Science Care, Phoenix, AZ, USA) was
thawed, trimmed to remove fat and connective tissue, and decellu-
larized in 1% (wt/vol) solution of sodium dodecyl sulfate in phos-
phate buffered saline (PBS) with agitation and multiple solution
exchanges for up to 2 weeks9,27 (Fig. 1, a and b). We then rinsed the
tissue with deionized water and incubated in a DNase/RNase so-
lution overnight at 4�C with agitation. The remaining ECM was
rinsed, lyophilized, flash-frozen using liquid nitrogen, and ground
into a fine powder. We digested the ECM powder using a pepsin
solution (1 mg/mL pepsin in 0.1 M HCl) at a ratio of 10 mg ECM/1
mL pepsin at a pH of 2.4 (adjusted every 12 hours if necessary) for
48 hours at room temperature9,56 (Fig. 1, c and d). The solubilized
ECM solution was neutralized (pH ¼ 7.4) and diluted to a con-
centration of 10 mg/mL in PBS. Finally, we loaded the neutralized
pregel solution into syringes and stored it at�20�C (Fig. 1, e and f).

Host response

Adult (12-14 weeks old) Sprague Dawley rats (Harlan, Indian-
apolis, IN, USA) (n ¼ 12), weighing approximately 325-350 g,
were used as the animal model to explore the host response to
injected ECM. We used isoflurane for anesthesia with induction
dosage of 4% and maintenance dosage of 2% in oxygen. Syringes
containing ECM gel were thawed and injected (200 mL; 27-gauge
needle) into the tibialis anterior (TA) at 5 sites along its distal-to-
proximal length intramuscularly through the skin. We injected the
contralateral TAs with sterile PBS to serve as comparative con-
trols. Postoperative analgesia consisted of 0.1 mg/kg buprenor-
phine administered subcutaneously via injection twice daily for 2
days. A single surgeon performed all procedures. Animals also
had access to anti-inflammatory medication (Rimadyl; 2 mg/d) via
a dietary tablet (Rodent MD’s, Bio Serv, Flemington, NJ, USA).
We added tablets daily to each cage for 1 week after surgery in
accordance with Institutional Animal Care and Use Committee
(IACUC)-approved protocols and housed animals individually in
standard-sized cages with unrestricted movement. The animals
were allowed to bear weight on the operative extremity as toler-
ated. All animals were housed for a 3-, 14-, or 56-day recovery
period (n ¼ 4 animals/time point).

Rotator cuff repair

Adult (24 weeks old) male New Zealand white rabbits (pre-sur-
gery mass approximately 3.5 kg) purchased commercially
(Charles River) (n ¼ 14) were used to examine the effect of ECM
gel injection on recovery from torn rotator cuff repair. The rotator
cuff tear and delayed tendon repair surgeries were performed
following published methods.37,42 A trained orthopedic surgeon
performed the surgeries. We used isoflurane for anesthesia with
the induction dosage of 5% and the maintenance dosage of 3% in
oxygen. The left shoulder was shaved and disinfected. A longi-
tudinal incision was made over the shoulder, and dissection per-
formed down to the deltoid. The deltoid was retracted to reveal the
supraspinatus (SSP) tendon. The SSP tendon was transected at its
insertion onto the greater tuberosity. The cut end of the tendon was



Figure 1 (a) Human quadriceps muscle was (b) decellularized, (c) lyophilized, (d) ground into a fine powder, and (e) pepsin digested to
create an injectable pregelled matrix solution. (f) The pregelled muscle matrix solution forms a gel when warmed to 37�C.
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tagged with a nonresorbable No. 4-0 suture (Prolene; Ethicon,
Somerville, NJ, USA) for later identification. All attachments of
the tendon to the surrounding tissues, including the infraspinatus,
were released, allowing the tendon to retract freely away from its
insertion site. The incisions were closed with interrupted, subcu-
taneous No. 3-0 Vicryl sutures (Ethicon), and the skin was closed
with a running 4-0 monocryl suture (Ethicon). The contralateral
shoulder remained untreated to serve as a comparative control. All
animals were housed for a 12-week recovery period.

