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Hypothesis/Purpose: The objective is to develop and validate an artificial intelligence model, specifically an artificial neural network
(ANN), to predict length of stay (LOS), discharge disposition, and inpatient charges for primary anatomic total (aTSA), reverse total
(rTSA), and hemi- (HSA) shoulder arthroplasty to establish internal validity in predicting patient-specific value metrics.
Methods: Using data from the National Inpatient Sample between 2003 and 2014, 4 different ANNmodels to predict LOS, discharge dispo-
sition, and inpatient costs using 39 preoperative variables were developed based on diagnosis and arthroplasty type: primary chronic/degener-
ative aTSA, primary chronic/degenerative rTSA, primary traumatic/acute rTSA, and primaryacute/traumaticHSA.Modelswere also combined
into diagnosis type only. Outcome metrics included accuracy and area under the curve (AUC) for a receiver operating characteristic curve.
Results: A total of 111,147 patients undergoing primary shoulder replacement were included. The machine learning algorithm predicting
the overall chronic/degenerative conditions model (aTSA, rTSA) achieved accuracies of 76.5%, 91.8%, and 73.1% for total cost, LOS, and
disposition, respectively; AUCs were 0.75, 0.89, and 0.77 for total cost, LOS, and disposition, respectively. The overall acute/traumatic con-
ditions model (rTSA, HSA) had accuracies of 70.3%, 79.1%, and 72.0% and AUCs of 0.72, 0.78, and 0.79 for total cost, LOS, and discharge
disposition, respectively.
Conclusion: Our ANN demonstrated fair to good accuracy and reliability for predicting inpatient cost, LOS, and discharge disposition in
shoulder arthroplasty for both chronic/degenerative and acute/traumatic conditions. Machine learning has the potential to preoperatively pre-
dict costs, LOS, and disposition using patient-specific data for expectation management between health care providers, patients, and payers.
Level of evidence: Basic Science Study; Computer Modeling
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Shoulder arthroplasty is a common procedure used to
treat glenohumeral arthritis and preserve shoulder function
after trauma, such as displaced proximal humerus fractures.
Both anatomic and reverse total shoulder arthroplasty
(aTSA and rTSA) are widely considered safe and effective
procedures with low overall morbidity.6 However, not all
patients are at equal risk for complications, and several
patient factors have been retrospectively identified that in-
crease the complication rate including advanced age,
medical comorbidities, and longer operative
time.6,11,14,17 A predictive model that preoperatively risk
stratifies and can quantitatively calculate the increased risk
specific to a patient before shoulder arthroplasty would be
valuable for all health care stakeholders, specifically in
terms of expectation management and insurance pre-
authorization arbitration to optimally allocate resources and
maximize the value of care delivered.6

With the current availability of large patient data sets,
machine learning (ML) represents a form of artificial
intelligence particularly suited for preoperative medical
risk stratification and resource allocation. ML may be used
to learn and improve from experience with complicated
data and nonlinear relationships, and the algorithm be-
comes more accurate and predictive as additional data sets
are presented.5,22,20 This ability to ‘‘learn’’ from complex
data relationships separates ML from the more familiar
logistic regression analysis and other purely statistical
techniques commonly used in previous studies.3 Unlike
ML, regression analysis is static and often relies on pre-
defined relationships (eg, linear), making it less robust for
large data sets with complex relationships between patient
characteristics and outcomes. Recently, ML has been
applied in orthopedics to stratify patient risk before surgery
and predict likely hospital costs based on preoperative pa-
tient characteristics.5,6,11,15,22,23 However, limited work has
been performed to establish internal validity for value
metric in shoulder arthroplasty.

