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KEY POINTS

� Injectable therapies are a treatment option for patients with unresectable, recurrent, or re-
fractory melanoma with cutaneous, subcutaneous, or nodal metastases.

� Advantages include ease of delivery to superficial disease sites, relatively limited systemic
side-effect profile, and the ability to promote conversion of cold, noninflamed tumors to
hot, immunologically engaged tumors.

� Injectable therapies include intralesional injection of oncolytic viruses, immune modula-
tors, such as toll-like receptor agonists and inflammatory cytokines, gene therapy, and
vaccines, among others.

� Talimogene laherparepvec, a modified oncolytic herpes virus, is the only Food and Drug
Administration– approved injectable treatment currently in wide clinical use in the United
States, with many more in development.

� In the future, injectable therapies will likely be most beneficial when used in conjunction
with systemic therapies, such as immune checkpoint blockade.
INTRODUCTION

Although early-stage, localized melanoma is curable with surgical resection, a signif-
icant proportion of patients go on to develop recurrence. Approximately 4% to 12%
of all patients develop recurrence in the form of in-transit (IT) disease, with involve-
ment of dermal or subdermal lymphatics between the primary tumor site and the
draining lymph nodes.1,2 Patients with recurrent or metastatic disease, including IT
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disease, have significantly decreased survival compared with those with localized
disease.1,3 Although patients with isolated locoregional disease may benefit from
metastasectomies when it is possible to resect for curative intent, many of these pa-
tients develop multiple IT lesions that are unresectable and require alternative ap-
proaches. Patients with regional IT disease are classified by the American Joint
Committee on Cancer (AJCC), 8th edition as having stage IIIB to IIID disease
depending on the absence, presence, and extent of concurrent regional nodal
involvement. Similar to IT locoregional disease, patients with stage IV M1a disease
have one or more subcutaneous or dermal metastasis beyond the regional lymph
node basin, and other patients with stage IV disease can also have concurrent sub-
cutaneous disease.4

These cutaneous and subcutaneous tumor deposits pose a unique challenge for
patients and providers, because they commonly become a source of discomfort,
bleeding, and infection, and can be prohibitively morbid or impractical to resect.
However, the superficial and accessible nature of these lesions provides the unique
opportunity for treatment with intralesional therapy using injectable therapies,
which are easy to deliver and generally have low-toxicity profiles. Intralesional ther-
apies are thought to ideally work via local antitumor effects as well as the induction
of tumor infiltrates and engagement of a systemic antitumor immune response.
They have shown promise in select patients, leading to localized responses in
the injected tumors and sometimes systemic or abscopal responses in distant
lesions.5,6

Patients with IT or dermal metastases are eligible not only for injectable therapy
but also for regional chemotherapy (limb only) and systemic therapy. Regional infu-
sion therapies, indicated in a subset of patients with unresectable disease limited to
an extremity, require general anesthesia and are limited by potentially severe limb
toxicities.7 Available systemic treatments now include multiple effective systemic
therapies, including immune checkpoint blockade (ICB) and targeted therapy with
BRAF/MEK inhibitors. Although these systemic therapies have shown remarkable
gains in patient outcomes in recent years, they are limited by significant toxicity
profiles and high costs of delivery as well as resistance to therapy and the devel-
opment of recurrence.8–10 Given the variety of treatment options currently available,
the treatment strategy for advanced melanoma should be personalized and
consider the number, location, and size of tumor deposits as well as the patient’s
condition and wishes. In addition, therapy should be multidisciplinary and is often
multifactorial, using local, regional, and systemic therapies as well as surgical
resection.
Numerous clinical trials are currently evaluating a variety of injectable therapies for

advanced melanoma, including immune modulators, gene therapies, peptide vac-
cines, and oncolytic viruses, and the number of ongoing clinical trials investigating
injectable therapies in melanoma has quickly surpassed the number of trials investi-
gating limb infusion for locally advanced melanoma (Table 1). Intralesional therapy
can be directly cytotoxic to tumors as well as promote tumor infiltration with immune
cells, which has emerged as an important component of developing an antitumor
response. Their role in the current landscape of treatment is evolving and includes
the potential for therapeutic strategies combining injectable and systemic therapies,
such as ICB, to convert and augment responses as well as use in the neoadjuvant
or adjuvant settings.11–14 This review covers the intralesional injectable therapies of
historical importance, talimogene laherparepvec (T-VEC), which is the only currently
Food and Drug Administration (FDA) - approved injectable therapy in wide clinical
use, and promising therapies in development.



