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Quantitative ultrahigh-molecular-weight
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Background: The purpose of this study was to evaluate ultrahigh-molecular-weight polyethylene (UHMWPE) wear and damage from
retrieved total elbow arthroplasty components and compare in vivo wear with wear produced in vitro.
Methods: Explanted total elbow components were collected at revision surgery. UHMWPE damage was characterized visually, whereas
penetration and wear were quantified using micro–computed tomography and gas pycnometry. Volumetric wear rates were compared
with historical hip data, and wear data were compared with reported in vitro wear test data.
Results: Humeral bushing damage primarily occurred in the form of burnishing, scratching, and pitting at the articular face in the re-
gion of contact with the ulnar component. Wear of the ulnar bushings was concentrated on the edge of the component at the point of
contact with the axis pin. Pitting and embedded debris were dominant damage modes, in addition to burnishing and delamination. Back-
side wear was negligible. The median linear penetration rates of the lateral, medial, and ulnar bushings were 0.14 mm/yr (range, 0.01-
0.78 mm/yr), 0.12 mm/yr (range, 0.03-0.55 mm/yr), and 0.11 mm/yr (range, 0.01-0.69 mm/yr), respectively. The volumetric wear rates
of the lateral, medial, and ulnar bushings were 5.5 mm3/yr (range, 0.7-37.2 mm3/yr), 5.9 mm3/yr (range, 0.6-25.5 mm3/yr), and 5.5 mm3/
yr (range, 1.2-51.2 mm3/yr), respectively.
Conclusions: The observed wear rates were similar to those reported in well-functioning total hip replacement patients with conven-
tional UHMWPE bearings. We found limitations in reported in vitro testing resulting in wear that was not consistent with our retrieval
data. We recommend further investigation to clinically validate in vitro simulation to provide appropriate loading protocols for elbow
wear simulation.
Level of evidence: Basic Science Study; Tribology
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Aseptic loosening after total elbow arthroplasty has
historically been a common failure mode. The axis of
rotation of the elbow is polyaxial in nature. As a result, the
historical use of fixed-axis constrained hinges that could
not accommodate this motion resulted in a high rate of
mechanical loosening. The use of semiconstrained hinge
designs coupled with a stabilizing anterior flange on the
humeral component and modern cementing technique has
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dramatically reduced the rate of early mechanical loos-
ening.39,56 As a result, survival rates, with revision as an
endpoint, have been reported at >90% at 10 years’ follow-
up in patients treated for rheumatoid arthritis.12,30 However,
total elbow arthroplasty is increasingly being used to treat
higher-demand degenerative and post-traumatic
indications.11,25,51

With the improved early survival of total elbow
prostheses and expanded indications, long-term implant
durability and resistance to wear have been identified as
technical challenges. Computational models indicate that
elbow loads can be >10 times the weight of an object held
in the hand and may be up to 3 times the body weight
during strenuous activities of daily living.4,24 Loading of
the elbow with an object in the hand may occur 500,000
times/yr.4 As a result, catastrophic polyethylene wear and
locking-mechanism failure have been reported for several
implant designs.9,17,23,36,42,58 Furthermore, radiographic
polyethylene wear is increased in high-demand patients
such as younger patients or those treated for post-traumatic
conditions, particularly when associated with preoperative
deformity.28,58 Wear particle–induced osteolysis and loos-
ening have therefore been cited as mid- to long-term
concerns.13,23,27,58

Polyethylene wear, particularly accelerated wear due to
edge loading of the ulnar component, has been raised as a
potential issue of concern for semiconstrained total elbow
designs.13,58 The periprosthetic tissue response to poly-
ethylene wear debris is believed to be modulated by
patients’ biological factors,10,14,26,33-35,55 the quantity of
debris produced,6-8,54 design factors such as patched porous
surfaces that can affect the effective joint space,16,46 and
characteristics such as the size and shape of the resulting
particles.15,19,31,45 We have previously found that the
polyethylene particles in retrieved periprosthetic elbow
tissues were of a similar volume, size, and morphology to
those found in periprosthetic hip tissues.5

Few published data quantifying the wear of total elbow
components in vivo are available. Furthermore, no standard
test methods exist for in vitro evaluation of ultrahigh-
molecular-weight polyethylene (UHMWPE) wear in total
elbow systems. In vitro testing may be used during pre-
clinical development to characterize the durability of
candidate product designs under adverse loading conditions
or to estimate the wear produced during activities of daily
living. Although the loads experienced by any device
in vivo will vary between patients, standardized loading
profiles can be used to compare between devices. There-
fore, developing an increased understanding of the in vivo
wear behavior of total elbow arthroplasty is essential not
only for evaluating the clinical importance of wear at the
elbow but also for developing a basis for comparison of
designs and validation of in vitro wear testing.