After recovery, all animals underwent SSP tendon reattach-
ment repair surgery. The free tendon edge was identified by use of
the tag suture and double stitched to the humerus using a fiber
wire suture. We randomly assigned half of the animals to receive 1
mL of muscle-derived ECM gel injection into the SSP muscle at 5
locations along its length. After repair, the surgeon closed the
surgical site with a suture as previously described. The animals
were maintained in the animal facility for a recovery period of 12
weeks (n ¼ 7/treatment group). At the end of the recovery period,
a veterinarian euthanized all animals via intracardiac injection of a
commercial euthanasia solution. SSP muscles were harvested,
weighed, imaged, and prepared for histologic sectioning and gene
expression testing.
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Contractile force measurements (rat only)

At each postinjection time point (3, 14, and 56 days), we measured
peak tetanic TA contractile torque in situ using published methods
familiar to our group.29 The ankle was flexed to 90�, and the foot
was secured to the lever arm of a commercial muscle physiology
system (Aurora Scientific, Ontario, Canada). We measured the TA
peak isometric tetanic torque by stimulating the peroneal nerve
with the aid of a physiological stimulator (Grass; S88) and
determined optimal voltage (2-5 V) using a series of tetanic
contractions (150 Hz, 0.1 ms pulse width, 400 ms train). We
recorded raw peak tetanic contractile force (N) from both the
treated and contralateral control limb of each animal. We calcu-
lated peak tetanic force for each animal using the average of 4
contractions and reported the animal weight normalized force data
(N/kg body weight) in the results. At the conclusion of electro-
physiological testing, we harvested the TA muscles and eutha-
nized the rats by carbon dioxide inhalation.
Histologic analysis

Muscle tissue (rat and rabbit) was flash frozen in isopentane (2-
methylbutane) chilled in liquid nitrogen. Tissue was sectioned (8
mm) with the aid of a cryostat (Leica BioSystems) and mounted
onto microscopic slides. Slides were immunostained using pri-
mary antibodies (1:300; Novus Biologicals) directed against
collagen III (IgG), or collagen I (IgG) with or without myosin
heavy chain costain, followed by incubation in the appropriate
fluorescently labeled secondary antibodies (AlexaFluor, 1:300;
Life Technologies). Additional tissue sections were stained using
hematoxylin and eosin (H&E) or oil red-O following the manu-
facturer’s guidelines (Sigma-Aldrich). All sections were digitally
imaged (100�, Nikon CiL).

Tissue immunoreactivity to collagen I as a percentage of total
tissue area (% collagen I) was calculated with the aid of image
analysis software (ImageJ) using techniques familiar to our
group.29 Similar image analysis methods were used to compute
the fiber cross-sectional area (mm2) using the collagen III positive
area. Oil red-O images were evaluated using an in-house devel-
oped MATLAB code to isolate oil red-O positive (fat) and nega-
tive (muscle) tissue regions within each section. The ratio of the
oil red-O positive tissue area to the total tissue area was used to
calculate the intramuscular fat area fraction (% area).

Gene expression

RNA was extracted from tissue samples using the RNeasy Kit
(Invitrogen). Commercially available TaqMan primers (Invi-
trogen) for Pax7, MyoD, MyoG, Col I, Col III, TGF-b1, IL-6, IL-
10, CD68, and 18s ribosomal housekeeping were used to quantify
the expression of desired host-response genes from rat tissue.
Expression was normalized to 18S and then referenced to the
contralateral saline injected limb. Commercially available SYBR
Green primers (Bio-Rad) for PPAR-g, MURF1 (Trim63), Pax7,
MyoG, and RPL4 housekeeping were used to quantify the
expression rabbit muscle genes. Experimental sample group
(n ¼ 6-7/group) expressions were normalized to RPL4 and then
referenced to the contralateral uninjured limb. Gene expression
levels are reported as fold change using the 2�(DDCt) method.
The full transcriptomes of representative repair only, repair
plus ECM gel, and uninjured controls rabbit SSP muscle samples
(n ¼ 5/group) were analyzed using RNA-Seq. cDNA libraries
were sequenced on the NextSeq500 platform (Illumina) to a mean
depth of 20 million reads per library. RNA sequencing reads were
mapped to the Oryctolagus cuniculus genome (OryCun2.0) from
NCBI using the 2-pass STAR protocol.11 Reads were quantified
using FeatureCounts,34 followed by the analysis of differential
expression and normalization in edgeR.44 Differential expression
was selected using a maximum false discovery rate of 0.25 and a
minimum log fold change of 1.5. Pathway level analysis was also
performed using Ingenuity Pathway Analysis (IPA) (Qiagen).32

