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Novel Toll-Like Receptor 9 Agonist Derived from 
Cryptococcus neoformans Attenuates Allergic 
Inflammation Leading to Asthma Onset in Mice
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Abstract
Introduction: The enhanced type 2 helper (Th2) immune re-
sponse is responsible for the pathogenesis of allergic asth-
ma. To suppress the enhanced Th2 immune response, acti-
vation of the Th1 immune response has been an alternative 
strategy for anti-asthma therapy. In this context, effective 
Th1-inducing adjuvants that inhibit the development of al-
lergic asthma but do not flare the side effects of the primary 
agent are required in clinical treatment and preventive med-
icine. Objective: In this study, we aimed to determine the 
regulation of the Th2 type immune response in asthma by a 

novel immunostimulatory oligodeoxynucleotide (ODN) de-
rived from Cryptococcus neoformans, termed ODN112, which 
contains a cytosine-guanine (CG) sequence but not canoni-
cal CpG motifs. Methods: Using an ovalbumin-induced asth-
ma mouse model, we assessed the effect of ODN112 on pro-
totypical asthma-related features in the lung and on the Th1/
Th2 profile in the lymph nodes and lung of mice treated with 
ODN112 during sensitization. Results and Conclusion: 
ODN112 treatment attenuated asthma features in mice. In 
the bronchial lymph nodes of the lungs and in the spleen, 
ODN112 increased interferon-γ production and attenuated 
Th2 recall responses. In dendritic cells (DCs) after allergen 
sensitization, ODN112 enhanced cluster of differentiation 
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(CD) 40 and CD80 expression but did not alter CD86 expres-
sion. Interleukin-12p40 production from DCs was also in-
creased in a Th2-polarizing condition. Our results suggest 
that ODN112 is a potential Th1-inducing adjuvant during 
Th2 cell differentiation in the sensitization phase.

© 2020 The Author(s)
Published by S. Karger AG, Basel

Introduction

Recent developments in clustering analysis report that 
the major clinical phenotype of asthma that is associated 
with eosinophilia presents as the type 2 (Th2/T2)-high 
inflammatory “allergic asthma” endotype [1]. The en-
hanced type 2 helper (Th2) immune response is mediated 
by antigen-specific Th cells and type 2 innate lymphoid 
cells that produce Th2 cytokines, such as interleukin (IL)-
4, IL-5, and IL-13 [1]. Thus, Th2 cytokines play a critical 
role in the induction of type 2 inflammation in allergic 
asthma such as eosinophilia, allergen-specific IgE pro-
duction, and IgE-mediated mast cell and basophil de-
granulation [1].

The conceptual balancing of Th1/Th2 as a therapeutic 
strategy for the clinical remission of allergic asthma led to 
the use of Th1-inducing adjuvants in realistic anti-asth-
ma therapy [2]. Administration of live or heat-killed bac-
teria, such as Mycobacterium bovis [3], Francisella tula­
rensis [4], or Listeria monocytogenes [5], suppresses the 
allergic Th2 responses through the induction of interfer-
on (IFN)-γ-mediated Th1-like immune response. Patho-
gen-associated molecular patterns derived from mi-
crobes, such as cell wall components and purified pro-
teins of mycobacteria [6], high levels of endotoxins [7], or 
immunostimulatory (ISS) oligodeoxynucleotide (ODN) 
[8], interact with pattern recognition receptors of im-
mune cells, leading to a robust in vivo Th1 response.

Toll-like receptor (TLR) 9, a member of the TLR fam-
ily, is expressed inside immune cells such as B cells and 
dendritic cells (DCs) of humans and mice and recognizes 
the unmethylated CpG DNA of bacteria and viruses [9]. 
TLR9 agonists have enormous potential as Th1-inducing 
adjuvants in protection against allergic disease [10]. TLR9 
activation by specific ISS-DNA sequences rich in non-
methylated CpG motifs such as 5′-purine-purine-cyto-
sine-guanine-pyrimidine-pyrimidine-3′ (CpG-ODN) in-
duces a strong Th1 immune response with IFN-γ induc-
tion [11]. The immunologic activities of CpG-ODN are 
dependent on the content of their palindromic hexamer 
[8]. Of the 3 major classes of CpG-ODN, the B-class CpG-
ODN strongly induces DC maturation [12] and attenu-

ates Th2 immune response through IL-12 induction, fol-
lowed by IFN-γ production [13]. In some clinical trials, 
the B-class CpG-ODN attenuates Th2 immune response 
by balancing Th1/Th2 in allergy [14]. However, concerns 
exist about the undesirable side effects of repeated admin-
istrations of CpG-ODNs with a phosphorothioate back-
bone [15]. Heikenwalder et al. [15] reported that daily 
injection of CpG-ODN suppressed follicular DCs and 
germinal center B lymphocytes in lymphoid follicles and 
reduced primary humoral immune responses and immu-
noglobulin class switching. Therefore, there is a need to 
explore more practical Th1-inducing adjuvants that can 
inhibit the development of allergic asthma, without in-
ducing side effects.