Currently, there is not a recognized standard method for
preclinical wear testing of total elbow arthroplasty systems.
Kincaid and An24 presented a review of elbow joint
biomechanics providing a rationale for preclinical evalua-
tion of total elbow prostheses including ‘‘worst-case’’
loading profiles. In vitro wear simulation based on these
data was used by Popoola et al43 to compare the same
semiconstrained elbow design used in our study with a
design with modern UHMWPE and a more conforming
bearing surface. A sagittal-plane joint reaction force that
varied between 325 and 840 N was applied with a fixed
varus angle of 4.5� for 3 million cycles (Mc). The authors
reported average wear rates of 5.8, 3.7, and 0.3 mm3/Mc for
the ulnar, medial humeral, and lateral humeral bushings,
respectively. In a separate in vitro study, Willing57 used
joint loads adapted from those previously proposed for
durability testing of the axis pin of a total elbow
system.52,53 Components were subjected to 200,000 cycles
of either of 2 loading protocols. The first protocol, ‘‘high
joint reaction force’’ loading, applied a sagittal-plane joint
reaction force that varied between approximately 400 and
1250 N over a 100� range of flexion coupled with a 5-Nm
varus-valgus moment, which alternated every flexion-
extension cycle. This resulted in humeral and ulnar volu-
metric wear rates of 48 and 180 mm3/Mc. The second
protocol, ‘‘high varus moment’’ loading, was based on the
loading incurred by performing 45 sit-to-stand activities
daily (approximately 16,500 cycles/yr) and applied 100� of
flexion, up to 275 N of compressive loading, and a varus
moment of up to 12 Nm. Humeral and ulnar volumetric
wear rates of 43 and 189 mm3/Mc, respectively, were
reported.

In this study, we analyzed components retrieved at
revision total elbow arthroplasty to characterize the
observed damage and quantify the linear penetration and
volumetric wear of the UHMWPE bearing surfaces. We
hypothesized that the volumetric wear rates of our retrieved
components would be less than those reported for historical
hip arthroplasty cohorts with conventional UHMWPE
bearing surfaces. We further investigated whether in vivo
edge loading of the ulnar bushings, as reported in the
literature, would result in accelerated wear of the ulnar
bushings in comparison to the humeral bushings. Finally,
we compared the patterns of wear from retrieved compo-
nents with those reported from in vitro elbow testing.
Materials and methods

Materials were retrieved from 35 patients undergoing revision
surgery or bushing exchange of a semiconstrained total elbow
prosthesis (Coonrad/Morrey; Zimmer Biomet, Warsaw, IN, USA)
in a multicenter retrieval study. The index procedures were
performed between 1980 and 2010, and the components were
retrieved after being implanted for between 1.3 and 23.8 years
(average, 7.6 years; standard deviation, 4.9 years). The poly-
ethylene in these retrievals was gamma sterilized in air or in a
nitrogen package and hence falls into the category of either his-
torical (gamma air) or conventional (gamma inert) polyethylene;
none of the polyethylene components were highly cross-linked.



Table I Demographic information

Patient no. Sex Age at index procedure, yr Dominant arm Initial Dx Revision Dx Time implanted, yr