Statistical analysis

All data are presented as the mean and standard deviation unless
otherwise noted. The effect of treatment on TA mass, TA con-
tractile force, TA collagen I area (%), TA myofiber cross-sectional
area, TA and SSP gene expression, and SSP mass reduction was
evaluated using a 2-sided Student’s t-test. The effect of treatment
SSP fat area fraction, SSP collagen I area fraction, and SSP
myofiber area was evaluated using analysis of variance with
Tukey’s post hoc test. A standard P < .05 level of significance was
used as the threshold for all statistical tests.
Results

Host response

All animals tolerated the ECM gel injection treatment well.
Peak tetanic contractile force values for ECM gel–injected
TA muscle were statistically indistinguishable from PBS
controls at 3 days (0.97 þ 0.41 vs. 0.72 þ 0.18 N/kg) and at
14 days (1.72 þ 0.87 vs.1.34 þ 0.56 N/kg) postinjection
(Fig. 2, a). However, at 56 days, the study endpoint, a
statistically significant (P ¼ .048) increase in contractile
force was detected for the ECM gel injection group. Mean
gel-injected TA contractile force values were on average 53
þ 37% higher than PBS-injected control values (3.25 þ
0.41 vs. 2.25 þ 0.70 N/kg). TA mass followed a similar
trend to force. At 3 days (1.93 þ 0.23 vs. 2.14 þ 0.16 g/kg)
and 14 days (2.03 þ 0.08 vs. 2.09 þ 0.09 g/kg) post-
injection, TA mass did not differ between the ECM gel- and
PBS-injected groups, respectively (Fig. 2, b and c). Similar
to force results, at 56 days, there was a statistically sig-
nificant (P ¼ .003) increase (18 þ 8%) in TA mass for the
ECM gel injection group (2.43 þ 0.14 g/kg) when
compared with PBS controls (2.05 þ 0.07 g/kg).

Rat TA sections immunostained for collagen I exhibited
no discernible differences between ECM gel injection and
PBS controls across all time points (Fig. 3, a). There were
no indications of abnormal inflammatory or fibrotic re-
sponses within any of the TA tissue sections examined.
Fiber cross-sectional area as indicated by collagen
III–positive regions was normal in appearance with
spheroid muscle fiber cross-sections observed for both



Figure 2 (a) TA muscle peak contractile force (N/kg body weight) and (b) wet weight (g/kg body weight) data normalized to animal
weight. (c) Gross morphology of TA muscles 56 days after PBS injection (left) and 3, 14, and 56 days after ECM gel injection (right). Data
are presented as group means þ SD; n ¼ 4/group; )denotes statistically significant (P < .05) differences from controls. TA, tibialis anterior;
PBS, phosphate buffered saline; ECM, extracellular matrix; SD, standard deviation.
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groups (Fig. 3, b). H&E staining also appeared normal with
tightly apposed bundles of myofibers and no evidence of
hyperplastic regions within any of the TA sections (Fig. 3,
c). Collagen I–positive area fraction (Fig. 3, d) and myo-
fiber cross-sectional area (Fig. 3, e) were not significantly
different between either groups at any time point.

The expression levels of genes associated with ECM and
ECM regulation, Col I (0.031), Col III (P¼ .017), and TGF-
b1 (P ¼ .012), were all significantly upregulated (approxi-
mately 10-fold) at 3 days postinjection (Fig. 4, a). By 14 days
postinjection, Col III (P ¼ .035) and TGF-b1 (P ¼ .017)
remained upregulated by approximately 5-fold in the gel-
injected groups compared with controls until returning to
basal levels of expression by 56 days. We observed a similar
trend in a panel of inflammatory genes, with IL-6 (P¼ .033)
and IL-10 (P¼ .025) being expressed approximately 15-fold
higher in response to gel injection at 3 days postinjection
when compared with PBS controls, whereas CD68 (P ¼
.049), a macrophage-specific marker, was expressed
approximately 50-fold higher in the gel group comparedwith
PBS controls at the same time point (Fig. 4, b). By 14 days, all
gene expression related to these targets returned to PBS
control tissue levels. Myogenic gene expression (Pax7,
MyoD, MyoG) is statistically indistinguishable between the
2 treatment groups at all postinjection time points (Fig. 4, c).