Artificial neural network (ANN) represents a form of
ML that ‘‘learns’’ through experience rather than static
statistical regression.1,2,12 The ability to ‘‘learn’’ makes
these models useful for predicting data with nonlinear re-
lationships, which are more frequently encountered in
medicine and thus better captured by these algorithms. By
using ANN models, providers can input patient metrics
preoperatively and predict important postoperative out-
comes based on the model’s experience with previous pa-
tient data. This is particularly useful for the creation of a
risk-based, patient-specific payment model to ensure that
surgeons are appropriately compensated for the complexity
of completed cases. In previous literature, ML has suc-
cessfully predicted length of stay (LOS), inpatient charges,
and discharge disposition after lower extremity joint
replacement.7,21-23 The objective of the current study is to
determine if a neural network can be used to predict LOS,
discharge disposition, and inpatient charges for primary
chronic/degenerative aTSA, primary chronic/degenerative
rTSA, primary acute/traumatic rTSA, and primary acute/
traumatic hemiarthroplasty (HSA) based on admission
diagnosis category (chronic/degenerative vs. acute/trau-
matic) and arthroplasty type to establish validity in pre-
dicting patient-specific value metrics. We hypothesize that
an ML ANN model will have the capability to accurately
preoperatively predict value metrics for these 4 conditions.
Methods

Data source

This is a retrospective cohort study of TSA using the National
Inpatient Sample (NIS) between 2003 and 2014. Published since
1988 and updated yearly, this survey includes demographic,
clinical, and resource use data from more than 1000 short-term
and nonfederal hospitals, making it the largest publicly available
all-payer inpatient discharge database in the United States. The
patients included in this database form a heterogeneous, deiden-
tified cohort with varying insurance payers, socioeconomic
backgrounds, and geographical locations. All data for each patient
stay are entered into NIS with associated diagnosis and procedural
International Classification of Diseases, ninth revision (ICD-9)
codes.
Data processing

We considered all patients with discharges containing one of the
following ICD-9 procedure codes: 8188 (‘‘Reverse total shoulder
replacement’’ or rTSA), 8181 (‘‘Partial shoulder replacement’’ or
HSA), and 8180 (‘‘Other total shoulder replacement’’ or aTSA).
This inclusion criterion resulted in a total of 146,618 patients. This
NIS subset was further filtered and processed to arrive at a robust
data set forML, and empty or unknownvalues for disposition, LOS,
sex, age, insurance payer, hospital location, hospital bed size, hos-
pital ownership, elective procedure status, and zip code income
quartile were removed. Similarly, patients under the age of 18 were
excluded in order to maximize the generalizability of our results. In
addition, all revision arthroplasties were excluded (revision
arthroplasty exclusion ICD-9 codes are included in Table I). After
processing of the data, 111,147 patients remained. This finalized
cohort contained 57,069 aTSA, 21,457 rTSAs, and 32,641HSAs. In
order to elucidate any association between preoperative diagnosis
with LOS, inpatient charges, and discharge disposition after
shoulder arthroplasty, we subdivided this large cohort into patients
with chronic/degenerative and acute/traumatic conditions. We
divided these patients based on ICD-9 diagnosis codes or external
cause of injury Clinical Classifications Software codes corre-
sponding to each type of condition (chronic/degenerative vs. acute/
traumatic). These are included in Table I. Patients who were coded
as both acute/traumatic and chronic/nontraumatic were classified as
acute/traumatic.

To further assess if an ML model could accurately predict
inpatient costs for shoulder arthroplasty, we normalized patient
costs and charges to 2014 US dollars using the consumer price
index supplied by the United States Bureau of Labor
Statistics.24 Patients with LOS, total cost, or total charges greater
than the 99th percentile or less than the 1st percentile were



Table I ICD-9 and CCS codes corresponding to each included pathology for chronic/degenerative and acute/traumatic indications for
shoulder arthroplasty

Chronic/degenerative Acute/traumatic

Code type Code Description Code type Code Description

ICD-9 Dx 714 Arthritis ICD-9 Dx 812[0-3] Superior humeral fractures
ICD-9 Dx 715 Arthritis ICD-9 Dx 831[0-1] Shoulder dislocations
ICD-9 Dx 716 Arthritis and arthropathy ICD-9 Dx 73311 Pathologic fracture of

humerus
ICD-9 Dx 711[1-8] Arthropathy ICD-9 Dx 73310 Pathologic fracture

unspecified
ICD-9 Dx 6960 Psoriatic arthropathy ICD-9 Dx 73319 Pathologic fracture of other

specified site
ICD-9 Dx 73340 Aseptic necrosis, NOS CCS E code 2603 Fall
ICD-9 Dx 73341 Aseptic necrosis of head of humerus CCS E code 2606 Machinery
ICD-9 Dx 73349 Aseptic necrosis of bone, other CCS E code 2607 Motor vehicle traffic injury
ICD-9 Dx 73381 Malunion of fracture CCS E code 2608 Pedal cyclist not MVT
ICD-9 Dx 71831 Recurrent dislocation of joint CCS E code 2609 Pedestrian, not MVT
ICD-9 Dx 73382 Nonunion of fracture CCS E code 2610 Transport, not MVT
ICD-9 Dx 9052 Late effect of fracture of upper extremities CCS E code 2614 Struck by object
ICD-9 Dx 71880 Other joint derangement, not elsewhere

classified, site unspecified
CCS E code 2619 Other specified injury

ICD-9 Dx 71881 Other joint derangement, not elsewhere
classified, shoulder region