Table 1.
Number of total, completed (terminated, completed, and withdrawn), and active (not yet
recruiting, recruiting, enrolling by invitation, and active, not recruiting) trials on clinicaltrials.
gov in cutaneous melanoma when including search terms of virus, vaccine, and regional
chemotherapy.

Search Term Status Number of Trials

Injectable/injection Total 90
Complete/active 55/32

Virus Total 44
Complete/active 23/19

Vaccine Total 144
Complete/active 113/44

Regional chemotherapy Total 25
Complete/active 19/4
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Historical Agents

Bacille Calmette-Guérin
Bacille Calmette-Guérin (BCG) is a live-attenuated strain of Mycobacterium bovis,
which has historically been used in the treatment of metastatic melanoma and other
malignancies.15,16 Intralesional injection of BCG produces a nonspecific inflammatory
response and showed promise with reports of treatment responses in both injected
and noninjected lesions, particularly cutaneous lesions (compared with subcutaneous
lesions) and improvement in survival.17 However, its use was associated with signifi-
cant and sometimes severe side-effect profile, including malaise, flulike symptoms,
hepatic dysfunction, and anaphylaxis.18,19 Despite initial reports of high response
rates, BCG failed to show a difference in disease-free or overall survival (OS) in stage
I to III melanoma in a phase 3 randomized controlled trial and is now rarely used
clinically.20

Interferon-a
Interferon-a (IFN-a) was used via systemic administration for patients with metastatic
melanoma or in the adjuvant setting for many years, but was associated with signifi-
cant toxicity and has now been largely replaced by newer therapies, such as ICB
and targeted therapies.21 It has also been used as an intralesional injection, although
the evidence supporting its use is minimal and it is no longer used clinically.22

Interleukin-2
Another therapy used historically is interleukin-2 (IL-2), an endogenous immunomod-
ulatory cytokine normally produced by activated T cells, which is important for T-cell
survival and proliferation as well as augmentation of natural killer cell cytotoxicity.23 IL-
2 was initially used as intravenous systemic therapy, which showed a modest 10% to
15% response but was limited by high rates of toxicities.24 Intralesional IL-2 was intro-
duced in the 1980s and is generally well tolerated with common grade 1 to 2 adverse
effects, including flulike symptoms and erythema but rare grade 3 to 4 toxicities, as
well as promising response rate.11,25 Although studies have not definitively shown
an associated improvement in OS or noninjected lesions, a few studies have shown
durable responses in a proportion of patients, with improvement in survival among
complete responders.11,26 More recent studies investigating IL-2 have explored re-
combinant forms of the cytokine as well as its use in conjunction with other systemic
or local therapies.13,27,28 One technique actively being investigated to improve the

http://clinicaltrials.gov
http://clinicaltrials.gov
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clinical benefit of intralesional IL-2 is through the combination of IL-2 with other cyto-
kines and antibody fragments to promote delivery to and retention in the tumor. Dar-
omun (L19-IL-2 1 L19-tumor necrosis factor [TNF]) is a combination of the cytokines
IL-2 and TNF each fused with the antibody fragment L19, which targets fibronectin
expressed selectively in tumors.13 Daromun has showed promise in a phase 2 trial,
and a phase 3 trial is ongoing that will evaluate the added benefit of Daromun as neo-
adjuvant therapy in patients with stage IIIB/C melanoma undergoing surgery
(NCT03567889). Outside of clinical trials, the use of IL-2 has decreased as more effec-
tive systemic therapies have been developed in recent years. In addition, its use re-
mains limited because of the frequency of injections required as well as significant
associated cost. However, like IFN and BCG, it remains an option for patients with
unresectable disease when T-VEC is not available.29