MC-01 M 64 Y PTA Loosening 5.5
MC-02 M 48 Y PTA Loosening 8.6
MC-03 F 69 N PTA PE wear 14.6
MC-04 F 34 N RA Contracture 14.6
MC-05 M 36 Y PTA Loosening 23.8
MC-06 F NA Y RA Loosening 9.0
MC-07 F 63 Y RA Loosening 7.1
MC-08 F 51 Y RA Fx 2.5
MC-09 F 41 N RA Loosening 13.5
MC-10 M 57 Y PTA PE wear 7.3
MC-11 M 45 N PTA Loosening 5.0
MC-12 M 37 N PTA Loosening 5.1
OC-01 F 63 N PTA Loosening 12.8
OC-02 F 72 N Malunion or nonunion Fx 5.1
OC-03 F 50 Y RA Loosening 4.3
OC-04 M 52 N PTA Loosening 5.3
RI-01 M 32 Y PTA Loosening NA
RI-02 M 63 Y Malunion or nonunion Loosening 9.5
RI-03 M 20 N Malunion or nonunion Loosening 15.3
RI-04 F 70 Y Malunion or nonunion Loosening 10.0
RI-05 M 45 N PTA Infection 8.2
RI-06 F 31 Y PTA Loosening 3.3
RI-07 M 59 Y RA Infection 12.4
RI-09 M 56 N Malunion or nonunion Loosening,

axis disengagement
5.0

RI-10 M 73 Y PTA Infection 3.3
RI-11 F 67 N Malunion or nonunion Infection 8.0
RI-12 F NA Y OA and acute Fx Loosening NA
RI-13 M 73 Y PTA Infection 1.25
UP-01 F 82 NA Malunion or nonunion Loosening 6.1
UP-02 F 52 Y OA Loosening 6.0
UP-03 F 62 N RA Loosening 5.3
UP-05 F 66 Y PTA PE wear 2.4
UP-06 F 81 NA Malunion or nonunion Infection 1.3
UP-08 NA 64 NA RA PE wear 2.2
UP-09 NA NA NA NA NA 11.6

Dx, diagnosis; M, male; Y, yes; PTA, post-traumatic arthritis; F, female; N, no; PE, polyethylene; RA, rheumatoid arthritis; NA, not available; OA,

osteoarthritis; Fx, fracture.
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The average age of the patients at the time of the index procedure
was 57 years (standard deviation, 14 years); their ages ranged
from 20 to 82 years. Patients underwent revision for aseptic
loosening (n ¼ 21), infection (n ¼ 6), polyethylene wear (n ¼ 4),
fracture (n ¼ 2), or other reasons (n ¼ 2). The index diagnoses
were noninflammatory arthritis (n ¼ 16), rheumatoid arthritis
(n ¼ 9), malunion or nonunion (n ¼ 8), and other diagnoses
(n ¼ 2). Clinical details for the 35 patients are summarized in
Table I.

A total of 67 humeral and 33 ulnar bushings were available for
analysis. The bushings were removed from the components during
bushing exchange using the bushing removal tool supplied in the
instrument set. For implants that were received intact, a press and
a polymeric push rod were used to remove the bushings.
Explanted components were cleaned using institutional proced-
ures before characterization of surface wear and damage using an
inspection microscope. Seven damage mechanisms were assessed
using the modified semiquantitative Hood scoring method.18 In
brief, we used a 4-point scale (0-3) to assess the presence of
abrasion, burnishing, delamination, embedded debris, pitting,
scratching, and surface deformation (creep) of the humeral and
ulnar bushings. For each bushing, the entire component was
inspected for the presence of these damage mechanisms using the
naked eye and, if needed, a stereoscope.

The volume of each implant was determined using a gas
pycnometer (AccuPyc II 1340; Micromeritics, Norcross, GA,
USA). The volumetric wear of each retrieved UHMWPE bushing
was then calculated by comparing the volume determined using
the pycnometer with that derived from solid models constructed
using design drawings supplied by the manufacturer. When
historical designs were encountered that were not an exact match
to the drawings, a model was reverse engineered based on the
unworn surfaces. We have validated this method by comparing
as-manufactured components with the mechanical drawings. The
method was determined to slightly overestimate the total wear but
to be accurate to within 5 mm3.