Cryptococcus neoformans is an opportunistic fungal 
pathogen, frequently associated with fatal meningoen-
cephalitis in immunocompromised patients such as those 
with acquired immunodeficiency syndrome and organ 
transplantation [16]. The outcome of C. neoformans in-
fection is dependent on the balance between Th1 and Th2 
immune responses in vivo. A predominance of Th1 over 
Th2 type immune response leads to protection against C. 
neoformans infection [17], while Th2 immune predomi-
nance such as eosinophilia or elevated serum IgE in-
creased susceptibility to cryptococcosis [18, 19]. Excess 
polarization of Th1 or Th2 might be associated with un-
desired effects in patients. In this context, adjuvants that 
have controllable and optimized effects on the Th1/Th2 
balance for asthma prevention are required. Namely, 
ODNs having certain Th1-inducing activity as well as an 
unmodified backbone in order to not to leave it in vivo 
more than necessary could be a viable candidate.

In host defense against C. neoformans, the role of TLR9 
in detecting the pathogenic DNA plays an important role 
in fungal clearance from the lungs through IL-12p40 in-
duction [20]. A previous study by our group demonstrat-
ed that the presence of a certain CpG-independent mech-
anism is involved in TLR9-mediated immune activation 
by C. neoformans DNA [20]. We also demonstrated that 
a 24-base ODN fragment (termed ODN112) with an un-
modified backbone of the URA5 gene that encodes a vir-
ulent component of C. neoformans induces a robust IL-
12p40 synthesis by DCs in a TLR9-dependent manner 
[21]. This evidence increases the possibility that a novel 
TLR9 agonist derived from C. neoformans, ODN112, 
could be a candidate Th1-inducing immune adjuvant for 
inhibiting Th2 in allergic asthma. In this study, we ex-
plore the potent inhibitory effect of ODN112 on allergic 
airway inflammation using the ovalbumin (OVA)-in-
duced asthma mouse model.
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Materials and Methods

Mice
Female C57BL/6 mice (CLEA Japan, Inc., Osaka, Japan) were 

maintained in specific pathogen-free conditions at the Institute for 
Animal Experimentation, Tohoku Medical and Pharmaceutical 
University (Sendai, Japan).

Oligonucleotides
ODN112, a 24-base ODN fragment of the URA5 gene from C. 

neoformans, designated Cap67 (a kind gift from Stuart M. Levitz, 
Boston University, Boston, MA, USA), and a prototypic phospho-
rothioated CpG1826 ODN (CpG-ODN), as shown in Table 1, were 
synthesized and purified by high-performance liquid chromatog-
raphy at Hokkaido System Science (Sapporo, Japan). A modified 
ODN112 derivative, in which CG was replaced by GC within 
5′-GTCGGT-3′, termed ODN112GC, was also synthesized at 
Hokkaido System Science (Table 1). In the present study, CpG-
ODN was used as a positive control for the treatment. In addition, 
ODN112GC was used as a negative control for the treatment with 
ODN112. We evaluated the effects of ODN treatment, compared 
to vehicle treatment.

Sensitization and Antigen Challenge
Six-week-old mice were sensitized with intraperitoneal injec-

tions of 8 μg OVA (Grade V; Sigma-Aldrich, St Louis, MO, USA) 
and oligonucleotides adsorbed with 4 mg aluminum hydroxide 
(Wako Pure Chemical Industries, Ltd., Osaka, Japan) in 500 μL 
saline on days 0 and 5. On day 26, the mice were challenged with 
aerosolized OVA (0.5% in saline) for 1 h on 2 occasions, 4 h apart 
[22]. The experimental design of the study, including the time 
points of sensitization, inhalation, and sampling, is indicated in 
Figure 1.

Measurement of Airway Hyperresponsiveness
Lung resistance was measured for 3 min under each condition 

by the Resistance and Compliance System (Finepoint; Buxco Elec-
tronics, Sharon, CT, USA) [23]. The conditions analyzed were 
baseline response to aerosolized saline and increasing doses (1.25, 
2.5, 5, 10, and 20 mg/mL) of acetyl-β-methylcholine (methacho-
line; Sigma-Aldrich).

Measurement of OVA-Specific Antibodies
Serum levels of OVA-specific IgE and IgG1 antibodies were 

measured by ELISA [24]. In brief, microtiter plates (Nunc A/S 
Roskilde; Thermo Fisher Scientific, Denmark) were coated with 10 
μg/mL OVA in 0.05 M bicarbonate buffer (pH 9.6) and incubated 
overnight at 4°C. After blocking with PBS containing 1% bovine 
serum albumin, serum samples diluted with 1% bovine serum al-
bumin PBS were added to the well. Pooled serum of sensitized 
C57BL/6 female mice was used as a reference. Horseradish perox-
idase-conjugated goat anti-mouse IgE (Bethyl Laboratories, Ow-
ing Mills, MD, USA) and IgG1 antibodies (Southern Biotechnol-
ogy Associates, Birmingham, AL, USA) diluted to 1:2,500 were 
used as detection antibodies. The concentrations of IgE and IgG1 
were determined based on the absorbance at 450 nm.