CCS E code 2620 Unspecified injury

ICD-9 Dx 72610 Disorders of bursae and tendons in
shoulder region, unspecified

ICD-9 Dx 72761 Complete rupture of rotator cuff
ICD-9 Dx 8407 Superior glenoid labrum lesion

ICD-9, International Classification of Diseases, ninth revision; CCS, Clinical Classifications Software; NOS, not otherwise specified; MVT, motor vehicle

traffic.
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excluded to control for outliers. Similarly, patient disposition was
coded as either routine or nonroutine, where routine (as defined by
the Agency for Healthcare Research and Quality) is discharge
home, discharge to law enforcement, or discharge home with a
planned acute care hospital inpatient encounter and nonroutine is
all other discharge destinations.25 For convenience, continuous
outcome variables were split into 3 bins (low, medium, and high)
based on z-score normalization. A z-score is a statistical normal-
ization technique that subtracts the mean value of a distribution
from each inputted value and divides by the standard deviation.
The resulting distribution is centered at 0 and has a standard de-
viation of 1. The use of z-score normalizations allows the model to
place equal weight on inputted variables, regardless of the units of
the inputted variables. The low bin was z-score ��1, the medium
bin was z-score between �1 and 1 exclusive, and the high bin was
z-score �1. Overall, models were created for chronic/degenerative
and acute/traumatic indications. Models were further divided into
specific clinical indication and arthroplasty type, defined as fol-
lows: primary chronic/degenerative aTSA, primary chronic/
degenerative rTSA, primary acute/traumatic rTSA, and primary
acute/traumatic HSA. Models within a clinical indication were
combined (eg, combining the models for aTSA and rTSA within
chronic/degenerative) for ease of reporting. Patients used to train
combined models still included a variable indicating which type of
arthroplasty they received.
Neural network development

A custom Python script (Python Software Foundation, Beaver-
ton, OR, USA) was developed using an open-source neural
network toolbox.19 Variables included in modeling and model
parameters can be found in the example model definition file
supplied in this project’s codebase (https://github.com/JaretK/
ShoulderArthroplastyDeepLearning). Briefly, continuous preop-
erative variables (age) were normalized to their z-score repre-
sentations before modeling, whereas admission diagnoses,
projected procedures, and external cause of injury codes were
converted into integers representing each diagnosis before being
passed into the network. Year of surgery was passed in without
transformation. Categorical and binary variables were passed
directly into the network. Zip code, income quartile, All Patients
Refined Diagnosis Related Groups risk of mortality, and All
Patients Refined Diagnosis Related Groups severity of illness
were imputed with the mean value, whereas missing values for
elective surgery and transfer status were coded as nonelective
and not transferred, respectively. We split the overall data set
into separate training, validation, and testing data sets. A total of
70% of the data were used to train the model, 10% to validate
the model parameters, and 20% to test the model. This process
was repeated 10 times to establish measures of spread for the
results. An overview of the algorithm is outlined in Figure 1.

https://github.com/JaretK/ShoulderArthroplastyDeepLearning
https://github.com/JaretK/ShoulderArthroplastyDeepLearning


Figure 1 Diagram depicting the pathway of data processing and outcome prediction using machine learning modeling. This study has
used this process for final model development, although external testing and outcome prediction remains as a future step.
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Subgroup analysis

A subgroup analysis was performed by creating separate models
trained on data collected from patients between 2008 and 2014.
The accuracy for each model was determined and compared with
the accuracy for the 2003-2014 model to ensure that the model is
not biased by older data. Comparison was performed using the
Mann-Whitney U-test.