Rotator cuff repair

All animals tolerated the rotator cuff (RC) surgery, bore
weight normally on the treated limb by the end of the first
postoperative week, and gained weight throughout the



Figure 3 TA muscle cross-sections were stained for (a) collagen I (green), (b) collagen III (red), and with (c) hematoxylin and eosin
(H&E). Representative 56 days after PBS injection (left) and 3, 14, and 56 days after ECM gel injection TA cross-sections are presented.
Scale bar ¼ 100 mm unless noted. Cross-sections were quantified for (d) collagen I area fraction and (e) muscle fiber cross-sectional area.
Group means þ SD are presented; n ¼ 4/group. TA, tibialis anterior; PBS, phosphate buffered saline; ECM, extracellular matrix;
SD, standard deviation.
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study period. Animal growth rate was examined during the
12 weeks before and after SSP treatment. Although growth
generally slowed with increasing animal age, we did not
detect any differences in growth rate between repair only
and repair plus ECM gel groups during either the 12 weeks
before repair or during the 12 weeks after repair. At the
study endpoint (12 weeks after repair), a layer extra-
muscular fat remained on muscles harvested from both
tendon repair only and combined tendon repair plus ECM
gel treatment animals (Fig. 5, a). No accumulation of
extramuscular fat was observed on any of the uninjured
contralateral SSP muscles. Although both treatment stra-
tegies resulted in significant muscle atrophy when
compared with uninjured contralateral controls, combined
tendon repair with ECM gel injection treatment had a
positive effect on SSP mass to decrease atrophy. Treatment
with tendon repair only resulted in a 31 þ 7% reduction in
SSP mass when compared with uninjured controls. Alter-
natively, treatment using combined tendon repair plus ECM
gel injection resulted in a 24 þ 3% reduction in SSP mass,
a decrease of 7% when compared with the repair only
(Fig. 5, b). The SSP mass reduction between the repair only
and the combined repair plus ECM injection groups was
statistically significant.

Oil red-O staining of uninjured, repair only, and repair with
ECM gel injection SSP sections revealed elevated levels of



Figure 4 Comparison of relative gene expression for PBS- and ECM gel–injected groups determined using qRT-PCR. The expression of
(a) ECM (Col I and Col III), ECM regulatory (TGFb1), (b) inflammation (IL-6), anti-inflammation (IL-10), macrophage marker (CD68),
and (c) myogenic (Pax7, MyoD, MyoG) genes were measured using muscle tissue harvested from the TA of each animal tested. Expression
is presented as fold change normalized to PBS-injected muscle expression. Group means þ SD are presented, n ¼ 3-4/group. )denotes
statistically significant (P < .05) differences from controls. PBS, phosphate buffered saline; ECM, extracellular matrix; qRT-PCR, quan-
titative real time polymerase change reaction; TA, tibialis anterior; SD, standard deviation.
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Figure 5 (a) Gross morphology of representative SSP muscles from the uninjured, repair only, and combined repair plus ECM gel groups
is presented to show the appearance of surface fat accumulation on injured muscles. (b) SSP muscle wet weight data (% of uninjured) for
the repair only and combined repair plus ECM gel groups. Data are presented as group means þ SD; n ¼ 7/group; )denotes statistically
significant (P < .05) differences between groups. SSP, supraspinatus; ECM, extracellular matrix; SD, standard deviation.
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intramuscular lipids within muscle tissue collected from both
treatment groups (Fig. 6, a). The repair only and combined
repair with ECM gel sections contained a gradient of intra-
muscular fat with the densest regions localized nearest the
tendon injury site. Qualitative examination of sections
immunostained for collagen I or collagen III revealed no
notable differences between either of the treatment groups or
differences from uninjured controls (Fig. 6, b and c). Collagen
I and III immunoreactivity was uniformly distributed around
muscle fibers (collagen III primarily) and multifiber bundles
(collagen I) for all treated and uninjured control muscles
examined. We did not detect any abnormal changes to myo-
fiber cross-sectional morphologies between the treatment
groups.H&E sections fromboth treatment groups consistently
exhibited a lack of tight myofiber apposition when compared
with sections prepared from contralateral normal tissue and
further confirmed fiber atrophy due the rotator cuff tear
(Fig. 6, d).