Preparation of the BAL Fluids
Bronchoalveolar lavage (BAL) fluids were prepared as previ-

ously described [25]. Briefly, BAL samples collected on day 5 after 

Table 1. Sequences of synthesized ODNs

ODN (length [bases]) Sequence (5′–3′)

ODN112 (24) CTATGGTCGGTGCGCCTCTCAAGG
ODN112GC (24) CTATGGTGCGTGCGCCTCTCAAGG
sCpG-ODN (20) TCCATGACGTTCCTGACGTT

ODN, oligonucleotides; sCpG, CpG phosphorothioate-
ODN1826.

i.p. injection

Group 1; OVA/Alum and PBS
Group 2; OVA/Alum and ODN112
Group 3; OVA/Alum and ODN112GC
Group 4; OVA/Alum and sCpG-ODN

Assay for:
Ig levels in sera
Eosinophil counts in BAL fluid
Lung histology

Inhalation
OVA

Assay for:
Lung resistance
Cytokine levels in the lung and BLN

Assay for cytokine production from splenocytes

0 5 26 31 Day276 17

Assay for peritoneal DC phenotype

Fig. 1. Schematic figure illustrating the ex-
perimental design of the study. Mice were 
sensitized with intraperitoneal injections of 
OVA and ODNs adsorbed with aluminum 
hydroxide on days 0 and 5. On day 26, the 
mice were challenged with aerosolized OVA 
for 1 h on 2 occasions, 4 h apart. The pheno-
type of the DCs in the peritoneal cavity and 
the cytokine production from splenocytes 
were evaluated on days 6 and 17, respective-
ly. After the OVA inhalation, lung resis-
tance and cytokine levels in the lung and 
BLN were evaluated on day 27. On day 31, 
asthma-related features such as Ig levels in 
sera, eosinophil counts in BAL fluids, and 
lung histology in mice treated with PBS or 
ODNs were evaluated. ▲, time points of 
sensitization or inhalation;  OVA, ovalbu-
min; ODN, oligodeoxynucleotide; DC, den-
dritic cell; BAL, bronchoalveolar lavage; 
BLN, bronchial lymph node.
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OVA inhalation (with 2 × 0.25 mL chilled PBS through a cannula 
inserted in the trachea) were centrifuged at 450 g for 10 min at 4°C. 
Cells (2 × 105) were stained with Diff-Quik solution (Sysmex Co., 
Kobe, Japan), and cell differential percentage was determined by 
counting a minimum of 200 cells by light microscopy.

Lung Histology
Lungs were isolated from mice at the indicated time points after 

OVA challenge, fixed in 10% buffered formalin, dehydrated, and 
embedded in paraffin. Sections were cut at a thickness of 4 μm and 
then stained with hematoxylin and eosin, periodic acid-Schiff 
(PAS), or Masson’s trichrome staining. Eosinophil counts were es-
timated as the number of eosinophils per square millimeter, close-
ly surrounding the bronchus. Mucin production was estimated as 
the proportion of PAS-positive cells in the total airway epithelium 
of bronchioles by PAS staining. The proportions of collagen fibers 
in peribronchial regions were evaluated by Masson’s trichrome 
staining. The number of eosinophils and PAS-positive cells were 
calculated in each of the 5 random bronchioles in 3 lung sections 
from each mouse [26].

Preparation of the Lung Homogenate
For RT-PCR, the entire lungs were excised from sensitized mice 

1 day after OVA challenge and homogenized in buffer RLT (QIA-
GEN, Valencia, CA, USA) supplemented with 1% 2-mercaptoetha-
nol. For cytokine assay, the entire lungs were excised 1 day after OVA 
inhalation and homogenized in chilled 0.1% Triton-X PBS with 1% 
protease inhibitor (Sigma-Aldrich). After centrifugation at 15,000 g 
for 15 min at 4°C, the supernatants were stored at −80°C [25].

RT-PCR Analysis
Total RNA was extracted from entire lung homogenates using 

a ReliaPrep RNA Cell Miniprep system (Promega Corporation, 
Madison, WI, USA) or RNeasy Mini Kit (QIAGEN, Valencia, CA, 
USA). First-strand cDNA was synthesized using the PrimeScript 
RT Reagent Kit with gDNA Eraser (TaKaRa Bio Inc., Otsu, Japan). 
Real-time RT-PCR was performed using gene-specific primers 
and Power SYBR Green PCR Master Mix (Applied Biosystems, 
Foster City, CA, USA) and a StepOnePlus Real-Time PCR System 
(Applied Biosystems) [25]. The primer sequences used for ampli-
fication are shown in online suppl. Table 1; for all online suppl. 
material, see www.karger.com/doi/10.1159/000508535. The ex-
pression levels of target genes and hypoxanthine-guanine phos-
phoribosyltransferase (Hprt) as a reference gene were calculated 
for each sample using the reaction efficiency, as determined by 
performing amplifications using standards.

