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Morphologic and radiologic parameters
correlating to shoulder function at diagnosis for
patients with rotator cuff tear
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Background: The magnetic resonance imaging (MRI) parameters used to diagnose rotator cuff tears are weakly correlated to shoulder
function. Our hypothesis was that adding 3-dimensional morphologic parameters resulting from biplanar radiographs (3DXR parame-
ters) to the MRI parameters would improve this correlation.
Methods: We assessed 52 patients with rotator cuff tears with an EOS Imaging radiographic examination, MRI study, and clinical eval-
uation of the shoulder, as well as the Constant score. The bones of the 52 shoulders were reconstructed 3-dimensionally, and eleven
3DXR parameters were automatically extracted. First, the trueness and reliability of these parameters were evaluated. Then, bivariate
correlations between each parameter and the Constant score were made. A linear regression model was subsequently built to correlate
the 11 parameters and 5 MRI findings with shoulder function at diagnosis, as assessed by the Constant score.
Results: The parameters showed good trueness and reliability of most 3DXR parameters. Supraspinatus tear extension, muscle atrophy,
and the distance between the greater and deltoid tuberosities were the only parameters with a statistically significant correlation to a
lower Constant score (P < .05) in the bivariate study. These correlations were either weak or negligible. A regression model was
successfully built with one MRI parameter and four 3DXR parameters. Correlation to function increased from 16.7% to 43.3% with
this model.
Conclusion: For patients with rotator cuff tears, the combination of MRI and 3DXR parameters of the shoulder in a linear regression
model improves the correlation with the Constant score (shoulder function) at diagnosis.
Level of evidence: Level IV; Case Series; Prognosis Study
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Rotator cuff tears (RCTs) are frequent, affecting 62% of
patients aged � 80 years41 and 20.7% of the general
population.46 This pathology is responsible for >50% of
shoulder pain cases14 and can be treated surgically32 or
conservatively. The conservative treatment options include
physical therapy, nonsteroidal anti-inflammatory drugs, and
corticosteroid injections.1,34 The clinical symptoms usually
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manifest as effort-related shoulder pain, pain at night, and
weakness.21 The magnetic resonance imaging (MRI) pa-
rameters can vary from partial tearing of the supraspinatus
tendon to an extended tear involving the subscapularis,
supraspinatus, and infraspinatus, which results in retraction
and fatty infiltration.19,21 However, these MRI parameters
have a weak correlation with the patient’s function and
pain level.10,16,24,33,36 Specific morphologic parameters,
such as the critical shoulder angle,30 have been investi-
gated. Moor et al30 showed that an angle < 35� was a
predictor of glenohumeral arthritis whereas an angle > 35�

predicted the risk of RCT development. However, this
parameter alone was not associated with the functional
level.

To our knowledge, MRI and morphologic parameters
have never been combined to predict shoulder function.
Our hypothesis was that adding 3-dimensional (3D)
morphologic parameters resulting from biplanar radio-
graphs (3DXR parameters) to the MRI parameters would
improve the correlation to shoulder function for patients
with RCTs. To this end, we created a regression model to
improve the correlation between a shoulder functional
assessment score (Constant score) and a combination of
MRI parameters and 3DXR parameters extracted from a
semiautomated 3D reconstruction technique. Because the
reconstruction technique used was developed recently, we
conducted a repeatability study to ensure that the 3DXR
parameters extracted from the constructed models were
reproducible and accurate.
Materials and methods

This was a prospective study of patients with at least a complete
tear of the supraspinatus.

Data bank

We used data from 52 participants, recruited between August
2010 and May 2013, with no less than a full-thickness tear of the
supraspinatus in 1 shoulder. All patients gave their informed
consent.