Current and Developing Treatment Options

Oncolytic viral therapy
Talimogene laherparepvec Another treatment strategy in advanced melanoma is
oncolytic viral therapy, or the use of viruses delivered directly to the tumor intralesion-
ally, leading to direct cytotoxicity of tumor cells and the creation of an inflammatory
response.30 Talimogene laherparepvec (T-VEC; IMLYGIC) is an FDA-approved genet-
ically modified type 1 herpes simplex viral immunotherapy developed to selectively
infect and replicate in tumor cells. T-VEC causes direct cytolysis of tumor cells, re-
cruits and activates immune cells, and drives production of granulocyte-
macrophage colony-stimulating factor (GM-CSF), which stimulates the differentiation
of progenitor cells into dendritic cells, maximizing the systemic immune response to
the tumor.31

T-VEC was initially evaluated in a phase 1 trial in the early 2000s, in which 30 pa-
tients with cutaneous or subcutaneous tumor deposits of breast, head and neck,
gastrointestinal, or refractory melanoma tumors received intratumoral injection of
the virus.32 The injections were generally well tolerated with the most common side
effects being local inflammation, erythema, and febrile responses.32 A subsequent
phase 2 trial evaluating T-VEC in 50 patients with stage IIIC to IV melanoma revealed
a 26% overall response rate (ORR) by RECIST (Response Evaluation Criteria in Solid
Tumors) criteria, which showed responses not only in injected lesions but also in non-
injected lesions, including visceral lesions.33 This study found that adverse effects
were limited primarily to transient flulike symptoms, which was consistent with the
phase 1 trial.33

The OPTiM study was a phase 3 multicenter trial that enrolled 436 patients at 64 in-
ternational sites with AJCC, 7th edition stage IIIB, IIIC, and IV unresectable melanoma
with at least 1 injectable lesion and without bone metastases, active cerebral metasta-
ses, or visceral metastases greater than 3 cm or greater than 3 in number between 2009
and 2011.Most patients in each arm had stage IV disease, and about 47%of all patients
had not yet had systemic therapy for melanoma. Patients were randomized in a 2:1 ratio
to receive repeat intralesional injection with T-VEC or subcutaneous recombinant GM-
CSF for a planned 6 months.34 At a median treatment duration of 23 weeks in the T-VEC
arm and 10 weeks in the GM-CSF arm, the study met its primary endpoint of durable
response rate (DRR), defined as the rate of complete response (CR) or partial response
lasting at least 6 months, noting a significantly higher DRR rate in the T-VEC arm of
16.3% versus the GM-CSF arm of 2.1% (P<.001). The ORR was also higher in the
T-VEC arm (26.4% vs 5.7%), consistent with the phase 2 trial findings.34 Median OS
was 23.3 months in the T-VEC arm and 18.9 months in the GM-CSF arm (P 5 .051).
The benefits of T-VEC were found to be more pronounced in patients with stage IIIB
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to IVM1a disease compared with those with later stage IV disease, with the improved
DRR more pronounced in patients with stage IIIB or IIIC disease (33% vs 0%) and
IVM1a disease (16% vs 2%) compared with patients with IVM1b (3% vs 4%). The re-
sults of the OPTiM trial ultimately led to FDA approval of T-VEC in 2015 as first-in-its-
class oncolytic viral therapy, approved for intralesional (cutaneous, subcutaneous,
and nodal lesions) treatment of unresectable stage III and stage IV melanoma.
In a recently published update, the OPTiM group presented an updated final anal-

ysis of the trial with a median follow-up of 49 months.35 This updated analysis reports
an improved DRR of 19.3%with T-VEC compared with 1.4%with GM-CSF, an ORR of
31.5% with T-VEC compared with 6.4% with GM-CSF.35 Overall, 16.9% of patients in
the T-VEC arm achieved a CR, with a median time to CR of 8.6 months, and achieving
a CR was associated with improvement in OS. However, at this time, T-VEC has not
been shown to improve survival when used as single therapy.34,35 Similar to the pri-
mary OPTiM analysis, achieving a CR was significantly associated with earlier-stage
metastatic disease (stage IIIB–IVM1a), as was DRR, ORR, and disease control rate.
The T-VEC arm had an 11.3% grade 3 or 4 adverse event rate, including cellulitis
(2.1%), fatigue, vomiting, dehydration, deep vein thrombosis, and tumor pain (each
1.7%). Although the most common adverse events seen with administration of
T-VEC include fatigue, chills, pyrexia, nausea, and influenza-like illness, it is generally
well tolerated and is currently in wide clinical use.
Oncolytic viruses, such as T-VEC, are thought to cause both specific and nonspe-