Measurement of Cytokine Concentration
Levels of IL-4, IL-5, IL-13, and IFN-γ were assayed using ELISA 

Kits (eBioscience, San Diego, CA, USA). The detection limits were 
4 pg/mL for IL-4, IL-5, and IL-13; and 15 pg/mL for IFN-γ. Total 
protein levels of the lung homogenates were assayed using a deter-
gent-compatible protein assay kit (Bio-Rad Laboratory, Hercules, 
CA, USA). The cytokine and chemokine concentrations in the 
lung were adjusted for the protein level of each lung [25].

Preparation of Lung WBCs
Mice were sacrificed 1 day after OVA challenge. Pulmonary 

leukocytes were prepared as previously described [27]. Briefly, the 
lung vascular bed was flushed with 5 mL chilled saline that was 

injected into the right ventricle. The entire lungs were teased 
through a 40-µm cell strainer (BD Falcon, Bedford, MA, USA) and 
incubated in RPMI 1640 medium (Nakarai Tesque, Kyoto, Japan) 
with 10% fetal calf serum (FCS; Thermo Fisher Scientific, Waltham, 
MA, USA), 100 U/mL penicillin G, 100 μg/mL streptomycin, 10 
mM HEPES, and 2 mM L-glutamine, containing 20 U/mL collage-
nase D and 1 μg/mL DNase I (Roche Diagnostics GmbH, Mann- 
heim, Germany). After incubation for 60 min at 37°C with vigor-
ous shaking, cells were resuspended in 4 mL of 40% (v/v) Percoll 
(Pharmacia, Uppsala, Sweden) and layered onto 4 mL of 80% (v/v) 
Percoll. After centrifugation at 600 g for 20 min at 15°C, cells at the 
interface were collected.

Preparation of Peritoneal Exudate Cells
One day after sensitization, peritoneal exudate cells were col-

lected by washing the peritoneal cavity with 10 mL of cold 10% FCS 
RPMI medium, as previously described [28].

Flow Cytometric Analysis
Lung WBCs were diluted to a density of 2 × 105/100 μL and 

cultured with 5 ng/mL of phorbol 12-myristate 13-acetate (Sigma-
Aldrich), 500 ng/mL of ionomycin (Calbiochem, San Diego, CA, 
USA), and 2 μM of monensin (Sigma-Aldrich) for 4 h at 37°C be-
fore the cell surface was stained. Then, cells were pre-incubated 
with anti-FcγRII and III mAb (Clone 93; BioLegend, San Diego, 
CA, USA) on ice for 15 min in PBS containing 1% FCS and 0.1% 
sodium azide and stained with allophycocyanin (APC)/Cy7 or 
peridinin-chlorophyll protein complex-conjugated anti-cluster of 
differentiation (CD) 3 (Clone 17A2; BioLegend), phycoerythrin 
(PE) or fluorescein isothiocyanate-conjugated anti-CD4 (Clone 
GK1.5; BD Biosciences, San Jose, CA, USA), peridinin-chlorophyll 
protein complex -conjugated anti-CD8α (Clone 53-6.7; BioLeg-
end), and APC-conjugated anti-CD25 (Clone 3C7; BioLegend). 
Cells were then incubated in the presence of Cytofix/Cytoperm 
(BD Biosciences Pharmingen), washed twice in BD perm/wash so-
lution, and stained with PE-conjugated anti-IL-4 (Clone 11B11; 
BioLegend) or Foxp3 (Clone FJK-16s; Thermo Fisher Scientific). 
Cells in peritoneal lavage fluid were pre-incubated with anti-
FcγRII/ III mAb (BioLegend) and stained with APC-conjugated 
anti-CD11c (Clone N418; BioLegend), PE-conjugated anti-I-A/I-E 
(Clone M5/114.15.2; BioLegend), PE/Cy7-conjugated anti-CD40 
(Clone 3/23; BioLegend), fluorescein isothiocyanate-conjugated 
anti-CD80 (Clone 16-10A1; BioLegend), and APC/Cy7-conjugat-
ed anti-CD86 (Clone GL-1; BioLegend). Dead cells were excluded 
by 7-AAD staining (BioLegend) and viable cells were gated. The 
positive populations were defined based on isotype-matched con-
trol IgG for each antibody. Peritoneal DCs were gated as CD11chigh 
I-A/I-Ehigh cells. The stained cells were analyzed using a BD FACS
Aria II cell sorter (BD Biosciences) or BD FACSCant II flow cy-
tometer (BD Biosciences).