Every participant was assessed by a clinical examination
(Neer, Hawkins, Jobe, Gerber, and scarf tests), the Constant
score, an MRI study, and radiographs of the involved shoulder.
The Constant score is a questionnaire that quantifies the patient’s
shoulder function by evaluating pain, daily living activities,
range of motion, and strength.9 We used the updated version,
which is adjusted for age and sex.9 The radiographs were taken
with an EOS Imaging system (Paris, France), which is a bipla-
nar, low-dose radiographic system that takes 2 orthogonal
radiographic views simultaneously, allowing for subsequent 3D
reconstruction of the bony structures. The participants were in a
standing position, at an angle of 30� with respect to the radio-
graphic plane, with the arms at rest alongside their body. We
chose this angle, which is very close to a Grashey view, because
it avoids the superposition of shoulder structures on
radiographs.48
3D reconstruction

The shoulder bones were reconstructed 3-dimensionally from the
radiographic images using in-house software (Arts et M�etiers
ParisTech, Paris, France, and LIO, Montr�eal, Canada) together
with a semiautomated technique coded on MATLAB (The
MathWorks, Natick, MA, USA) and developed by Zhang48 in
2016. The operator needs to identify a few anatomic landmarks or
regions on each radiograph, and a generic contour model is
automatically adjusted to these landmarks (Fig. 1). In almost all
cases, a slight manual adjustment is needed to best fit the partic-
ipant’s bones, especially in the acromial region.

Evaluation of 3D reconstruction

The trueness and reliability of the reconstruction method were
assessed according to the International Organization for Stan-
dardization standard ISO 5725-2:1994. ‘‘Trueness’’ refers to the
closeness of agreement between a reference value and a measured
value. In our case, it refers to how close the 3D reconstruction of
the proposed method is to a reference 3D reconstruction using
computed tomography scans. ‘‘Reliability’’ refers to the repeat-
ability of the method when different observers use it at different
times. It gives a sense of how observers affect the result.

Trueness of method using 3D reconstructions from
cadavers as benchmarks

The trueness of the reconstructed model was evaluated with the root
mean square (RMS) using the shoulders from 6 cadavers. The
shoulderswere scannedwith a Siemens SomatomSensation 16 three-
dimensional scanner (Erlangen, Germany) and reconstructed with
Avizo software (version 7.1; Thermo Fisher Scientific, Waltham,
MA, USA). These 3D models were used as a benchmark. The 3D
model of each cadaver then underwent virtual radiography with the
same calibration as the EOS Imaging system, and the ‘‘ray casting’’
algorithm that removes soft tissues45 was used to produce digitally
reconstructed radiographs (DRRs). These DRR images were recon-
structed 3-dimensionally 3 times by an observer. Themean of these 3
reconstructions was compared with the model from the scanner with
the RMS according to Equation 1:

RMS¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

vA˛SðAÞd
2ðvA;SðBÞÞ

jSðAÞj

s
ð1Þ

where jS(A)j is the number of vertices of the reconstructed model
and d (v, S(B)) is the distance function between a random vertex v
of the reconstructed mesh S(A) and the reference surface model
S(B).22 The latter was calculated as shown in Equation 2:

dðv;SðBÞÞ¼ min
vB˛SðBÞ

jjv� vBjj ð2Þ

where vB is a vertice from the reference surface model S(B).
The trueness of the 3DXR parameters extracted from the 3D
reconstruction was evaluated with the mean bias. The bias
corresponds to the difference between the value of a parameter
extracted from a reconstruction and its value when measured on
the reference model. Because each of the 6 cadavers was recon-
structed 3 times, the trueness of a parameter corresponds to the
mean of the 18 calculated biases.



Figure 1 Identification of contours (red) and anatomic points (blue cross) used for 3-dimensional reconstruction. ASA, anterosuperior
point of acromion; LFS, inferior line of supraspinatus fossa; TP, tip of coracoid process; MB, medial border; ABG, anterior border of
glenoid; LPB, lateral proximal border; LDB, lateral distal border; LB, lateral border. (Original source: Bascans C. �Evaluation morpho-
fonctionnelle de l’�epaule [master’s thesis]. Montreal: �Ecole de Technologie Sup�erieur; 2018. Available at http://espace.etsmtl.ca/2160/.)
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Reliability of reconstruction method on patients’
radiographs

The reliability of the technique was assessed with another set of
data containing the radiographs of 12 participants. Each shoulder
was reconstructed twice by 2 observers. For each parameter, the
reliability (S2Ri

) was calculated according to Equation 3:

S2Ri ¼S2Li þ S2ri ð3Þ

where S2ri is the intraobserver variability and S2Li is the interob-
server variability. The global reliability (SR) was calculated
according to Equation 4:

SR¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 S
2
Ri

n

s
ð4Þ

The SR value was multiplied by 2 (ie, 2 � SR) to estimate the 95%
confidence interval (CI) of the global reliability of a parameter.