Figure 1 Primary ultrahigh-molecular-weight polyethylene bearing wear occurred at the interface between the ulnar component and
humeral bushings (dashed line on humeral bushing) and at the interface between the ulnar bushing and the axis pin (dotted dashed line on
ulnar bushing). The backside surfaces of the humeral and ulnar bushings were used as fiducial planes for registration (dotted lines).
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Linear penetration of the UHMWPE bearing surfaces was
calculated using micro–computed tomography scans of each
bushing. This method measures both creep and wear, and the term
‘‘penetration’’ describes the combination of these processes. Each
bushing was scanned at an isotropic resolution of 20 mm (mCT 80
system; Scanco Medical, Wangen-Br€uttisellen, Switzerland). The
resulting data set underwent thresholding and was registered
manually so that the unworn backside surface of the retrieved
bushing was aligned with the backside surface of the solid model
(Analyze, version 8.0; AnalyzeDirect, Overland Park, KS, USA)
(Fig. 1). Once the image data sets were aligned, a custom com-
puter program (MATLAB; The MathWorks, Natick, MA, USA)
was used to determine the penetration by comparing the thickness
of the bearing surface of the worn component with that of the solid
model. The repeatability and reproducibility of the method were
determined using a gage R&R (repeatability and reproducibility)
study design. The resulting repeatability and reproducibility
(expressed as 1 standard deviation) were 11 and 28 mm, respec-
tively, for the ulnar components and 19 and 9 mm, respectively, for
the humeral components.

Statistical analysis was performed using SPSS software (IBM,
Armonk, NY, USA). The effect of bushing position on wear rate
was investigated using a nonparametric Friedman test. The effect
of initial diagnosis (rheumatoid arthritis vs. other), sex, and
implantation date (2000 or earlier vs. 2001 or later) were inves-
tigated using a nonparametric Mann-Whitney test. Nonparametric
correlation was used to investigate the relation between wear rate
and age, as well as wear rate and implantation time.
Results

Wear and damage of the UHMWPE bushings were
observed primarily at the ulnar bushing–axis pin interface
and at the humeral bushing–ulnar component interface
(Fig. 1). Surface wear and deformation of the humeral
components conformed to the geometry of the ulnar
component in varus and valgus, resulting in a grooved wear
pattern at the point of proximal contact and a flat wear
pattern at the point of distal contact (Fig. 2). Burnishing
was the most common damage mechanism on the surface
of the humeral bushings and was present in 96% of
retrieved humeral bushings (64 of 67). A ring of material
loss was present on the surface of the humeral bushings in a
position consistent with contact with an extruded portion of
the ulnar bushing; however, the appearance of this feature
varied widely between components (Fig. 3). Pitting was
present in 76% of the humeral bushings (51 of 67), and
scratching was present in 72% (48 of 67). Embedded debris
included metal beads and bone cement. Embedded metal
beads were only observed in the presence of a loose
component. Metallic wear debris was also present in
components that experienced full-thickness wear of the
bushings. Scratching and pitting were most commonly
observed on the inner surface of the humeral bushing owing
to contact with the axis pin. However, wear at this interface
appeared to be comparatively minor. Backside wear was
limited but primarily located on the medial and lateral
backside faces directly underneath the ulnar bearing sur-
face. Abrasive wear due to unintended contact between the
humeral bushings and either bone or cement from the ulnar
side was seen in 49% of the humeral bushings (33 of 67)
(Fig. 4). Delamination of the UHMWPE was observed in
30% of the humeral bushings (20 of 67).

The ulnar component was worn primarily on the edges
of the distal surface owing to contact with the axis pin, in
addition to contact with the humeral bushings. Pitting
(85%, 28 of 33) and embedded debris (79%, 26 of 33) were
the most prominent wear mechanisms on this surface, fol-
lowed by burnishing (58%, 19 of 33) and delamination
(55%, 18 of 33). Embedded debris was most commonly in
the form of bone cement, metallic wear debris, or metal
beads from the porous coating (79%, 26 of 33). Although
we have previously reported burnishing of the ulnar
component resulting in periprosthetic titanium debris, we
did not see substantial evidence of staining of the humeral
or ulnar bearing surfaces due to this failure mode. In the
ulnar bushings, backside wear was observed mostly in the



Figure 2 Contact of the ulnar component in varus and valgus creates a grooved wear pattern on the humeral bushings at the proximal
point of contact (red) and a flat wear pattern at the point of distal contact (green).

Figure 3 Burnishing was the predominant wear mechanism seen in humeral bushings. A circular pattern of wear ( ) was also observed
in most humeral bushings due to ultrahigh-molecular-weight polyethylene–on–ultrahigh-molecular-weight polyethylene contact between
the ulnar and humeral bushings. The depth of this feature varied widely between patients. This is one of the most extreme examples
observed.
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form of mild burnishing and pitting but was negligible in
comparison to damage to the bearing surface.

