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Abstract
A vaccine to protect against COVID-19 is urgently needed. 
Such a vaccine should efficiently induce high-affinity neu-
tralizing antibodies which neutralize SARS-CoV-2, the cause 
of COVID-19. However, there is a concern regarding both 
vaccine-induced eosinophilic lung disease and eosinophil-
associated Th2 immunopotentiation following infection af-
ter vaccination. Here, we review the anticipated characteris-
tics of a COVID-19 vaccine to avoid vaccine-associated eo-
sinophil immunopathology. © 2020 S. Karger AG, Basel

Introduction

COVID-19 is a new infectious disease caused by a 
coronavirus, severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) [1]. The virus exhibits high 

infectivity and can cause a broad spectrum of symp-
toms and severity [2]. To limit the damage of COV-
ID-19, primary efforts focus on confinement, with 
physical distancing, wearing face masks, and hygiene 
measures [3]. However, although these measures help 
against viral spread, they cause limitations in our per-
sonal and professional lives. Moreover, there is a con-
stant risk of viral outbreaks with severe consequences 
for health and economics. Therefore, rapid immuniza-
tion of the world’s population against SARS- CoV-2 is 
needed and vaccines are currently being developed 
world-wide [4]. There are several strategies to develop 
a vaccine such as live-attenuated or inactivated viruses, 
viral vector-containing nanoparticles or virus-like par-
ticles, subunit components, proteins/peptides, RNA, 
DNA, or even viable cells. These strategies are reviewed 
elsewhere [4]. In this article, we would like to point out 
the risk of eosinophil-associated immunopathology 
following infection after SARS-CoV-2 vaccination as 
well as strategies for its prevention.
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COVID-19 and Eosinophils

Eosinophils represent a subpopulation of granulo-
cytes which can mediate immunopathology in eosino-
philic diseases such as bronchial asthma, eosinophilic 
esophagitis, and hypereosinophilic syndromes [5]. Eo-
sinophils are believed to exhibit antibacterial and anti-
viral effector functions as well as protecting against par-
asites [6, 7]. Although rhinovirus, respiratory syncytial 
virus (RSV), and influenza virus are common triggers 
of viral-induced asthma exacerbation, neither SARS-
CoV-1 nor SARS-CoV-2 have been identified as risk 
factors for asthma exacerbations [8, 9]. Interestingly, 
COVID-19 patients exhibited eosinopenia while eosin-
ophil levels increased in association with improved 
clinical status [9]. Moreover, in a patient with COV-

ID-19, a lymphocytic infiltration of the lungs was ob-
served, whereas no eosinophil infiltration was detected 
[10]. Taken together, although the available data are 
very limited, eosinophils do not seem to play either a 
protective or pathogenic role in COVID-19 under nor-
mal circumstances.

But how about the role of eosinophils during corona-
virus vaccination? SARS-CoV-1 vaccines have been 
shown to induce pulmonary eosinophilia in ferrets [11], 
monkeys [11], and mice [12] after viral challenge. Eosin-
ophil-associated type 2 inflammation also occurred with 
SARS-CoV-1 reinfection in monkeys [13]. Eosinophil-
associated pulmonary disease was also seen subsequent to 
infection after RSV vaccination [14]. Therefore, there is 
the possibility that SARS-CoV-2 vaccines might cause a 
similar vaccine-associated immunopathology.
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Fig. 1. An illustrated presentation of the anticipated type 1 and type 2 immune responses by SARS-CoV-2, the 
spike (S) protein and its receptor binding domain (RBD). Based on information about SARS-CoV-1, the whole 
virus and the complete S protein induce type 2 immune responses. In contrast, RBD does not induce type 2 in-
flammation. It is suggested that a COVID-19 vaccine should contain the RBD and additional Th1-promoting 
molecules (dashed box). High-affinity SARS-CoV-2 neutralizing antibodies are the best protection against virus-
induced type 2 eosinophilic inflammation upon re-challenge.
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Immune Responses in Association with Coronavirus 
Vaccination

The most promising strategy for reaching immunity 
against COVID-19 is to induce the production of virus-
neutralizing antibodies (Fig. 1). Such antibodies usually 
block the interaction of the virus with its cellular recep-
tor. The cellular receptor of SARS-CoV-2 is the angio-
tensin-converting enzyme 2 (ACE2) [15]. Therefore, the 
primary immune mechanism for avoiding infection 
seems to be by blocking viral attachment to ACE2. In-
deed, most COVID-19 vaccine candidates follow this 
strategy [16]. The obvious isotype to be induced is IgG, 
particularly the protective IgG1 and IgG3 subclasses. 
However, since the virus targets mucosal surfaces, IgA 
induction might also be beneficial. The formulation of 
the vaccine candidate with Toll-like receptor (TLR) 7/8 
and TLR9 ligands to the vaccine might promote IgA pro-

duction [17, 18] and, in addition, may favor type 1 im-
mune responses (Fig. 1) [19].