Statistical analysis

The ML algorithm was validated in terms of accuracy and
responsiveness. Responsiveness was established via the receiver
operating characteristics (ROC) curve, the area under the curve
(AUC) of which was estimated using standard mathematical
functions. Accuracy is defined as the percent of correct predictions
made during the testing phase of the model. Responsiveness in this
paper is defined as the ability of a model to successfully distin-
guish different outcomes. Responsiveness was graded as excellent
(0.9-1.0), good (0.8-0.9), fair (0.7-0.8), poor (0.6-0.7), and fail
(0.5-0.6).13 All statistical analyses were performed using R
version 3.5.1 (R Foundation for Statistical Computing, Vienna,
Austria). A significance threshold of P < .05 was chosen for all
analyses.
Results

Patient demographics are shown in Table II, and patient
comorbidities, current or historical, are shown in Table III.

Chronic/degenerative conditions

A total of 73,162 patients were included in the chronic/
degenerative diagnosis cohort (aTSA, rTSA). Of these,
18,051 received rTSA and 55,111 received aTSA. The ac-
curacy for total cost for chronic/degenerative conditions
treated with aTSA and rTSA was 76.5% with an AUC of
0.75 (Fig. 2). The accuracy for LOS was 91.8% with an
AUC of 0.89. Patient disposition had an accuracy of 73.1%
and an AUC of 0.77 (Fig. 3). Total cost, LOS, and discharge
disposition for aTSA were predicted with AUCs of 0.75,
0.76, and 0.75, respectively. Chronic/degenerative condi-
tions treated with rTSA had an AUC of 0.74 for total cost,
0.85 for LOS, and 0.78 for discharge disposition (Table IV).

Acute/traumatic injury

A total of 17,630 patients were coded as having an acute/
traumatic cause for their inpatient admission. Of these,
13,632 received HSA and 3998 received an rTSA. The
accuracy for total cost for acute/traumatic conditions was
70.3% with an AUC of 0.72. The accuracy for LOS was
79.1% with an AUC of 0.78. Patient disposition for trau-
matic causes of injury had an accuracy of 72.0% and an
AUC of 0.79. The ROC curves for these 3 models for both
acute/traumatic HSA and rTSA are depicted in Figure 2. In
examining rTSA only, the neural network predictor had an
AUC of 0.71 for total cost, 0.80 for LOS, and 0.79 for
discharge disposition. The predictor of total cost, LOS, and
discharge disposition for acute/traumatic HSA alone had
AUCs of 0.74, 0.77, and 0.74, respectively (Table IV).

Subgroup analysis on 2008-2014 patients

The combined models for 2008-2014 included a total of
78,404 patients. Within these combined groups, a total of
66,544 patients had a chronic/degenerative diagnosis and



Table II Patient demographics for included patient cohort

Demographics Chronic/degenerative
(n ¼ 73,162)

Acute/traumatic
(n ¼ 17,630)

Overall
(n ¼ 90,792)

Age (SD) 68.4 (10.7) 71.4 (11.5) 69.0 (10.9)
Sex

Female 40,385 (55.2) 13,610 (77.2) 53,749 (59.2)
Male 32,777 (44.8) 4019 (22.8) 37,043 (40.8)

Admission month Available Available Available
Weekend admission Available Available Available
Insurance payer

Medicaid 1829 (2.5) 529 (3.0) 2361 (2.6)
Medicare 48,505 (66.3) 12,252 (69.5) 60,740 (66.9)
Other 3000 (4.1) 812 (4.6) 3813 (4.2)
Private 19,606 (26.8) 3720 (21.1) 23,424 (25.8)
Self-pay 292 (0.4) 317 (1.8) 545 (0.6)

Race
Asian or Pacific Islander 293 (0.4) 123 (0.7) 454 (0.5)
Black 2634 (3.6) 353 (2.0) 2996 (3.3)
Hispanic 1902 (2.6) 652 (3.7) 2542 (2.8)
Native American 220 (0.3) 53 (0.3) 272 (0.3)
Other 1098 (1.5) 300 (1.7) 1453 (1.6)
Unknown 13,973 (19.1) 3297 (18.7) 17,250 (19.0)
White 53,042 (72.5) 12,870 (73.0) 65,915 (72.6)

Year
Mean (SD) 2010 (3.25) 2010 (3.44) 2010 (3.30)
Median [Min, Max] 2010 [2000, 2010] 2010 [2000, 2010] 2010 [2000, 2010]