cific inflammatory responses, leading to increased tumor immune infiltrates and
creating an engaged immune microenvironment that may be better able to respond
to systemic immune therapies, such as ICB or BRAF/MEK inhibitors.30,36 Injectable
therapies therefore have the potential to convert tumors that are devoid of immune
cells (“cold” tumors) into tumors with immunologically engaged, T-cell–infiltrated mi-
croenvironments (“hot” tumors) that may be more responsive to systemic immune
therapies. To this end, several recent and ongoing clinical trials (NCT02965716,
NCT03972046) are investigating combinations of systemic therapies and T-VEC to
enhance responses to systemic therapy.36–39 In a phase 2 study of 198 patients
with stage IIIB to IV unresectable melanoma comparing ipilimumab alone with com-
bined ipilimumab with T-VEC, the combination therapy resulted in a significantly
higher objective response rate (39% vs 18%, odds ratio, 2.9; 95% confidence interval,
1.5–5.5, P 5 .002), with responses in injected and noninjected lesions, including
visceral lesions.37 Adverse events grade 3 or higher were noted in 45% of patients
in the combination group and 35% of the ipilimumab-alone group. Based on these re-
sults, this combination of intralesional T-VEC and ipilimumab is now considered a
treatment option for certain patients with progression of metastatic or unresectable
disease on first-line therapies by National Comprehensive Cancer Network
guidelines.29

Oncolytic viral therapies in development
Several other promising oncolytic viruses are currently being evaluated.40–43 The engi-
neered serotype 5 adenovirus ONCOS-102 has been well tolerated in a phase 1 study
and is currently being evaluated in clinical trials in combination with pembrolizumab for
unresectable melanoma (NCT03003676).42,44 Similar to T-VEC, ONCOS-102 has been
genetically modified to express GM-CSF to enhance antitumor immunity.42 Correla-
tive immune studies during the phase 1 trial in refractory solid tumors (although mel-
anoma was not included) found that intralesional treatment with the virus was
associated with an increase in systemic proinflammatory cytokines, as well as infiltra-
tion of immune cells, particularly CD81 T cells, into the tumors.44
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Another promising oncolytic virus is the genetically unaltered coxsackie virus A21
(CVA21, CAVATAK), which preferentially infects tumor cells and causes cell lysis
and an enhanced antitumor response.45 In the phase 2 CALM trial, 57 patients with
stage IIIC to IVM1c melanoma received injections of CVA21 on days 1, 3, 5, 8, and
22, and then every 3 weeks for 6 additional injections. Results showed an ORR of
28.1% with a median time to response of 2.8 months, and the study met its primary
endpoint of immune-related progression-free survival of 38.6% at 6 months.45 There
were no grade 3 or 4 events, and the most common grade 1 events were fatigue, chills,
local injection site reactions, and fever. Ongoing trials are currently investigating
CVA21 combinations with pembrolizumab as well as ipilimumab (NCT02565992,
NCT02307149). In preliminary data from the initial 23 patients enrolled in the phase
1b MITCI trial combining CVA21 with ipilimumab, there were no dose-limiting toxic-
ities, and the ORR in evaluable patients was 50%.46

PVSRIPO is a live-attenuated, recombinant poliovirus type 1 (Sabin) that contains
the internal ribosome entry site of human rhinovirus type 2, thus eliminating neurovir-
ulence of the virus.41 It exhibits tropism for multiple tumor types, including melanoma
owing to upregulation of the poliovirus receptor (CD155) on tumor cells, and has
shown promise in preclinical models by eliciting an IFN-dominant immune response
in the tumor microenvironment, leading to dendritic and T-cell infiltration.41,47 Intratu-
moral injection of PVSRIPO has shown promising results in glioblastoma multiforme
trials, and a phase 1 trial in refractory melanoma is currently ongoing
(NCT03712358).48 Other ongoing clinical trials include evaluation of a vesicular stoma-
titis virus modified to contain human IFN-b and TYRP1, an antigen expressed in me-
lanocytes (NCT03865212), and HF10 and RP1, both genetically modified herpes
viruses (NCT03259425, NCT03767348).