Cell Preparation and Stimulation
Bronchial lymph nodes (BLNs) were obtained from mice 1 day 

after OVA challenge, as previously described [29]. To evaluate T-
cell responses induced by sensitization, spleens were excised from 
sensitized mice before OVA inhalation. BLNs and spleens were 
teased apart between 2 ground glass slides and washed. BLN cells 
(4 × 105 cells/well) were cultured in the presence of 10 μg/mL OVA 
for 3 days. Spleen cells (4 × 105 cells/well) were cultured in the pres-
ence of 100 μg/mL OVA for 2 days.
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Preparation and Culture of DCs
Bone marrow-derived DCs (BM-DCs) were prepared as de-

scribed previously [20]. In brief, bone marrow cells from WT 
mice were cultured at a density of 2 × 105 cells/mL in 10 mL 
RPMI 1640 medium supplemented with 10% FCS, 100 U/mL 
penicillin G, 100 μg/mL streptomycin, 2 mM L-glutamine, and 50 
μM 2-mercaptoethanol, containing 20 ng/mL murine granulo-
cyte-macrophage colony-stimulating factor (Wako Pure Chem-
ical Industries). On day 8, the non-adherent cells were harvested 
and used as BM-DCs. The BM-DCs were stimulated at 1 × 105 
cells/mL for 24 h at 37°C in 5% CO2 with oligonucleotides in the 
presence of maturation factors such as IL-1β (10 ng/mL; Pepro-
Tech Inc., Rocky Hill, NJ, USA), tumor necrosis factor-α (50 ng/
mL; PeproTech Inc.), and prostaglandin E2 (10−6 M; Sigma-Al-
drich) for the induction of Th2-oriented immune responses in 
DCs [30]. LPS prepared from Escherichia coli O-111 (Sigma-Al-
drich) was used as a control for the stimulation of BM-DCs, and 
polymyxin B (Sigma-Aldrich) was used to neutralize the effects 
of LPS.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 5 

software (GraphPad Software, La Jolla, CA, USA). Differences 
between 2 groups were tested using a 2-tailed analysis and an 
unpaired Student’s t test. Differences among 3 groups or more 
were tested using ANOVA with a post hoc analysis (Tukey’s 
multiple comparison test). A p value of <0.05 was considered 
significant.

Results

ODN112 Attenuates Prototypical Asthma-Related 
Features
Airway hyperresponsiveness (AHR) was estimated by 

maximum values of RL in response to inhaled methacho-
line or vehicle and the change from baseline values of RL. 
While the lung resistance in response to vehicle was not 
significantly different among the groups, the lung resis-
tance in response to inhaled methacholine 1 day after OVA 
inhalation was attenuated by the treatment with ODN112 
and CpG-ODN, whereas ODN112GC did not alter the in-
creased lung resistance (Fig. 2). ODN112 did not signifi-
cantly alter the expression of M1 and M3 muscarinic ace-
tylcholine receptors and β2-adrenergic receptors, which 
are directly related to airway contraction and relaxation in 
the lung (online suppl. Fig. 1). We next evaluated the effect 
of ODN treatment on IL-4-directed Ig class switching. The 
treatment with ODN112 and CpG-ODN significantly re-
duced allergen-specific IgE (Fig. 3a) and IgG1 (Fig. 3b) lev-
els in sera compared to those in vehicle-treated mice; how-
ever, ODN112GC did not significantly change the sera lev-
els post OVA inhalation (Fig. 3).

We investigated the effect of ODN112 treatment on 
eosinophilic inflammation following allergen challenge 
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sponse to inhaled methacholine or vehicle (left), and the change 
from baseline values of RL in response to methacholine (right) in 
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by comparing the number of inflammatory cells in BAL 
fluid of mice 5 days after OVA challenge. The number of 
eosinophils in BAL fluid was significantly lower in mice 
treated with 10 μg ODN112, 100 μg ODN112, and CpG-
ODN, but not with ODN112GC, than that in mice treat-
ed with vehicle. The number of total cells, mononuclear 
cells, neutrophils, and lymphocytes did not change sig-
nificantly among each treated group (Fig. 4a, b). In ac-
cordance with this observation, eosinophil infiltration in 
the peribronchial area was reduced in mice treated with 
ODN112 and CpG-ODN, but not with ODN112GC, 
compared to mice treated with vehicle (Fig. 4c). Although 
the eosinophil number in the BAL fluid of 100 μg 
ODN112-treated mice was lower than that in mice treat-
ed with 10 μg ODN112 (Fig. 4b), RBCs were observed in 
the BAL fluid of mice treated with 100 μg ODN112 (data 
not shown).