Zipcode income quartile
1 19,225 (21.0) 4583 (23.2) 23,808 (21.4)
2 24,689 (27.0) 5314 (26.9) 30,003 (27.0)
3 24,294 (26.6) 4884 (24.7) 29,178 (26.3)
4 21,588 (23.6) 4630 (23.4) 26,218 (23.6)
Missing 1599 (1.7) 341 (1.7) 1940 (1.7)

Hospital ownership
Government, nonfederal 7682 (10.5) 2010 (11.4) 9624 (10.6)
Private invest-own 9438 (12.9) 2345 (13.3) 11,803 (13.0)
Private not-profit 56,042 (76.6) 13,293 (75.4) 69,365 (76.4)

Transfer status Available Available Available
Partial TSA

Yes Excluded 13,632 (77.3) 13,632 (15.0)
Anatomic TSA

Yes 55,111 (75.3) Excluded 55,111 (60.7)
Reverse TSA

Yes 18,051 (24.7) 3998 (22.7) 22,049 (24.3)
APR DRG risk of mortality

1 59,847 (81.8) 11,195 (63.5) 71,362 (78.6)
2 11,413 (15.6) 4989 (28.3) 16,251 (17.9)
3 146 (2.0) 1181 (6.7) 2542 (2.8)
4 220 (0.3) 193 (1.1) 363 (0.4)

APR DRG severity of illness
1 73 (0.1) 141 (0.8) 182 (0.2)
2 69,723 (95.3) 14,879 (84.4) 84,800 (93.4)
3 2927 (4.0) 2327 (13.2) 5175 (5.7)
4 146 (0.2) 211 (1.2) 363 (0.4)

Disposition routine?
Yes 51,213 (70.0) 7845 (44.5) 59,377 (65.4)

Total charges
Mean (SD) 52,800 (25,600) 60,600 (31,400) 54,200 (26,900)
Median [Min, Max] 46,800 [14,900, 182,000] 52,200 [14,900, 182,000] 47,700 [14,900, 182,000]

(continued on next page)
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Table II Patient demographics for included patient cohort (continued )

Demographics Chronic/degenerative
(n ¼ 73,162)

Acute/traumatic
(n ¼ 17,630)

Overall
(n ¼ 90,792)

Total cost
Mean (SD) 16,300 (6450) 18,500 (8400) 16,700 (6890)
Median [Min, Max] 15,100 [2210, 102,000] 16,800 [2920, 110,000] 15,300 [2210, 110,000]
Missing 2540 (2.8) 838 (4.2) 3378 (3.0)

Length of stay
Mean (SD) 2.10 (1.15) 3.69 (2.40) 2.39 (1.57)
Median [Min, Max] 2.00 [0.00, 12.0] 3.00 [0.00, 12.0] 2.00 [0.00, 12.0]

SD, standard deviation; TSA, total shoulder arthroplasty; APR DRG, All Patients Refined Diagnosis Related Group.

Data are presented as n (%), unless otherwise specified.

Table III Patient comorbidities based on clinical history

Chronic/degenerative
(n ¼ 73,162)

Acute/traumatic
(n ¼ 17,630)

Overall
(n ¼ 90,792)

Myocardial infarction 3073 (4.2) 793 (4.5) 3904 (4.3)
Congestive heart failure 2780 (3.8) 1181 (6.7) 3904 (4.3)
Peripheral vascular disease 1682 (2.3) 494 (2.8) 2179 (2.4)
Cerebrovascular disease 951 (1.3) 476 (2.7) 1362 (1.5)
Dementia 220 (0.3) 335 (1.9) 545 (0.6)
COPD 12,803 (17.5) 3191 (18.1) 15,979 (17.6)
Rheumatoid arthritis 4609 (6.3) 740 (4.2) 5357 (5.9)
Peptic ulcer disease 438 (0.6) 88 (0.5) 545 (0.6)
Controlled diabetes 951 (1.3) 405 (2.3) 1362 (1.5)
Uncontrolled diabetes 12,730 (17.4) 4143 (23.5) 16,797 (18.5)
Cancer 731 (1.0) 388 (2.2) 1090 (1.2)
Liver disease 73 (0.1) 35 (0.2) 91 (0.1)
Metastatic disease 72 (0.1) 193 (1.1) 272 (0.3)
HIV 73 (0.1) 4 (0.0) 91 (0.1)

COPD, chronic obstructive pulmonary disease; HIV, human immunodeficiency virus.