Surface penetration maps were created for each
retrieved bushing; an example is included in Figure 5.
Generally, the penetration of the humeral faces was
consistent with contact between the metal ulnar component
and the humeral bushings as illustrated in Figure 2. Wear of
the humeral face due to UHMWPE-on-UHMWPE contact,
with few exceptions, was separately discernible only in
bushings with little face penetration and was not the
dominant wear mechanism for most of the highly worn
components. A full set of penetration maps has been
included in Supplementary Appendix S1. The median
linear penetration rates of the lateral, medial, and ulnar
bushings were 0.14 mm/yr (range, 0.01-0.78 mm/yr), 0.12
mm/yr (range, 0.03-0.55 mm/yr), and 0.11 mm/yr (range,
0.01-0.69 mm/yr), respectively (Fig. 6). There was
no significant difference between bushings for the
linear penetration rates (P ¼ .536, Friedman test).
Total volumetric wear rates, calculated for components
with complete bushing sets only, ranged from 2.9 to 101.4
mm3/yr (median, 17.6 mm3/yr). The volumetric wear rates
were not significantly different between the lateral (me-
dian, 5.5 mm3/yr; range, 0.7-37.2 mm3/yr), medial (me-
dian, 5.9 mm3/yr; range, 0.6-25.5 mm3/yr) and ulnar (5.5
mm3/yr; range, 1.2-51.2 mm3/yr) bushings (P ¼ .697,
Friedman test). Linear and volumetric wear data are plotted
in Figure 6 and Figure 7, respectively.

When examined by individual patient, the wear of the
bushings was correlated, with Spearman correlations
ranging between 0.65 and 0.8 (ie, patients with high wear
experienced this on all bushings). No significant difference
in volumetric wear rates was found for patients with
rheumatoid arthritis vs. other diagnoses (P ¼ .25), by sex
(P ¼ .13), or for elbows implanted before 2001 vs. later
(P ¼ .10). No significant relation was noted between
average bushing wear rate and patient age (P ¼ .08);
however, we did detect a negative correlation between
bushing wear rate (linear and volumetric) and implantation
time (Spearman r ¼ –0.66 to –0.41, P ¼ .021).



Figure 5 Example photographs and penetrationmaps for one set of bushings. Heat maps of penetration are scaled to amaximumvalue of 1.5
mm. Themaximumpenetrationvalues of themedial, lateral, and ulnar bushings are 0.5, 1.1, and 0.8mm, respectively. These values exclude the
iatrogenic notch on the face of the medial bushing and the small regions of full-thickness loss on the edges of the ulnar component due to
ultrahigh-molecular-weight polyethylene–on–ultrahigh-molecular-weight polyethylene contact with the humeral bushing face.

Figure 4 Unintended contact, likely with bone or cement, caused varying degrees of abrasive wear in 30% of the retrieved humeral
bushings. It should be noted that this effect was prominent in bushings that were revised for ulnar loosening, in which pistoning of the ulnar
component was observed.

Quantitative wear in total elbows 2369



Figure 6 Quantitative linear penetration data segregated by bushing type. No differences in linear penetration (A) or in the linear
penetration rate (B) were observed between groups.

Figure 7 Quantitative volumetric wear data, segregated by bushing type, for retrievals with complete bushing sets only. No differences in
volumetric wear (A) or in the volumetric wear rate (B) were noted between groups.
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Discussion

Our study provides quantitative, in vivo linear and
volumetric wear data for semiconstrained total elbow
arthroplasty. The semiconstrained design that we studied
has an established clinical history and can therefore provide
a benchmark for wear performance of total elbow arthro-
plasty.1,2,21,28-30,37,38,44,48 Although we observed edge
loading of ulnar bushings, linear penetration rates and
volumetric wear rates did not differ for the ulnar and
humeral bushings. No significant relation was found
between the wear rate and the index diagnosis, implantation
date, or patient age.