ODN112 Attenuates MUC5AC mRNA Production but 
Not Goblet Cell Hyperplasia in Asthma
We next evaluated goblet cell hyperplasia in airway ep-

ithelial cells in mice at various time intervals after OVA 
inhalation. The goblet cell number slightly increased on 
day 1 and significantly increased on days 3 and 5 (Fig. 5a). 
We measured the number of goblet cells in the airway 
epithelium on day 5 post OVA inhalation to assess mucus 
production by ODN112 treatment during the sensitiza-
tion phase. Treatment with CpG-ODN significantly re-
duced mucus production in asthmatic mice (Fig. 5b). A 
similar tendency was observed in mice treated with 
ODN112, but not ODN112GC, although the difference 
between vehicle- and ODN112-treated mice did not reach 
significance at the time points examined (Fig. 5b).

MUC5AC mRNA expression in the lung 1 day after 
OVA inhalation was significantly reduced in mice treated 
with ODN112 and CpG-ODN, but not ODN112GC 
(Fig. 5c). MUC5B and MUC2 expression in the lung was 
not statistically different between vehicle- and ODN112-
treated mice, or vehicle- and ODN112GC-treated mice 
after allergen inhalation (Fig. 5c). CpG-ODN significant-
ly enhanced MUC5B mRNA expression but did not alter 
MUC2 expression in the lung after allergen inhalation 
(Fig. 5c). Thus, altered MUC5AC and MUC5B levels in 
mice treated with ODNs may reflect the histological gob-
let cell hyperplasia in the airway epithelium. On the other 
hand, the volume proportions of collagen fibers in the 
airway walls of mice treated with ODN112, ODN112GC, 
or CpG-ODN were not largely different when compared 
with the control group (Fig. 5d).

ODN112 Suppresses Th2 Cytokine Production and 
Enhances IFN-γ Production in Lungs and BLN
We further compared Th1 and Th2 cytokine levels in 

the lung among ODN-treated mice. ODN112 and CpG-
ODN significantly reduced IL-4, IL-5, and IL-13 produc-
tion in the lung compared with that in vehicle-treated 
mice, whereas the treatment with ODN112GC did not 
(Fig. 6a). In contrast, treatment with ODN112 and CpG-
ODN, but not ODN112GC, enhanced IFN-γ production 
in the lung (Fig. 6a). Although the total number of CD4+ 
T cells significantly increased in the lung of mice treated 
with ODN112 and CpG-ODN (Fig. 6b), the number of IL-
4+ CD4+ and IL-4+ CD8+ T cells was significantly reduced 
with ODN112 and CpG-ODN 1 day after OVA inhalation 
(Fig. 6c). In contrast, the number of regulatory T cells, de-
fined as CD3+CD4+CD25+Foxp3 cells, was not signifi-
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cantly different between mice treated with PBS and mice 
treated with ODNs (Fig. 6d). In BLN, IL-4, IL-5, and IL-13 
were significantly reduced 1 day after OVA inhalation in 
mice treated with ODN112 and CpG-ODN, compared 
with vehicle. IFN-γ increased in the BLN of mice treated 
with ODN112 and CpG-ODN compared with vehicle 
(Fig. 6e). These results suggest that the attenuated Th2 cy-

tokine production associated with increased IFN-γ in the 
mice lung treated with ODN112 may be responsible for 
the attenuated prototypical asthma-related features.

ODN112 Suppresses Allergen Sensitization
We measured Th2 cytokine production in the spleen 

to evaluate the T cell phenotypes produced during the 
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sensitization phase of ODN treatment. ODN112 and 
CpG-ODN significantly reduced IL-5 and IL-13 produc-
tion from splenocytes stimulated with OVA, but not 
ODN112GC (Fig. 7). IL-4 production from splenocytes 
was undetectable level (<4 pg/mL, data not shown). In 
contrast, ODN112 and CpG-ODN significantly increased 
IFN-γ production from splenocytes stimulated with 
OVA. These results suggest that ODN112 and CpG-ODN 
may play an important role in the attenuation of Th2 cy-
tokine production and the induction of IFN-γ production 
by modulating Th1/Th2 balance during Th cell differen-
tiation in allergic sensitization.

ODN112 Increases CD40 and CD80 Expression, and 
IL-12p40 Production from DCs
DCs play a key regulatory role in the direction of T-cell 

differentiation through cytokine production and a spe-
cific co-stimulatory molecule expression. Therefore, to 
assess the effect of ODN112 on DC phenotype, we evalu-
ated CD40, CD80, and CD86 expression on peritoneal 
DCs after the treatment and IL-12p40 production from 
Th2-oriented DCs stimulated with ODNs. CD40 and 
CD80 expression on DCs was significantly increased by 
the administration of ODN112 or CpG-ODN. In con-
trast, CD86 expression on peritoneal DCs was not altered 
by the coadministration of ODNs (Fig. 8a, b). ODN112 
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and CpG-ODN, but not ODN112GC, enhanced IL-12p40 
synthesis from Th2-oriented BM-DCs (Fig. 8c). Such en-
hanced IL-12p40 production was not affected by the pres-
ence of polymyxin B, whereas the LPS-induced IL-12p40 
production was significantly reduced in the presence of 
polymyxin B, suggesting that the IL-12p40 production af-
ter the stimulation with ODN112 or CpG-ODN was not 
induced by contaminated LPS in the ODNs (Fig. 8c).