Quantitative image analysis of oil red-O-stained sections
revealed that both repair and repair with ECM gel treatments
resulted in significant increases in intramuscular fat area
fraction when compared with uninjured contralateral con-
trols. Fat fraction of repair only group was 6.1 þ 2.9%,
whereas repair plus ECM gel fat fraction was 4.1 þ 2.1%, a
reduction of 2% from repair only values. The difference in fat
area fraction between the repair only and combined repair
plus gel treatment group did not reach statistical significance
(P ¼ .18) (Fig. 6, e). The uninjured contralateral SSP fat
content wasminimal and similar within the repair only (0.6þ
0.2%) and the combined repair plus ECM gel (0.7 þ 0.6%)
groups. No statistical difference was detected between these
groups. We did not detect any abnormal fibrosis in any of the
tissue examined. Specifically, the collagen I area fractionwas
not affected by either repair only or combined repair plus gel
treatment, when compared with normal muscle sections
(Fig. 6, f).We did detect a significant difference in fiber cross-
sectional area between treatment groups. Repair only treat-
ment resulted in a 30 þ 9.8% decrease in muscle fiber size
when compared with uninjured contralateral controls,
whereas combined tendon repair plus ECM gel injection
resulted in a more modest decrease of 10þ 4.3% (P¼ .005)
(Fig. 6, g).

The mRNA abundance (fold change) of genes associated
with muscle degeneration (PPAR-g, MURF1) was sensitive
to repair only treatment (Fig. 7, a). PPAR-g was signifi-
cantly upregulated (3.15 þ 2.44-fold change) (P ¼ .040),
whereas MURF1 was strongly downregulated (0.07 þ 0.02-
fold change) (P ¼ .042) when compared with contralateral
uninjured tissue. These genes were not significantly
different from uninjured controls when examined in the
combined repair plus gel injection group. The myogenic
genes examined (Pax7, MyoG) were generally down-
regulated for both treatment groups (Fig. 7, b). Pax7 was
significantly downregulated in both the repair only (0.08 þ
0.07-fold change) and combined repair plus ECM gel group
(0.05 þ 0.04-fold change). However, although MyoD
appeared downregulated when compared with uninjured
controls tissue for both treatment groups, it only reached
statistical significance for the repair only group (0.35 þ
0.05-fold change).

Analysis of RNA-Seq data in EdgeR revealed a total of
40 differentially expressed genes (all upregulated) between
the repair only group relative to uninjured controls, and 1
differentially expressed (downregulated) gene (DNAse1)
between the combined repair plus gel group relative to
control (Supplementary Table S1). Notably, in the repair
only group, IPA detected the activation of the canonical
adipogenesis pathway (P < .0001) due to 4 differentially
expressed genes (PPAR-g, LEP, KLF5, FABP4) and the
activation of the canonical osteoarthritis (OA) pathway (P



Figure 6 SSP muscle cross-sections were stained for (a) oil red-O, (b) collagen I (green) counterstained with MHC (red), (c) collagen III
(green), and (d) hematoxylin and eosin (H&E). Representative 12 weeks after SSP repair images for the uninjured, repair only, and
combined repair plus gel groups are presented. Scale bar ¼ 100 mm unless noted. Repair only and combined repair plus ECM gel cross-
sections were quantified to determine (e) area fraction collagen I, (f) area fraction oil red-O, and (g) muscle fiber cross-sectional area (mm2).
Group means þ SD are presented; n ¼ 6-7/group. )denotes statistically significant (P < .05) differences between groups. SSP, supra-
spinatus; MHC, myosin heavy chain; ECM, extracellular matrix; SD, standard deviation.
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Figure 7 Comparison of relative gene expression for the repair
only and combined repair plus ECM gel–injected groups using
qRT-PCR. The expression of (a) adipogenesis (PPAR-g), muscle
synthesis (MURF1), (b) satellite cell dynamics (Pax7), and
myogenesis (MyoG) were measured using muscle tissue harvested
from the SSP of each animal tested. Expression is presented as
fold change normalized to contralateral uninjured muscle
expression. Group means þ SD are presented, n ¼ 6-7/group.
)denotes statistically significant (P < .05) differences from un-
injured controls. ECM, extracellular matrix; qRT-PCR, quantita-
tive real time polymerase change reaction; SSP, supraspinatus; SD,
standard deviation.
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< .001) due to 4 differentially expressed genes (LEP, ma-
trix metalloproteinase-12 [MMP-12], PPAR-g, SSP1). IPA
did not detect the activation of any pathways in muscle
tissue collected from the combined repair plus ECM gel
injection group.
Discussion