For well-performing hips with historical UHMWPE,
an average volumetric wear rate of approximately 40
mm3/yr has been reported.3,6,20,22,40,41,50 However, peri-
prosthetic osteolysis has been identified as a clinically
relevant issue for historical UHMWPE, with increasing
volumetric wear rates, in general, associated with an
increased risk of osteolysis development. One study
showed that with each 40-mm3/yr increase in wear vol-
ume, the risk of osteolysis development increased by
approximately 3 times.41 Similarly, another study re-
ported that osteolysis was uncommon at volumetric wear
rates of 62-80 mm3/yr and greatly increased at a volu-
metric wear rate of 120 mm3/yr.6,7 However, it is not only
the total wear volume that determines the biological
response to debris but also the concentration that is
within the critical size range of 0.1-1.0 mm.15,19 We have
previously demonstrated that the particle morphology,
size, and tissue concentration observed in periprosthetic
elbow tissues are similar to those seen in the hip.5 The
volumetric wear rates observed in the current study were
generally of a similar magnitude to the rate observed in
well-functioning hips. However, there were a small
number of outliers with a wear rate of approximately 100
mm3/yr (Fig. 7). The 3 elbows with the highest volu-
metric wear rates were retrieved from male patients who



Table II Comparison of volumetric wear rates from in vitro simulation data with current study

Ulnar Humeral

Lateral Medial

Current study, mm3/yr 5.5 (1.2-51.2) 5.5 (0.7-37.2) 5.9 (1.2-51.2)
Popoola et al,43 mm3/511,000 cycles 2.9 � 0.9 0.15 � 0.05 1.9 � 0.7
Willing57

High JRF, mm3/7300 cycles 1.3 � 0.03 0.18 � 0.02 0.18 � 0.02
High VM, mm3/16,500 cycles 3.2 � 0.3 0.4 � 0.02 0.4 � 0.02

JRF, joint reaction force; VM, varus moment.

Data are presented as median (range) or mean � standard deviation. Reported wear rates were converted to annualized volumes based on the

assumptions stated in each publication. It should be noted that Willing reported humeral bushing wear rates as the average of both bushings.

Quantitative wear in total elbows 2371
were young at the time of implantation (aged 45-57
years) and were treated for post-traumatic arthritis.

Comparison of prior in vitro test results with the wear
rates observed in our study reveals limitations associated
with the reported protocols (Table II). Popoola et al43

assumed that there are approximately 500,000 loading
cycles/yr with some weight in the patient’s hand.24 On the
basis of this assumption, their testing protocol slightly
underestimated the wear of the ulnar bushing compared
with our population of revision patients. Furthermore,
because their protocol used a fixed varus angle rather than a
varus-valgus moment, wear of the humeral bushings,
particularly the lateral bushing, was underestimated. The
wear rates reported under the high–joint reaction
force loading protocol described by Willing57 (0.18 mm3/
7300 cycles for humeral bushings and 1.3 mm3/7300 cycles
for ulnar bushings) resulted in a similar magnitude of wear
to the finding of Popoola et al but also resulted in increased
wear of the ulnar bushings relative to the humeral bushings.
The wear rates reported under the high–varus moment
loading protocol of Willing would result in approximately
0.7-3 mm3/yr of wear per bushing due to sit-to-stand
loading alone, as compared with median values of
approximately 5-6 mm3/yr observed in our retrieval popu-
lation, and once again exaggerated the ulnar bushing wear.
We conclude that the loading modes reported previously,
particularly the application of varus-valgus moments, used
by Varadarajan and Kincaid52 and by Willing, provide re-
sults that have similarities in appearance to those observed
in our retrieval population. However, the exaggerated wear
magnitude of the ulnar bushing compared with the humeral
bushings was not consistent with our data. We believe that
further refinement of biomechanical testing is necessary to
determine loading protocols that appropriately load both
the ulnar and humeral bushings.

Sharifi and Willing49 reported further on high–joint
reaction force loading, combining in vitro simulation data
with finite element modeling. They proposed that the
higher contribution of the ulnar component to the total wear
observed in their testing was the result of UHMWPE-on-
UHMWPE contact resulting from extrusion of the ulnar
bushing under edge loading. However, the disproportionate
ratio between ulnar wear and humeral wear observed in
these simulation studies is not consistent with the results of
our study. Although we observed evidence of UHMWPE-
on-UHMWPE wear in a number of retrieved bushings,
the extent of involvement was limited for most patients and
rarely resulted in the deep grooving of the humeral bush-
ings observed by Sharifi and Willing (wear maps are shown
in Supplementary Appendix S1). It is likely that the
elevated sagittal-plane joint reaction force used in the
simulation studies overemphasized the effect of ulnar
bushing extrusion and contributed to the artificially
increased ulnar bushing wear.