To summarize, trueness was assessed on 3D reconstructions
from cadaveric specimens. For each cadaver, we (1) used a 3D
scanner to create a benchmark model, (2) produced DRRs, (3)
reconstructed the shoulder from the DRRs 3 times, (4) determined
the mean of the 3 reconstructions, (5) calculated the differences
between the mean of the 3 reconstructions and the benchmark
(Equation 2), and (6) calculated the RMS to evaluate the trueness
of the reconstruction technique (Equation 1). Reliability was
assessed on a set of radiographs from 12 patients reconstructed 3
times by 2 different operators. For each parameter, the reliability
was calculated as the 95% CI.
Regression model

This study is a first attempt to improve our comprehension of
shoulder function with MRI and 3DXR parameters. We chose to
start with the simplest type of regression model: the linear
regression model.

The following eleven 3DXR parameters were used to build the
regression model:

� Height, width, positional inclination, morphologic inclination,
and version of the glenoid

� Critical shoulder angle
� Subacromial distance
� Offset of the humeral head from the glenoid

http://espace.etsmtl.ca/2160/


Table I Study population

Characteristic Data

Patients, n 52
Age, mean (SD), yr 56 (7)
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� Simplified path of the deltoid including (1) the distance
between the middle of the lateral border of the acromion and
the greater tuberosity and (2) the distance between the greater
and deltoid tuberosities

� Radius of the humeral head
Sex, n (%)
Male 32 (62)
Female 20 (38)

Supraspinatus full-thickness tear, n (%) 52 (100)
Supraspinatus tear extension in sagittal plane,

mean (SD), mm
10 (2)

Supraspinatus tear retraction in frontal plane,
mean (SD), mm

26 (11)

Infraspinatus, n (%)
Partial tear 8 (15)
Massive tear 43 (83)

Subscapularis, n (%)
Partial tear 13 (25)
Massive tear 8 (16)

Teres minor, n (%)
Partial tear 1 (2)
Massive tear 0 (0)

SD, standard deviation.
The inclinations are measured from a line connecting the upper
and lower borders of the glenoid. The positional inclination is the
angle between this line and a vector perpendicular to the ground.
The morphologic inclination is the angle between this line and a
vector that is perpendicular to a line connecting the trigonum
spinae of the scapula and the functional center of the glenoid.

The aforementioned parameters were chosen because they are
either considered risk factors for RCT development or used by
orthopedic surgeons for surgical planning.4,6,8,11,18,23,25,27,30,
35,39,40,44 In addition, 5 MRI parameters were included in the
model for the same reasons:

� Retraction of the supraspinatus tear, which corresponds to the
distance between the medial margin of the tendon footprint and
the tip of the torn tendon in the frontal plane7

� Extension of the supraspinatus tear, measured in the sagittal
plane as the distance between the pathologic area and the
superior facet of the greater tuberosity7

� Muscle atrophy as assessed by Thomazeau et al42

� Fatty infiltration of the supraspinatus as measured by Goutallier
et al20

� Fatty infiltration of the infraspinatus as measured by Goutallier
et al20

To make sure that none of the parameters taken individually
was strongly correlated to the Constant score, we began with
bivariate correlations between each parameter and the Constant
score. If none of the parameters has a strong correlation with the
Constant score, the use of a regression model with >1 parameter
is justified. We then used SPSS software (2016 release; IBM,
Armonk, NY, USA) to build a linear regression model based on
Equation 5:

Y¼b0 þ b1 þ :::þ bkXk þ ε ð5Þ
where ε is the residual value and b0 is the value of Y when all the
dependent variables are equal to 0. The dependent variable was
shoulder function of the 52 patients affected by RCTs, as assessed
by the adjusted Constant score. The Constant score was chosen
because it gives a general aspect of shoulder function by assessing
pain, activities of daily living, mobility, and strength of the
shoulder.2 It is recommended by the European Society for Surgery
of the Shoulder and the Elbow as well as by the German Society
of Shoulder and Elbow Surgery.2

The independent variables were the 3DXR parameters
extracted from the 3D reconstructions and the MRI parameters
extracted from the MRI scans. The variables were added to the
regression model one at a time, starting with the variable that had
the strongest correlation with the dependent variable. The vari-
ables were retained if they had a significant impact on the Con-
stant score (ie, P < .05). With every additional parameter
integrated into the model, the variables previously added were re-
evaluated to ensure they were still significant in the new model.47

The significance of the model was validated using an analysis
of variance with a threshold of 5% (P < .05). The independence of
the residual values was validated with the Durbin-Watson test, and
their normal distribution was observed visually on a graphic.
Results

Data bank

Table I describes the demographic information of the 52
RCT patients included in this study.

Evaluation of 3D reconstruction technique

Trueness of reconstruction model
The trueness of the reconstruction model, as evaluated by
the RMS, is presented in Table II. The RMS for the
whole scapula ranged between 2.1 and 3.7 mm, with a
mean of 3.2 mm, corresponding to 1 standard deviation.
The RMS of the scapula’s glenoid region ranged between
1.3 and 2.4 mm, with a mean of 1.8 mm. The maximal
error was located in the superior part of the medial border
of the glenoid. The RMS of the humerus varied between
2.0 mm and 4.4 mm, which corresponds to 1 standard
deviation.

Trueness of extracted 3DXR parameters
The trueness of the extracted parameters was represented
by the mean bias of the reconstructions (Table III). A
smaller bias indicates better trueness. The mean bias of the
parameters varied between –2.7 mm and 2.1 mm for the
distances.



Table II Evaluation of trueness of reconstruction model

Mean of 3 reconstructions, mm

Scapula Humerus

Global Glenoid Global Superior part

RMS Max (AV) RMS Max (AV) RMS Max (AV) RMS Max (AV)

Subject No.
1 3.7 13.6 2 4.7 2.9 9.8 2.4 5.7
2 3.5 11.3 1.8 4.1 2.6 8.9 2.3 5.1
3 2.1 8.8 2.4 6.2 2.2 6.8 2.1 4.3
4 3.1 10.4 1.3 2.7 2.2 5.9 1.8 4
5 3.3 13 1.9 5.2 2 6.3 1.5 4
6 3.2 12.4 1.6 3.7 3.5 11.8 2.7 6.9

Mean 3.2 11.6 1.8 4.4 4.4 9.4 2.3 5.3

RMS, root mean square; Max, maximum; AV, absolute value.

Table III Evaluation of trueness of 3DXR parameters extracted from 3D reconstruction of each cadaver as mean bias

3DXR parameter Bias

Mean of 3 reconstructions by subject Mean

1 2 3 4 5 6

Glenoid height, mm 1.5 0.9 –0.8 –0.5 2.0 –0.5 0.4
Glenoid width, mm 3.4 –0.5 1.0 0.0 –0.8 –2.1 0.2
Glenoid positional inclination, � 4 1 –3 1 1 4 1
Glenoid morphologic inclination, � –1 2 6 –3 1 –3 0
Glenoid version, � 2 1 2 3 1 –1 1
Critical shoulder angle, � 5 –3 –3 3 –1 4 1
Subacromial distance, mm –1.1 1.3 –1.5 2.7 –1.9 –1.2 –0.3
Humeral head offset, mm 5.5 1.8 –3.4 –1.1 0.6 9.3 2.1
Acromion–greater tuberosity distance, mm –0.2 –2.9 –6.0 1.3 –3.6 –5.0 –2.7
Greater tuberosity–deltoid tuberosity distance, mm –1.0 –1.2 –1.5 1.0 –0.8 2.4 –0.2
Humeral head radius, mm –0.4 –1.1 –0.1 0.2 –0.4 0.2 –0.3