Our host-response findings using the rat model, which
included functional, histologic, and gene expression mea-
sures, suggest that intramuscular ECM gel injection was
well tolerated. We detected a significant increase in the
expression of inflammatory cytokines (IL-6, IL-1) and
macrophage markers (CD68) at 3 days after ECM injection.
This finding is consistent with normal muscle wound
healing, and although not a direct measure of macrophage
presence, the increased expression of CD68 suggests
macrophage infiltration in response to the presence of ECM
fragments from the gel.35,36 At 14 days postinjection,
macrophage marker and inflammatory gene expression
returned to basal levels suggesting that ECM injection did
not elicit a foreign body response with chronic
inflammation.54 Future studies could benefit from a more
extensive analysis of macrophage dynamics at the site of
ECM gel injection. We did not observe foreign body giant
cells within tissue sections at any of the time points.
Consistent with normal wound healing, specifically
remodeling and repair,22 we observed a characteristic
upregulation of key matrix (CoL I and III) and matrix-
regulatory (TGF-b1) genes in response to intramuscular
ECM matrix gel injection.55 These genes remained upre-
gulated into the second week but had returned to basal
levels of expression at 56 days postinjection. Although
matrix and matrix regulatory genes were upregulated in
response to ECM injection, we did not observe any evi-
dence of intramuscular fibrosis, suggesting normal matrix
protein regulation during wound healing with balanced
deposition of a new matrix and degradation of the damaged
matrix.6 Interestingly, we detected a significant increase in
peak muscle force and mass in response to ECM gel in-
jection. This outcome was unexpected, especially absent a
finding of increased muscle fiber size, and warrants
continued investigation.

The shoulder cuff repair findings indicate that the combi-
nation of tendon repair with ECM gel injection can have a
positive effect on muscle atrophy. Although significant SSP
atrophy occurred within both treatment groups when
compared with contralateral uninjured SSP muscle, the use of
combined tendon repair with ECM injection significantly
reduced the amount of atrophy when compared with the
tendon repair only group. Histologic evaluation revealed that
the repair only group had significantly smallermyofiber cross-
sectional area when compared with uninjured controls, which
is consistent with the pathologic effect of muscle atrophy in
other chronic rotator cuff injury models.16,30 Alternatively,
combining tendon repair with ECM gel injection resulted in
the preservation of myofiber cross-sectional area in the SSP.
Gene expression analysis using quantitative real time poly-
merase change reaction (RT-qPCR) provides a potential
explanation for the differences in SSP atrophy and fiber size
observed between the 2 treatments.We detected a reduction in
MURF1, a well-known regulator of atrophy that acts as an
important rate-limiting enzyme in protein degradation in
skeletal muscle,47 gene expression within the repair only
group, whereas the expression was equivalent to normal un-
injured muscle when examined in combined tendon repair
withECMgel injection tissue.ThedownregulationofMURF1
in the repair group, coupled with the absence of mass preser-
vation of the SSP, suggests that tendon repair alone may be
insufficient to sustain hemostasis of muscle protein synthesis
in chronic RCT injury. The examination of genes related to
myogenesis revealed that Pax7, a marker of satellite cell
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activation, was significantly downregulated in both treatment
groups. These results suggest that atrophic signaling may be
inhibitingmyogenic signaling in both treatment groups, which
has been previously demonstrated in models of chronic
RTC injury.33

Although it did not reach the level of statistical signifi-
cance, fatty infiltration was modestly reduced (2%) in
response to treatment with combined tendon repair with a
single round of ECM gel injection. Cell signaling pathway
analysis conducted using the transcriptome profiling results
of both treated and uninjured SSP tissue detected the acti-
vation of key canonical signaling pathways in the repair only
group, whereas none were found to be activated in uninjured
SSP tissue or the ECMgel injection group. This suggests that
ECM gel injection is possibly having a dampening effect on
muscle tissue cellular signaling. In particular, within the
adipogenic signaling pathway, 4 distinct transcription factors
(PPAR-g, LEP,KLF5, FABP4)were found to be significantly
upregulated in response to tendon repair only treatment.
These results are consistent with the observed increase in
adipogenic gene expression in the repair only group with
PCR. This story is further corroborated by a similar finding in
the upregulation of FABP4 for the repair group, a protein that
is involved in fatty acid uptake, transport, and muscle
metabolism.13,26 Interestingly, FABP4 has also been identi-
fied to be one of the key transcription factors affecting
marbling in cattle meat, a condition with similarities to
muscle fatty infiltration after rotator cuff injury.25 An un-
derstanding of the transcriptional changes in FABP4 and
abrogation of the adipogenesis pathway in response to ECM
gel injection may explain the reduced level of fatty degen-
eration that we observed. In turn, it may provide a candidate
target for combinatorial therapies that could be incorporated
into ECM gels in order to enhance their efficacy.