Discussion

This study reports the first evidence of a novel eukary-
otic TLR9 agonist containing a non-canonical CpG mo-
tif, 5′-GTCGGT-3′, in the suppression of allergic asthma. 
In the battle against Cryptococcus infection, the host in-
nate immune system senses its DNA and induces a Th1 
immune response for protection against the infection [20, 
31], whereas the microorganism resists the host innate 
immune system by inducing a Th2 immune response to 
cryptococcal mannoproteins [32] or capsular polysaccha-
ride glucuronoxylomannan [33]. In the present study, we 
used ODN112 derived from cryptococcal DNA as a tool 
for inducing a Th1 immune response in asthma. The 
main features of ODN112 treatment in our study are as 
follows: suppressed Th2 cytokine production by ODN112 
administration during the sensitization phase; enhanced 
IFN-γ production in the lung and BLN after the onset of 
asthma-related features; significant reduction of IL-4+ 

CD4+ and IL-4+ CD8+ T cells in the lung; and attenuated 
allergen-induced asthmatic airway responses including 
AHR, mucus gene expression, antigen-specific immuno-
globulin, and eosinophil accumulation in the airway. Fur-
thermore, ODN112 also enhanced CD40 and CD80 ex-
pression and IL-12p40 synthesis by Th2-oriented DCs.

Enhanced AHR and airway remodeling including an 
increased volume of the airway smooth muscle, thicken-
ing of the basement membrane, and goblet cell hyperpla-
sia are responsible for airway narrowing after allergen in-
halation [34]. Of these features, ODN112 suppressed 
AHR but did not alter the other characteristics of airway 
remodeling, as evidenced by: (1) ODN112 attenuated the 
RL value in response to inhaled methacholine after OVA 
inhalation, (2) ODN112 did not alter mRNA levels of M1 
and M3 muscarinic acetylcholine receptors and β2-
adrenergic receptors in the lung, and (3) ODN112 did not 
histologically alter the volume of collagen and mucus pro-
duction in airway. Although further studies are required 
to determine whether ODN112 attenuates airway remod-
eling induced by repeated long-term allergen exposure, 
since the asthma mouse model is not sufficient for the 
evaluation of airway remodeling, our data suggest that at-
tenuated AHR after treatment with ODN112 may not be 
attributable for its effect on relieving histological change 
of airways after allergen inhalation but rather its suppres-
sive activity against Th2-type immune response. There-
fore, verification of the treatment effect of ODN112 on the 
Th1/Th2 balance during the elicitation phase of asthmat-
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ic airway responses is further required. The salient differ-
ence between ODN112 and CpG-ODN is in its backbone. 
CpG-ODN contains a full phosphorothioate backbone, 
which prevents its degradation by DNase, thereby increas-
ing the risk of excess immunological responses in vivo 
[15]. In contrast, the backbone of ODN112 is not modified 

because a phosphorothioate backbone completely abol-
ished its effect on DC activation [21]. This feature might 
reduce the risk of excess immunological response. We 
found that ODN112 treatment with a dose 10 times high-
er than CpG-ODN is needed for similar suppressive ef-
fects on the eosinophil count in BAL fluid, suggesting that 
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unmodified ODN112 may be easily degraded in vivo. Fur-
thermore, we previously showed that the concentration of 
IL-12p40 in the culture supernatant of BM-DCs stimu-
lated with 30 μg/mL ODN112 was 2 times lower than that 
in the culture supernatant of BM-DCs stimulated with 1 
μg/mL CpG-ODN [21]. Although the data regarding 
whether ODN112 is generally a weaker stimulator for 
TLR9 than sCpG-ODN are not adequately accumulated, 
the potency of ODN112 as a stimulator for TLR9 might be 
approximately 10–60 times lower than that of CpG-ODN. 
Further research regarding its delivery system and the de-
gree of DNase resistance required for ODN112 stability in 
vivo is required. Horner and Raz [35] showed that ISS-
ODN-conjugated allergen was more effective in inducing 
Th1-type immune response than ISS-ODN mixed with  
allergen. Encapsulating and sealing ISS-ODN inside 
nanoparticles may be also an effective method to protect 
ODN against breakdown by DNases [36]. Thus, improv-
ing intracellular delivery and binding of ODN112 with  
allergen are necessary to improve its efficacy as a Th1-
inducing adjuvant in asthma treatment.