3D, 3-dimensional; 3DXR, 3-dimentionnal morphologic parameters resulting from biplanar radiographs.
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Reliability of extracted 3DXR parameters
The reliability was measured by the 95% CI (Table IV), in
which a smaller interval is associated with better reliability.
The most repeatable parameter was glenoid version (95%
CI ¼ 1). The reliability of the distance between the greater
and deltoid tuberosities and the critical shoulder angle was
weak, with a 95% CI � 5 mm.

Bivariate correlations

Table V presents the correlation between the adjusted
Constant score and each of the MRI and 3DXR parameters
individually. Only 3 parameters were found to have a sig-
nificant correlation with the Constant score: supraspinatus
extension (P ¼ .003), muscle atrophy (P ¼ .029),
and distance between the greater and deltoid tuberosities
(P ¼ .041).
The coefficient of correlation (r) indicates the strength
of the correlation with each parameter and whether it is
positive or negative. Correlations with a coefficient
between 0.3 and 0.5 are considered weak, and those with
r < 0.3 are negligible.31 Thus, the distance between the
greater and deltoid tuberosities had a negligible correlation
with the adjusted Constant score, whereas muscle atrophy
and the extension of the supraspinatus had weak correla-
tions. The extension of the supraspinatus tear had the
strongest correlation with the Constant score.

Multiple regression model

The multiple regression model was successfully built
starting with the variable that had the strongest bivariate
correlation with the Constant score: the extension of the
supraspinatus tear. The final model contained one MRI



Table IV Ninety-five percent CIs for eleven 3DXR parameters

3DXR parameter 95% CI

Glenoid height, mm 2.8
Glenoid width, mm 2.0
Glenoid positional inclination, � 5
Glenoid morphologic inclination, � 5
Glenoid version, � 1
Critical shoulder angle, � 4
Subacromial distance, mm 2.8
Humeral head offset, mm 2.5
Acromion–greater tuberosity distance, mm 5.0
Greater tuberosity–deltoid tuberosity distance, mm 6.5
Humeral head radius, mm 1.3

CI, confidence interval; 3DXR, 3-dimentionnal morphologic parame-

ters resulting from biplanar radiographs.

Table V Bivariate correlations with Constant score

Parameter Correlation
coefficient (r)

P
value

Supraspinatus extension –0.409 .003*

Muscle atrophy –0.303 .029*

Distance between greater and
deltoid tuberosities

–0.285 .041*

Fatty involution of supraspinatus –0.21 .128
Fatty involution of infraspinatus –0.192 .173
Supraspinatus retraction –0.188 .183
Distance between acromion and
greater tuberosity

–0.161 .255

Subacromial distance –0.126 .375
Glenoid height –0.125 .377
Glenoid length –0.117 .410
Glenoid version 0.102 .472
Humeral head radius –0.095 .505
Glenoid morphologic inclination angle –0.086 .542
Glenoid positional inclination angle –0.086 .545
Humeral head offset from glenoid 0.062 .662
Critical shoulder angle 0.002 .988

* Statistically significant (P < .05).
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parameter and four 3DXR parameters that had a significant
impact on the Constant score when combined, as seen in
Equation 6:

Y¼167:43þð�4:3Þ�X1þð�1:0Þ�X2þ1:3�X3þ 11 � X4 þ ð� 1:8Þ � X5þ ε

where X1 is extension of the supraspinatus; X2, distance
between the greater and deltoid tuberosities; X3, offset of
the humeral head from the glenoid; X4, glenoid version; and
X5, subacromial distance.