Interestingly, we also detected upregulation of the
OA pathway in the repair only group, but not in the ECM
injection or uninjured SSP muscle groups. Specifically,
MMP-12 was significantly upregulated in response to tendon
repair only.MMPs, in general, andMMP-12, specifically, are
associated with a number of degenerative diseases including
rheumatoid arthritis.7,38,40 In addition to degrading a wide
range of substrates including those that compose the basal
lamina, MMP-12 has also been shown to activate other ma-
trix MMPs, further promoting matrix degradation and me-
chanical instability of the shoulder region.4,38 This suggests
that current repair techniques could potentially have the
unintended consequence of creating tissue degradation and a
mechanical environment that is associated with poor post-
operative outcomes.48 Abrogation of the OA pathway in the
combined tendon repair with ECM injection group may
warrant further investigation as it would appear to exert a
protective effect on not just the injected muscle but the
shoulder joint as well. We also detected significant down-
regulation of DNase1 within the ECM injection group.
Although there have been no published findings concerning
the role of DNase1 in rotator cuff injuries, the finding may be
significant as DNase1 delivery has been shown to reduce
extracellular traps that promote inflammatory and throm-
bosis cascades,1 which could play a role in shoulder health.

A limitation to this study that deserves discussion was
the lack of an early postinjection time point in the rabbit
model. The 12-week endpoint examined in this study,
although appropriate for the examination of recovery, did
not allow us to make longitudinal comparisons between the
repair only and repair plus ECM gel groups. As such, we
cannot conclude whether the reduction in muscle atrophy
that we observed in response to combined repair plus ECM
gel treatment was the result of gel-induced muscle growth
or simply a decrease in the rate of muscle atrophy when
compared with repair only. Future studies will incorporate
early postinjection time points in order to examine atrophy
kinetics, as well as cellular (macrophages and other im-
mune cells) and soluble factor (cytokines and growth fac-
tors) responses that may be responsible for the muscle
atrophy differences we observed. Lastly, we did not use a
sham injection as part of the repair only treatment group.
As such we cannot separate the effect of the injection site
injury from the presence of the ECM gel itself. However,
the response to a sham PBS injection in the rat model was
negligible, suggesting that the changes we observed in the
rabbit model were predominately in response to the pres-
ence of the ECM gel.

To sum, it is well accepted that chronic rotator cuff tears
are associated with a variety of pathologic changes to the
skeletal muscle, including atrophy, fibrosis, and fatty
infiltration.8,18,32 Although means to repair chronically torn
shoulder cuff tendons exist, unaddressed muscle pathol-
ogies can decrease the capacity for tendon healing, prevent
full recovery of shoulder function, and are generally asso-
ciated with poor outcomes.8 We envision the use of the
ECM gel material explored in this study as an adjunct to
existing tendon repair strategies, in order to address both
tendon and muscle injury in patients with chronically torn
rotator cuffs. It is worth noting that the clinical use of ECM
materials in muscle is not without precedent. Acellular
ECM scaffolds have been used to improve the strength and
range of motion in patients with volumetric muscle loss
injuries.12 Although we do not yet know the mechanism
responsible for the improvement in muscle atrophy we
observed, the ECM gel injection results when explored in a
delayed SSP repair model were encouraging and warrant
continued preclinical investigation in order to firmly
establish safety and efficacy.
Conclusion
ECM gel injection elicited a host response that resulted
in the elevation of wound repair gene expression at early
time points, but did not lead to any pathologic changes
in muscle architecture, suggesting tolerance by the host
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environment. Furthermore, we detected a significant
increase in muscle mass and contractile force in
response to ECM gel injection, which warrants
continued exploration. When examined in a delayed SSP
repair model we observed a modest but measurable ef-
fect when ECM gel was used in combination with
tendon repair. Specifically, intramuscular ECM gel in-
jection mitigated SSP atrophy and abrogated the acti-
vation of key adipogenic and osteoarthritic signaling
pathways. The results suggest that the short-term acti-
vation of wound healing pathways observed in the rat
model is complemented by a longer-term positive effect
on muscle atrophy and cellular signaling.
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