Data are presented as n (%).
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11,860 had a traumatic diagnosis. A total of 16,882 rTSAs,
40,724 aTSAs, and 20,809 rTSAs were included. For
chronic/degenerative conditions, the combined accuracy
was 76.3% (95% confidence interval [95% CI]: 76.0%-
76.6%) for cost, 90.6% (95% CI: 89.5%-91.7%) for LOS,
and 74.1% (95% CI: 73.0%-75.2%) for discharge disposi-
tion. All of the accuracies for the 2008-2014 cohort were
statistically similar to those of the overall cohort (P < .001
for all).

For acute/traumatic conditions, the combined accuracy
for total cost was 70.0% (95% CI: 69.8%-70.2%). The
combined accuracy for LOS was 79.2% (95% CI: 79.0%-
79.4%). The combined accuracy for discharge disposition
was 72.3% (95% CI: 72.2%-72.4%). Similarly, all of these
accuracies were statistically similar to the overall cohort
(P < .001 for all).

Discussion

Over the last decade, shoulder arthroplasty has become an
increasingly routine procedure that demonstrably improves
function and reduces pain for both traumatic and degener-
ative conditions.6,8 In addition to the intensifying climate of
value-based care after the Bundled Payments for Care
Improvement initiative for lower extremity arthroplasty,
there has been increased momentum to perform shoulder
arthroplasty as an outpatient procedure at ambulatory sur-
gery centers.4,6,10 Because of these potential reimbursement
changes, several studies have attempted to create an accu-
rate tool to predict patient outcomes after shoulder arthro-
plasty with varying success.6,11 After using the NIS to
compile a cohort of 111,147 patients who underwent
shoulder arthroplasty, we applied ML techniques to assess
the viability of a model capable of accurately predicting the
specific value-based metrics of LOS, inpatient cost, and
discharge disposition for primary aTSA, rTSA, and HSA in
both chronic/degenerative and acute/traumatic clinical
conditions.

This study does not represent the first attempt to apply ML
to TSA outcomes. Biron et al6 examined 4500 patients un-
dergoing elective TSA and created anMLmodel with anAUC
of 0.77 when predicting LOS less than or equal to 1 day in



Figure 2 Area under the ROC curve for LOS, discharge disposition, and total cost for the aggregate acute/traumatic injury patient
cohort for rTSA and HSA. ROC, receiver operating characteristic; LOS, length of stay; rTSA, reverse total shoulder arthroplasty;
HSA, hemi-shoulder arthroplasty.
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order to determinewhich patientswould be ideal for outpatient
TSA. Despite the responsive model, this study failed to
delineate between aTSA and rTSA. Similarly, Gowd et al11

studied 17,119 patients undergoing TSA and created an ML
model with an AUC of 0.70 and an accuracy of 82.3% when
predicting LOS greater than 3 days; however, this study also
did not separately examine aTSA and rTSA.The present study
includes a more robust cohort of 90,792 patients than these
prior studies. In addition, the strongest predictive ability of the
ANN in the current study regarding LOSwas goodwithAUCs
of 0.85 and 0.80 for patients undergoing rTSA for chronic/
degenerative and acute/traumatic conditions, respectively. In
addition to including patient-specific data in the development
of the ML model, we examined insurance payer, hospital
location, hospital bed size, hospital ownership, elective pro-
cedure status, and zip code income quartile. Previous studies
usingMLmodels forTSApatients have examinedonlypatient
variables.6,11With the current economic climate in thewakeof
the Bundled Payments for Care Improvement initiative,
pressure is placed on providers to not only provide a surgical
procedure at a low cost, but also discharge patients in an
expedient but safe manner. Factors including hospital bed size
and geographic location affect these value-based outcomes,
making it important to include such variables in a predictive
model of these metrics.9,18 Economic constraints are ever
changing; therefore, health care stakeholders need an ML-
based predictive tool that can iteratively grow and improve
with additional data as they become available.