Melanoma vaccines
Melanoma vaccines aim to overcome tumor immune evasion mechanisms and
stimulate an antitumor immune response via delivery of a target antigen or antigens
and an adjuvant designed to enhanced immune responses to the vaccine.49 Vac-
cines in development have been used as monotherapy or in conjunction with other
immunotherapies, such as ICB, to provide synergistic immune activation and
improved antitumor efficacy, with the goal of producing a durable, targeted immu-
nologic memory against the tumor to prevent metastasis or recurrence. Melanoma
vaccines differ based on the adjuvant provided as well as the type and number of
antigens involved, which can be whole cells, including tumor or dendritic cells, tu-
mor lysates, peptides or peptide fragments, RNA, or DNA. Many previously
explored vaccine antigens are commonly shared across many melanomas, such
as the tumor-associated antigens MAGE-1, MAGE-3, MART-1, glycoprotein 100
(gp100), and tyrosinase.49 A vaccine incorporating a modified gp100 peptide
designed to increase affinity to HLA-A2 has been extensively studied and was eval-
uated in a phase 3 trial in combination with high-dose IL-2 versus IL-2 alone and
showed an improvement in overall clinical response in the vaccine group (16%
vs 6%, P 5 .03) as well as a trend toward longer OS (17.8 vs 11.1 months,
P 5 .06).50 However, a subsequent trial combining the vaccine with ipilimumab
failed to show that adding the vaccine potentiated the clinical benefits of ipilimu-
mab alone.51 Another melanoma vaccine is 6-melanoma helper peptide (6-MHP),
which combines multiple melanoma peptides derived from cancer-testis antigens
and melanocytic differentiation proteins.52,53 Delivery of the vaccine leads to
T-cell and antibody responses in patients with stage III and IV melanoma, which
when present were associated with improved survival.53 Ongoing trials are
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currently evaluating 6-MHP and other peptide vaccines (NCT03617328,
NCT02382549, NCT02515227, NCT02126579).
Recent advances in tumor sequencing technologies have led to significant break-

throughs in the development of neoantigen vaccines designed to target personal
tumor-specific mutations.54,55 Two recent landmark studies developed neoantigen
vaccines based on algorithms to select personalized immunopeptides predicted to
generate immunologic responses from individual melanoma genome mutations.54,55

Both were able to show that these personalized neoantigen vaccines were able to
create robust immune responses to the neoantigens and showed encouraging clinical
results in small cohorts of patients. Numerous trials are now ongoing to evaluate these
vaccines. Although promising, disadvantages to this approach are the high costs
associated, labor-intensive development, and the lag time required to synthesize
these vaccines.

Rose bengal
Rose bengal (PV-10) is a 10% solution of rose bengal disodium dye, a fluorescein de-
rivative that has been studied extensively and accumulates in lysosomes of tumor
cells, leading to autolysis.56 A phase 1 trial and subsequent phase 2 trial have shown
that intralesional injection of PV-10 is well tolerated and can lead to treatment re-
sponses in more than 50% of injected lesions as well as a bystander effect with
response in noninjected lesions and significant delays in disease progression.56,57

An international, multicenter phase 2 trial is currently ongoing to evaluate the combi-
nation of PV-10 with pembrolizumab (NCT02557321).
Proinflammatory Cytokines

Similar to IL-2 and IFN, which are FDA approved for use in melanoma but rarely used in
current clinical practice due to the advent of more effective treatments as well as sig-
nificant side effects when delivered systemically, other inflammatory cytokines have
been explored for their ability to stimulate an inflammatory tumor microenvironment.
IL-12 is a proinflammatory cytokine produced by dendritic cells, macrophages, and
neutrophils that has a variety of proinflammatory immunologic functions, including
promotion of a T-helper cell 1 response.58 Early studies evaluating intratumoral injec-
tion of IL-12 plasmid DNA in melanoma showed that the local treatment was well toler-
ated and leads to reduction of size in a proportion of injected lesions, but did not have
an effect on nontreated lesions.59 Electroporation is being evaluated as a way to
improve clinical benefit of IL-12, by permeabilizing cell membranes and increasing
transfection of IL-12 DNA plasmids to increase localized IL-12 expression
(NCT03132675).58