To obtain specific antibody production, B cells require 
“help” from CD4+ T cells. The induction of CD4+ T-help-
er cells is often not rate limiting in vaccination, most like-
ly because low numbers of these cells are already suffi-
cient for antibody production. Nevertheless, low re-
sponders to vaccination often fail to mount IgG 
responses due to insufficient CD4+ T-cell “help”. Since 
T-cell help can be provided by CD4+ T cells with other 
antigen specificities, vaccines can be supplemented with 
microbial proteins or peptides to which most humans are 
already immunized [20]. The immune response to these 
antigens will be strong because boosting of previously 
primed and established CD4+ T cells is more efficient 
than priming. Such microbial antigens may also skew the 
immune response towards T-helper type 1 polarization 
(Fig. 1) [19].
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Fig. 2. Vaccination may enhance disease by induction of IgG antibodies (left) or Th2 cells (right). a IgG antibod-
ies may enhance infection if the cellular target of infection expresses Fcγ receptors. b Alternatively, IgG antibod-
ies may enhance antigen presentation by targeting viral particles to professional antigen-presenting cells, enhanc-
ing inflammation. c Th2 cells may recruit eosinophils to the lung, also causing enhanced infection. As SARS-
CoV-2 does not infect Fcγ receptor-expressing cells and viral load is expected to be reduced in vaccinated 
individuals, IgG antibodies are not expected to cause enhanced disease, in particular not neutralizing antibodies. 
Th2 cell-induced eosinophilia, may, however, be a major concern, and therefore induction of Th2 cells by vac-
cination should be avoided.
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A type 1 immune response might also be attained by 
viral vectors or innate stimulators with type 1 polariza-
tion capabilities [21–23]. For instance, nanoparticles and 
virus-like particles can be designed to contain molecules 
that stimulate innate immunity to enhance T-helper 1 
and to block T-helper 2 polarization [24].

The type of T-helper immune response may also de-
pend on the antigen. Immunization with inactivated 
SARS-CoV-1 causes eosinophilic infiltration following 
viral re-exposure in mice [25]. Immunization with the 
whole spike (S) protein, which is responsible for binding 
to ACE2, also triggered type 2 inflammation including 
eosinophilia after viral challenge in mice [11]. In contrast, 
at least in the case of SARS-CoV-1, immunization with 
the so-called receptor binding domain, which is a par-
ticular part within the S protein, induced neutralizing an-
tibodies in the absence of a type 2 immune response 
(Fig. 1) [26].

Increased immune pathology may also occur via anti-
bodies induced by the vaccine (Fig. 2). For example, an 
antibody enhancement of infection may occur when an-
tibodies promote viral uptake via Fc receptors. However, 
there is no evidence that such a mechanism occurs with 
SARS-CoV-1 [27]. On the other hand, antibodies may 
also activate immunoreceptor tyrosine-based activation 
motifs within the cytoplasmic domain of Fc receptors, re-
sulting in increased secretion of pro-inflammatory cyto-
kines by macrophages and dendritic cells. Such a scenar-
io, however, requires a high viral load which is unlikely to 
occur if vaccine-induced neutralizing antibodies are pres-
ent. Therefore, antibody-dependent enhancement is not 
expected to cause problems for COVID-19, but eosino-

phil-mediated immunopathology following SARS-
CoV-2 vaccination and infection may be at the heart of 
the problem (Fig. 2).

Taken together, COVID-19 vaccines should induce 
high-affinity neutralizing antibodies. Moreover, they 
should polarize the T-cell response towards type 1 immu-
nity and avoid the stimulation of cytokines which induce 
T-helper 2 immunity. To avoid type 2 inflammatory re-
sponses, careful selection of the vector and the antigen is 
required. The addition of TLR ligands and other mole-
cules stimulating type 1 immunity might be helpful with 
respect to sufficient CD4+ T-cell help for antibody pro-
duction as well as suppressing unwanted type 2 immuni-
ty-causing eosinophilia. It should be noted, however, that 
it is only partially possible to predict vaccine efficacy and 
safety [28]. Due to its urgency, COVID-19 vaccination 
should be given the highest priority.
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