As the pressure to decrease the cost of care escalates,
orthopedic surgeons must adapt and examine their practices
for areas of improvement in resource allocation. In order to
better allocate resources, health care providers must first
understand where resources are being most heavily
consumed. As demonstrated in Table IV, our model pre-
dicted patients’ inpatient costs after TSA with an accuracy
ranging from 69% to 77%, consistent with previously
published ML models in total hip arthroplasty that have led
to the development of risk-adjusted patient-specific pay-
ment models.16,22 Predicting inpatient cost after TSA is an
important consideration as physicians explore the possi-
bility of completing these operations in ambulatory surgery
centers as outpatient procedures. Similarly, our model
predicted patient discharge disposition with an accuracy
ranging from 72% to 75% and LOS accuracy ranging from
78% to 92%. The ability to predict discharge disposition
and LOS is important to consider when offering patients



Figure 3 Area under the ROC curve for LOS, discharge disposition, and total cost for the aggregate chronic/degenerative condition
patient cohort for aTSA and rTSA. ROC, receiver operating characteristic; LOS, length of stay; aTSA, anatomic total shoulder arthroplasty;
rTSA, reverse total shoulder arthroplasty.
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inpatient vs. outpatient shoulder arthroplasty and for
reimbursement arbitration of preauthorization with insur-
ance firms. Overall, our model proved similar in accuracy
to ML models in lower extremity total joint arthroplasty
and superior to previously published models in TSA,
making it a viable option for patient risk stratification
before surgery.
Table IV Accuracy and AUC for total cost, LOS, and discharge dis
traumatic (rTSA and HSA) indications

Indication Procedure Total cost

Accuracy (%) AUC

Chronic/degenerative Combined 76.5 0.75
aTSA 76.6 0.75
rTSA 76.4 0.74

Acute/traumatic Combined 70.3 0.72
rTSA 69.3 0.71
HSA 74.8 0.74

AUC, area under the curve; LOS, length of stay; aTSA, anatomic total shoulder a

arthroplasty.
Our study has limitations. Artificial intelligence models
are a product of the data inputted, just as clinical decision
making is a product of experience. As such, the algorithm
was trained on a single database and does not represent a
global sample. Because ML functions as a ‘‘black box,’’
where the connections between the inputs and outputs are
unknown, we are unable to determine the strength of each
position for chronic/degenerative (aTSA and rTSA) and acute/

Length of stay Discharge disposition

Accuracy (%) AUC Accuracy (%) AUC

91.8 0.89 73.1 0.77
83.3 0.76 73.0 0.75
91.4 0.85 75.2 0.78
79.1 0.78 72.0 0.79
80.2 0.80 73.2 0.79
78.3 0.77 72.0 0.74

rthroplasty; rTSA, reverse total shoulder arthroplasty; HSA, hemi-shoulder
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variable, although the accuracy and responsiveness are
evident. The AUC values did not exceed 0.9, suggesting
that the current model is not near-perfect and has room for
future improvement. However, the presented preliminary
model represents a dynamic framework. In the future, we
will apply true cost ratios with Center for Medicare and
Medicaid Services (CMS) comorbidity multiplier data, as
well as readmissions data, to improve predictive strength in
this data-dependent dynamic model. In addition, the patient
cohort data set, although large and robust, dates back to
2003. As surgical techniques, patient rehabilitation pro-
tocols, and available implants have evolved tremendously
since 2003 and the emphasis on value-based care has
intensified, it is important that our ML-based models do not
skew toward the older data that are less representative of
current practices. However, as more data from other in-
stitutions are added to the existing algorithm, the inherent
weaknesses of the antiquated data are less emphasized in
the model’s predictive ability.8 Despite these limitations,
our model provided fair to good AUCs in predicting
discharge disposition, LOS, and total cost.
Conclusion
The results of this study demonstrate a preliminary ANN
model for predicting LOS, inpatient cost, and discharge
disposition for shoulder arthroplasty using a large, na-
tional database. Our model demonstrates fair to good
accuracy and responsiveness. This study should be used
to provide a framework for future studies to inform
surgeons and hospitals about risk before surgery. If in-
tegrated into clinical practice, these models present the
predictive opportunity to improve communication and
planning for shoulder surgeons in the value-based era
and reduce socioeconomic disparities for shoulder
arthroplasty patients, thereby more appropriately
encouraging health equity and quality of life at the
population level one patient at a time.
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