Each of the model’s significant parameters and its
coefficient are presented in Table VI. The R2 coefficient of
this model is 0.433, which means that the model explains
43.3% of the variability of the adjusted Constant score
among patients with RCTs at diagnosis. The column
showing variation in R2 indicates the percentage change in
the Constant score, as explained by each parameter. Thus,
the extension of the supraspinatus explains 16.7% of the
variability, the distance between the greater and deltoid
tuberosities explains 7.9%, and so on. Every parameter
significantly contributes to the model because the P value
of the variation of R2 is below the significance threshold of
.05 for all parameters.
Discussion

The MRI parameters currently used to evaluate RCTs are
moderately correlated with function and pain
levels.10,16,24,36 In this study, we were able to validate a 3D
reconstruction technique for the shoulder bones. From this
reconstruction, 3DXR parameters were automatically
extracted. The trueness and reliability of these parameters
were successfully evaluated. The distance between the
greater and deltoid tuberosities had the best trueness (–0.3
mm) but the worst reliability (6.5 mm). This finding could
be caused by the poor visibility of the deltoid insertion on
the humerus on radiographs. All the other parameters
showed good trueness and reliability. Our hypothesis was
that these 3DXR parameters could explain, at least in part,
the shoulder functional level by means of a regression
model for patients with at least a complete tear of the
supraspinatus.

According to the results of the bivariate correlations,
none of the parameters had a strong correlation with the
Constant score. This finding supports the relevance of
building a linear regression model with >1 parameter to
explain the Constant score.

Among the 5 commonly used MRI parameters tested in
this study, only 1 parameter (supraspinatus extension) had a
significant (P ¼ .03) but weak (r ¼ –0.41, so 0.3 < jrj <
0.5) correlation with the adjusted Constant score. In the
regression model, this parameter only explains 16.7% of
the Constant score variability if used alone. Adding four
3DXR parameters (distance between the greater and deltoid
tuberosities, glenoid version, humeral head offset, and
subacromial distance) explains 43.3% of the Constant
score’s variability, confirming that shoulder morphology
plays a role in shoulder function in RCT cases.

According to our results, a greater humeral head offset
(ie, the distance between the functional center of the
glenoid and the greater tuberosity of the humerus) and a
more anteriorly tilted glenoid were associated with a better
Constant score. No association between these 2 parameters
and shoulder function is found in the literature. Neverthe-
less, Iannotti et al27 (1992) determined that a larger offset
implies that the greater tuberosity is farther from the
glenoid, giving the deltoid a larger moment arm. This could
allow the deltoid to compensate for the torn tendons and
explain why a larger offset was associated with a better
Constant score in our study.



Table VI Significant parameters and their coefficients

Parameter Coeff bi Coeff stand Sig (P value) Variation of R2 Sig var R2

X1: extension of supraspinatus –4.3 –0.52 <.001 0.167 0.003
X2: distance between greater and deltoid tuberosities –1.0 –0.49 <.001 0.079 0.028
X3: offset of humeral head from glenoid –1.3 0.26 .035 0.065 0.038
X4: glenoid version 11 0.31 .015 0.0563 0.046
X5: subacromial distance –1.8 –0.27 .026 0.066 0.026

Coeff, coefficient; Coeff stand; standardized coefficient; Sig (P value), P value of the coefficients; Sig var R2, P value of the variation of R2.