Our study had several limitations, some of which are
inherent to retrieval studies. Although we only studied a
single semiconstrained design, the design and
manufacturing of this device have changed multiple times
over its market life. Changes include the surface finish of
the ulnar component (sintered beads, polymethyl methac-
rylate precoating, and plasma spray), axis-pin design, hu-
meral bearing surface design, UHMWPE resins (with and
without calcium stearate), and packaging environment for
the UHMWPE components (air and nitrogen). It has been
demonstrated that the ulnar-component finish affects the
clinical performance of the device, with higher rates of
loosening reported for the precoated ulna.21 The resultant
pistoning of the loose stem can create third-body cement
and titanium debris and result in unintentional contact with
the distal edge of the humeral bushings, accelerating
bushing wear. In our collection, 8 of 18 retrieved ulnar
components were precoated. Each of these was loose at
revision. The pitting that we observed in both the humeral
and ulnar components, as well as the presence of embedded
materials in the bearing surfaces, is consistent with both the
presence of loose components and the occurrence of
unintentional contact at the bearing surface. These failure
modes were intentionally not included in the referenced
in vitro testing and may affect the observed wear rates.
Additionally, gamma sterilization of UHMWPE in the
presence of air can promote oxidation and degradation of
the mechanical properties of the UHMWPE.32 Approxi-
mately one-half to two-thirds of the implants in this study
were packaged prior to 2001. Prior to this date, bushings



2372 J.S. Day et al.
were packaged in air rather than an inert environment.
Although we did not find a significant effect of implanta-
tion date on wear rates, we did observe delamination in
30% of the humeral bushings and 55% of the ulnar bush-
ings. However, we would expect reduced oxidation for the
current generation of conventional UHMWPE.

A further limitation of our study is a lack of data
regarding patient activity levels. It has been demonstrated
that wear of lower-extremity arthroplasty is correlated to
activity level, assessed using a simple questionnaire.47

When our study was initiated, we were unable to identify
a validated clinical survey that could quantify patients’
activity levels for the upper extremity. However, we did not
find an effect of sex, age, or initial diagnosis on wear rates.

Another limitation is that our observations are limited to
patients who underwent revision surgery including isolated
bushing exchange, as well as revision for wear and loos-
ening, and may not be representative of patients who do not
require revision. A study of semiconstrained total elbow
arthroplasty found that 1.3% of patients underwent bushing
exchange for wear at an average of 7.9 years after im-
plantation.28 These patients underwent revision specifically
for UHMWPE wear and represent a small segment of the
entire population of total elbow patients. Similarly, it has
been demonstrated that wear rates in well-functioning hip
patients are lower than those for implants retrieved at
revision surgery.3 It is therefore expected that the extent of
wear and damage observed in our study is higher than that
in the population of patients who do not undergo revision.
Although we did not see statistically significant effects with
respect to indication, year of implantation, or patient age,
care must be taken when interpreting these results because
of limitations in the number of components available for
analysis. For both implantation date and patient age, we
observed trends that may not have reached significance
because of the sample size.
Conclusion
We have characterized the wear and damage of retrieved
total elbow UHMWPE bushings. The wear rates were
similar to those observed previously for total hip
replacement patients with conventional UHMWPE. We
found limitations in reported in vitro testing that used a
fixed varus angle and a maximum joint reaction force of
840 N and resulted in reasonable ulnar component
wear but underestimated humeral bushing wear.43 The
wear patterns reported using a system that could apply
both a sagittal-plane joint reaction force and a varus-
valgus moment were more consistent with those
observed in our retrievals.53,57 However, the use of a
1250-N joint reaction force coupled with a 5-Nm varus-
valgus moment resulted in elevated wear rates and in
disproportionate ulnar bushing wear that was not
consistent with our retrieval data. We recommend the
use of a system that can apply both a sagittal-plane joint
reaction force and a varus-valgus moment, but we
recommend further investigation using finite element
modeling and/or simulator testing to determine repre-
sentative load levels. The data presented in this study
can be used to clinically validate in vitro simulation and
provide appropriate loading protocols for elbow wear
simulation.
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