Toll-like receptor agonists
Finally, another encouraging opportunity in injectable therapies for melanoma is the
administration of toll-like receptor (TLR) agonists, either as vaccine adjuvants or by
direct intratumoral injection. TLR agonists stimulate the innate immune system,
leading to production of local cytokines and a proinflammatory response that
may lead to more effective antitumor responses. SD-101 and CMP-001 are both
TLR9 agonists being investigated in melanoma.60,61 SD-101, a synthetic CpG oligo-
nucleotide, is currently being evaluated in a phase 1b/2 multicenter trial in combi-
nation with pembrolizumab for patients with unresectable or metastatic melanoma
(NCT02521870). In the first phase of the dose escalation, trial injections were
generally well tolerated and led to a 78% ORR in patients naı̈ve to anti-PD-1 ther-
apy and a 15% ORR in patients that had prior anti-PD-1 therapy, with responses
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seen in noninjected, distant lesions.60 Immune expression profiling showed an in-
crease in tumor infiltrates with CD41 and CD81 T cells, supporting the conversion
of a cold to hot tumor microenvironment. Similarly, CMP-001, a CpG-A oligodeox-
ynucleotide encapsulated in a viruslike particle, is another TLR9 agonist that
showed early promise in an interim analysis of a phase 1b study combining
CMP-001 with pembrolizumab in 68 patients with advanced melanoma resistant
to anti-PD-1 therapy.61 Ongoing trials will further evaluate the safety and efficacy
of TLR agonists (NCT02521870, NCT03084640, NCT03618641, NCT02680184,
NCT02668770, NCT03445533).
SUMMARY

Injectable therapies for melanoma are attractive because of the ease of intralesional
delivery to cutaneous, subcutaneous, and nodal metastases, limited systemic toxicity
profiles, and importantly, the ability to convert cold, noninflamed tumors into hot,
inflamed tumors that may have better responses to systemic therapies.62 As lack of
T-cell infiltration into the tumor microenvironment can be both a barrier to and a pre-
dictor of response to ICB, there is significant interest in overcoming this immune
evasion mechanism and modulating the tumor microenvironment.63 Intralesional in-
jection with oncolytic viruses such as T-VEC, immune modulators such as TLR ago-
nists or inflammatory cytokines as well as numerous other substances under
investigation can promote an inflammatory response in the tumor microenvironment.
Although multiple injectable treatments have been shown to have the ability to cause
local antitumor effects, such as direct cytotoxicity, local immune cell infiltration, and
clinical responses in injected lesions, the most promising intralesional therapies also
lead to a systemic antitumor immune response, causing responses in distant as
well as injected lesions, particularly when combined with systemic therapy. Indeed,
most ongoing trials evaluating intralesional therapies are in combination with ICB
and targeted therapies.
In the current landscape of melanoma treatment, in which better responses to novel

treatments are being seen more than ever before, injectable therapies can be consid-
ered part of a multifaceted approach to patients with IT melanoma as well as unresect-
able locally advanced and metastatic melanoma. The only FDA-approved injectable
therapy in wide clinical use currently is T-VEC, although there are many others being
evaluated in the clinical trial setting. Although injectable therapies as monotherapy
have not yet been shown to lead to an improvement in melanoma-specific or overall
survival, they can be beneficial in subsets of patients.26,35,64

In patients with rapidly progressive disease, the use of locoregional therapies, such
as intralesional therapy or regional chemotherapy, must be weighed with the risk of the
development of distant metastases, and systemic therapies are often the preferred
first-line therapy. However, intralesional therapies may be used in patients with recur-
rent disease, those who have failed systemic therapy, or those who are not candidates
for systemic therapy. Special consideration for injectable therapies may be given to
patients who are frail or have multiple comorbidities and may not be able to tolerate
systemic therapies and their requisite side effects, as well as in a palliative setting
to improve quality of life, or for patients not interested in systemic therapies or morbid
surgical resection. Future use of injectable therapies will likely be in conjunction with
other systemic therapies or in sequence with surgical therapy to downstage tumors or
prevent recurrence. Ongoing trials investigating novel intralesional therapies as well as
the synergistic benefits of combination therapies will better guide which patients will
benefit most from intralesional therapies in the future.
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