The sequence in ODN112 that differs from the se-
quence in CpG motif is unique and responsible for the 
suppression of asthmatic features in mice. Regarding the 
role of non-canonical CpG motif in the anti-Th2 immune 
response, Iliev et al. [37] have showed that the genomic 
DNA of Lactobacillus rhamnosus GG with a core se-
quence of TTTCGTTT motif potentially suppressed the 
OVA-specific IgE production in mice through TLR9-de-
pendent activation of DCs and induction of IFN-γ pro-
duction by CD4+ T cells. In contrast, ISS-ODN contain-
ing a unique core sequence, 5′-ATTTTTAC-3′, and a 
6-base secondary loop structure in L. gasseri JCM1131 
genome enhanced immunostimulatory activity such as 
IL-12p70 and IFN-γ production in human peripheral 
blood mononuclear cells [38]. In the present study, 
ODN112 lacks canonical CpG motifs but contains a 
unique core sequence, 5′-GTCGGT-3′. In particular, a 
cytosine-guanine (CG) in the 6-base fragment in ODN112 
is the key for the anti-allergic activity, although we could 
not rule out the possibility that the secondary loop struc-
ture of ODN112 might also play an important role in the 
induction of Th1 immunity in asthma. Within further 
limitation of the present study, we could not completely 
rule out the possibility of the involvement of other patho-
gen recognition receptors in the recognition of 5′-GTC-
GGT-3′ because we could not use TLR9KO mice in the 
present study. However, the results from the in vitro ex-
periment strongly suggest that stimulatory activities of 
ODN112 are TLR9 dependent [21].

The suppressive effect of ODN112 on allergen sensiti-
zation implies the preventative effect of ODN112 on the 
development of Th2 cells in asthma. DCs, the most pro-
ficient antigen-presenting cells, play a critical role in 
adaptive immune responses by priming Th2 cells to re-
spiratory allergens, which is a critical step for the develop-
ment and exacerbation of allergic asthma [39]. Sustained 
IL-12 signaling induces STAT4 activation in T cells, 
which skew naive Th cells toward the Th1 phenotype as 
defined by IFN-γ expression [40, 41]. IFN-γ antagonizes 
the development of Th2 cells and also converts fully po-
larized Th2 cells into IFN-γ-producing Th1 cells by trans-
duction of T-bet [42]. We showed that ODN112 signifi-
cantly increased IL-12p40 production from both Th2-
oriented DCs and immature DCs in our present and 
previous studies [21]. In the present study, although IL-
12p40 and IFN-γ in the peritoneal lavage fluids at 1 and 
3 days after sensitization were undetectable (<15 pg/mL, 
data not shown), the co-stimulatory molecular expres-
sion pattern of CD80 on peritoneal DCs following sensi-
tization indicates that ODN112 and CpG-ODN induce 
the Th1-inducing capacity in Th2-biased DCs [43]. In  
addition, upregulation of CD40 and IL-12 may syner
gistically enhance IFN-γ production by T-cell receptor-
stimulated T cells [44]. Several factors involved in the  
induction of co-stimulatory molecule expression on anti-
gen-presenting cells are reported. Previously, it was 
demonstrated that IL-4 is an important cytokine for 
CD86 expression on macrophages [45]. In contrast, 
IFN-γ upregulates CD40 and CD80 in monocytes [46]. 
Furthermore, TLR agonists themselves, such as ODNs 
and LPS, induce co-stimulatory molecule expression on 
DCs [47]. Therefore, our data suggest that the Th1-type 
cytokine milieu regulated by ODNs is responsible for en-
hanced CD40/CD80 expression on DCs in the peritoneal 
cavity at the time of sensitization. The enhanced IFN-γ 
production, as well as the reduced Th2 cytokine produc-
tion, was observed in the spleen of ODN112-treated mice 
before allergen inhalation. This suggests that ODN112 re-
directs immune responses from Th2 to Th1 during sen-
sitization by changing the DC phenotype, which exhibits 
the suppressed prototypical asthma-related features after 
allergen inhalation. In clinical settings, the reduced aller-
gen-induced Th1 response is an important factor related 
to ongoing severe atopic asthma [48]. In patients with al-
lergic asthma, blood IL-12 levels are lower than those in 
healthy controls, which is associated with reduced IL-
12-dependent IFN-γ production [49]. In addition, nor-
malization of IFN-γ responses is important for resolution 
of inflammation in asthma [48].
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In summary, our results indicate that the CD40/CD80/
IL-12/IFN-γ axis activation induced by ODN112 during 
the sensitization phase suppressed asthmatic immune re-
sponses in the lungs followed by AHR after the develop-
ment of asthma. Also, our data suggest the possibility that 
suppressive activity of ODN112 on Th2 cell differentia-
tion in the sensitization phase maintains a long-term ef-
fect into the elicitation phase, which may not only be a 
benefit for the prevention of asthma onset but also for the 
prevention of asthma exacerbation.
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