Figure 2 Hypothesized impact of subacromial distance on shoulder function. (A) Left shoulder with subacromial distance of 0.80 mm.
(B) Right shoulder with subacromial distance of 11.1 mm. When the humeral head is farther below the acromion, the deltoid first lift it to
the position illustrated by the dashed lines. It then applies the force illustrated by the left arrow to abduct the arm. (Original source: Bascans
C. �Evaluation morpho-fonctionnelle de l’�epaule [master’s thesis]. Montreal: �Ecole de Technologie Sup�erieur; 2018. Available at http://
espace.etsmtl.ca/2160/.)3
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We also demonstrated that the extension of the supra-
spinatus tear, the subacromial distance, and the distance
between the greater and deltoid tuberosities have a negative
correlation with the Constant score. As expected, on the
basis of the literature, a larger extension of the complete
supraspinatus tear was associated with a lower Constant
score.38 This association is understandable because a
complete tear points to greater loss of function of this
muscle. Supraspinatus atrophy was not in the final
regression model even though it had a significant bivariate
correlation with the Constant score. Previous research
showed that atrophy of the supraspinatus correlates with its
extension,37 and in our study, the bivariate correlation be-
tween these 2 parameters was significant (P ¼ .001).
Because the extension of the supraspinatus tear was added
first to the regression model, the atrophy did not provide
significant additional information and was not retained by
the model.
Contrary to our results, studies have concluded that a
larger subacromial distance is associated with better
shoulder function.12,13,17 To explain our results, we
hypothesize that a small subacromial space could be the
consequence of the supraspinatus tendon tear and upward
migration of the humeral head. Therefore, when the sub-
acromial space is larger, the head of the humerus is farther
below the acromion and the deltoid needs to lift it before
being able to elevate the arm. This would reduce the del-
toid’s functional capacity (Fig. 2). Moreover, our study
population had a mean subacromial distance that is quite
substantial (6.9 � 2.6 mm) compared with other studies’
RCT patients.28 This could explain why the subacromial
distance did not affect function negatively. Of note, only 3
participants showed signs of erosion of the acromion.

To our knowledge, there is no specific correlation
between the adjusted Constant score and the distance
between the greater and deltoid tuberosities. Indeed, its

http://espace.etsmtl.ca/2160/
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impact on shoulder function has yet to be studied. The
distance between the greater tuberosity and deltoid tuber-
osity corresponds to the distance between the insertion of
the deltoid on the lateral humerus and the insertion of the
supraspinatus and infraspinatus on the greater tuberosity.
We believe that when this distance is smaller, the deltoid’s
muscle fibers are more aligned with the fibers of the
supraspinatus and infraspinatus, allowing better compen-
sation when the tendons are torn. A lower insertion point of
the deltoid muscle on the humerus, on the contrary,
implies a more vertical orientation of the muscle fibers and
an insertion farther below the center of rotation of the hu-
meral head, thereby possibly causing an antagonistic effect
with the rotator cuff.

As expected from the literature, the critical shoulder
angle did not significantly increase the correlation of the
linear regression model with shoulder function. In other
studies, the critical shoulder angle was strongly associated
with the risk of RCT development and the risk of retear after
surgical repair of the rotator cuff but was not correlated with
shoulder function once the tear was present.15,30,44

There are some limitations in our study. The use of the
Constant score is one limitation. Because it is mainly used to
assess shoulder function before and after surgery, there is no
threshold for good or bad function at a certain time point.
Furthermore, the Constant score is a global evaluation of the
shoulder. It would be interesting to build different regression
models to explain specific aspects of shoulder function, such
as pain and shoulder mobility. Another limitation is that the
regression model was built with parameters of variable reli-
ability because they were extracted from a reconstruction
method that was not fully automated. Moreover, 14 parame-
ters were considered to build the regression model, and 5 of
themwere retained in the final model. Other parameters could
have been considered initially, such as the length of the
acromion. This parameter could have an important impact on
the shoulder’s range of motion according to Humphries et al26

(2017) and has been associated with RCTs in several
studies.5,29,43

An important part of the variability in the Constant score
results remains unexplained. Therefore, other types of cor-
relations and other parameters should be tested. Muscular
parameters, such as the muscular volume of the deltoid and
cuff, could have an impact on shoulder function as well and
could be added to the regression model in the future. Our
regression model could also be applied to patients presenting
with simple tendinitis or partial tearing of the supraspinatus
and pathologies unrelated to the rotator cuff to find a cor-
relation between function and 3DXR parameters.
Conclusion
We were able to validate a semiautomated 3D recon-
struction technique that automatically computes 3D
morphologic parameters resulting from biplanar radio-
graphs (3DXR) of the shoulder bones. We were also able
to build a regression model that explains 43.3% of the
variability in the Constant score at diagnosis for patients
with RCTs. This study is a first attempt to enhance our
comprehension of shoulder function using both MRI and
3DXR parameters. Further research would allow our
comprehension to keep improving.
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